

Contraction rates for the Vlasov-Fokker-Planck equation and uniform in time propagation of chaos through coupling

Arnaud GUILLIN, LMBP, Université Clermont-Auvergne - Clermont-Ferrand <u>Pierre LE BRIS</u>, LJLL Sorbonne Université - Paris

Pierre MONMARCHÉ, LJLL Sorbonne Université - Paris

We adapt in a non-linear case a method used by A. Eberle, A. Guillin and R. Zimmer [2] to prove the existence of a contraction rate for the non linear stochastic differential equation of McKean-Vlasov type

$$\begin{cases} dX_t = V_t dt \\ dV_t = \sqrt{2} dB_t - V_t dt - \nabla U(X_t) dt - \nabla W * \mu_t(X_t) dt \\ \mu_t = \text{Law}(X_t). \end{cases}$$
(1)

Here, $(X_t, V_t) \in \mathbb{R}^d \times \mathbb{R}^d$, $(B_t)_{t \ge 0}$ is a Brownian motion in dimension d on a probability space $(\Omega, \mathcal{A}, \mathbb{P})$, and μ_t is the law of the position X_t . The symbol ∇ refers to the gradient operator, and the symbol * to the operation of convolution.

We assume the interaction ∇W is Lipschitz continuous and the confining force ∇U is both Lipschitz continuous (or locally Lipschitz continuous) and greater than a quadratic function. We use coupling methods suggested by A. Eberle [1] to obtain a contraction rate for a Wasserstein distance.

Finally, using the same method, we prove a result of uniform in time propagation of chaos for the related N particles system in \mathbb{R}^d in mean field interaction

$$\forall i \in \{1, \dots, N\}, \qquad \begin{cases} dX_t^i = V_t^i dt, \\ dV_t^i = \sqrt{2} dB_t^i - V_t^i dt - \nabla U\left(X_t^i\right) dt - \frac{1}{N} \sum_{j=1}^N \nabla W\left(X_t^i - X_t^j\right) dt, \end{cases}$$
(2)

where X_t^i and V_t^i are respectively the position and the velocity of the i-th particle, and $(B_t^i, 1 \le i \le N)$ are independent Brownian motions in dimension d.

- A. Eberle. Reflection couplings and contraction rates for diffusions. Probab. Theory Relat. Fields, 166(3-4), 851–886, 2016.
- [2] A. Eberle, A. Guillin, R. Zimmer. Couplings and quantitative contraction rates for Langevin dynamics. Ann. Probab., 47(4), 1982–2010, 2019.

<u>Contact</u>: pierre.le_bris@upmc.fr