Sum of squares with Reproducing Kernel Hilbert Spaces, a path to global optimisation of regular functions

Alessandro RUDI, École Normale Supérieure (PSL) / Inria - Paris
Ulysse MARTEAU-FEREY, École Normale Supérieure (PSL) / Inria - Paris
Francis BACH, École Normale Supérieure (PSL) / Inria - Paris

We consider the global minimization of smooth functions based solely on function evaluations. Algorithms that achieve the optimal number of function evaluations for a given precision level typically rely on explicitly constructing an approximation of the function which is then minimized with algorithms that have exponential running-time complexity. In this paper, we consider an approach that jointly models the function to approximate and finds a global minimum. This is done by using infinite sums of square smooth functions and has strong links with polynomial sum-of-squares hierarchies. Leveraging recent representation properties of reproducing kernel Hilbert spaces, the infinite-dimensional optimization problem can be solved by subsampling in time polynomial in the number of function evaluations, and with theoretical guarantees on the obtained minimum.
More formally, let f be a m times differentiable function on a subset Ω of \mathbb{R}^{d} for a given integer d. Let f_{*} be the minimum of f on Ω. We consider the problem of estimating f_{*} given n points $\left(x_{1}, \ldots, x_{n}\right) \in \Omega^{n}$ based only on the evaluations of f at these points : $\left(f\left(x_{i}\right)\right)_{1 \leq i \leq n}$. To design our algorithm, we start by proving that $f-f_{*}$ can be written as a sum of squares of functions f_{j} which belong to a Sobolev space $H^{s}(\Omega)$ of functions with s square-integrable derivatives for a suitable s.
Théorème 1 (Theorem 3 in [1]). If f has isolated strict minima inside Ω, then for any $s>m+d / 2$, $f-f_{*}$ can be written as a finite sum of squares

$$
\begin{equation*}
\forall x \in \Omega, f(x)=f_{*}+\sum_{j \in J} f_{j}(x)^{2}, \tag{1}
\end{equation*}
$$

where the f_{j} belong to $H^{s}(\Omega)$, which is a reproducing kernel Hilbert space.
Our algorithm works by finding a sum of squares decomposition as in (1) but which holds only on the n points $\left(x_{i}\right)_{1 \leq i \leq n}$, i.e. by solving the following problem for a suitable regularizer \mathcal{R} :

$$
\begin{equation*}
\min _{c \in \mathbb{R}, f_{j} \in H^{s}(\Omega)}-c+\mathcal{R}\left(\left(f_{j}\right)_{1 \leq i \leq n}\right), \quad \text { s.t. } \quad f\left(x_{i}\right)=c+\sum_{j \in J} f_{j}\left(x_{i}\right)^{2}, 1 \leq i \leq n . \tag{2}
\end{equation*}
$$

Using the reproducing kernel properties of $H^{s}(\Omega),(2)$ can be formulated as a semi-definite program and solved with a computational cost of $O\left(n^{3.5}\right)$ in time and $O\left(n^{2}\right)$ in memory. Moreover, we prove the following theorem showing that the optimal c_{*} is a good approximation of f_{*}.
Théorème 2 (Theorem 6 in [1]). If x_{1}, \ldots, x_{n} are sampled uniformly, there exists a constant C depending only on d, m and Ω such that with high probability,

$$
\left\|f_{*}-c_{*}\right\| \leq C\|f\|_{C^{m}(\Omega)}^{2} n^{-m / d+1 / 2+3 / d} .
$$

This rate is nearly optimal in the case of Sobolev functions and more generally makes the proposed method particularly suitable for functions which have a large number of derivatives. Indeed, when m is in the order of d, the convergence rate to the global optimum does not suffer from the curse of dimensionality, which affects only the worst case constant.
[1] A. Rudi, U. Marteau-Ferey, F. Bach. Finding global minima via kernel approximations, 2020.
Contact: ulysse.marteau-ferey@inria.fr

