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Where to use Machine Learning in control theory?
Many objects can be learnt depending on the available data

Trajectory x : t ∈ [t0,T ] 7→ RQ

Control u : t ∈ [t0,T ] 7→ RP

Vector field f : (t, x , u) 7→ RQ

Lagrangian L : (t, x , u) 7→ R ∪ {∞}
Value function VT ,xT : (t0, x0) 7→ R ∪ {∞}

Which one should we try to approximate?

What is the most principled/theoretically grounded
application of kernel methods?

Trajectories of linear systems belong to a
reproducing kernel Hilbert space (RKHS)!
State constraints are then easy to satisfy!
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Time-varying state-constrained LQ optimal control

min
x(·),u(·)

χx0(x(t0)) + g(x(T ))

+x(tref )>Jref x(tref ) +
∫ T

t0

[
x(t)>Q(t)x(t) + u(t)>R(t)u(t)

]
dt

s.t. x′(t) = A(t)x(t) + B(t)u(t), a.e. in [t0,T ],
ci(t)>x(t) ≤ di(t), ∀ t ∈ Tc , ∀ i ∈ [I] = [[1, I]],

state x(t) ∈ RQ, control u(t) ∈ RP ,
reference time tref ∈ [t0,T ], set of constraint times Tc ⊂ [t0,T ],
A(·) ∈ L1(t0,T ), B(·) ∈ L2(t0,T ), Q(·) ∈ L1(t0,T ), R(·) ∈ L2(t0,T ),
Q(t) < 0 and R(t) < r IdM (r > 0), ci(·), di(·) ∈ C0(t0,T ), Jref � 0,
lower-semicontinuous terminal cost g : RQ → R ∪ {∞}, indicator
function χx0 ,
x(·) : [t0,T ]→ RQ absolutely continuous, R(·)1/2u(·) ∈ L2([t0,T ])



Time-varying state-constrained LQ optimal control

min
x(·),u(·)

χx0(x(t0)) + g(x(T )) → L(x(tj)j∈[J])

+x(tref )>Jref x(tref ) +
∫ T

t0

[
x(t)>Q(t)x(t) + u(t)>R(t)u(t)

]
dt→ ‖x(·)‖2S

s.t. x′(t) = A(t)x(t) + B(t)u(t), a.e. in [t0,T ],
ci(t)>x(t) ≤ di(t), ∀ t ∈ Tc ,∀ i ∈ [I] = [[1, I]],

state x(t) ∈ RQ, control u(t) ∈ RP ,
reference time tref ∈ [t0,T ], set of constraint times Tc ⊂ [t0,T ],
A(·) ∈ L1(t0,T ), B(·) ∈ L2(t0,T ), Q(·) ∈ L1(t0,T ), R(·) ∈ L2(t0,T ),
Q(t) < 0 and R(t) < r IdM (r > 0), ci(·), di(·) ∈ C0(t0,T ), Jref � 0,
lower-semicontinuous terminal cost g : RQ → R ∪ {∞}, indicator
function χx0 , “loss function“ L : (RQ)J → R ∪ {∞},
x(·) : [t0,T ]→ RQ absolutely continuous, R(·)1/2u(·) ∈ L2([t0,T ])



Reproducing kernel Hilbert spaces (RKHS)
A RKHS (Fk , 〈·, ·〉Fk ) is a Hilbert space of real-valued functions over a set
T if one of the following equivalent conditions is satisfied [Aronszajn, 1950]

∃ k : T × T → R s.t. kt(·) = k(·, t) ∈ Fk and f (t) = 〈f (·), kt(·)〉Fk for all
t ∈ T and f ∈ Fk (reproducing property)

the topology of (Fk , 〈·, ·〉Fk ) is stronger than pointwise convergence
i.e. δt : f ∈ Fk 7→ f (t) is continuous for all t ∈ T.

|f (t)− fn(t)| = |〈f − fn, kt〉Fk | ≤ ‖f − fn‖Fk‖kt‖Fk = ‖f − fn‖Fk

√
k(t, t)

For T ⊂ Rd , Sobolev spaces Hs(T,R) satisfying s > d/2 are RKHSs.

{
H1
0 = {f | f (0) = 0, ∃f ′ ∈ L2(0,∞)}
〈f , g〉H1

0
=
∫∞
0 f ′g ′dt ←→ k(t, s) = min(t, s).

Other classical kernels
kGauss(t, s) = exp

(
−‖t − s‖2Rd/(2σ2)

)
kpoly(t, s) = (1 + 〈t, s〉Rd )2.



Two essential tools for computations

Representer Theorem (e.g. [Schölkopf et al., 2001])
Let L : RN → R ∪ {∞}, strictly increasing Ω : R+ → R, and

f̄ ∈ arg min
f ∈Fk

L
(

(f (tn))n∈[N]

)
+ Ω (‖f ‖k)

Then ∃ (an)n∈[N] ∈ RN s.t. f̄ (·) =
∑

n∈[N] ank(·, tn)

↪→ Optimal solutions lie in a finite dimensional subspace of Fk .

Finite number of evaluations =⇒ finite number of coefficients

Kernel trick

〈
∑
n∈[N]

ank(·, tn),
∑

m∈[M]
bmk(·, sm)〉Fk =

∑
n∈[N]

∑
m∈[M]

anbmk(tn, sm)

↪→ On this finite dimensional subspace, no need to know (Fk , 〈·, ·〉Fk ).



Vector-valued reproducing kernel Hilbert space (vRKHS)

Definition (vRKHS)

Let T be a non-empty set. A Hilbert space (FK , 〈·, ·〉K ) of RQ-vector-
valued functions defined on T is a vRKHS if there exists a matrix-valued
kernel K : T × T → RQ×Q such that the reproducing property holds:

K (·, t)p ∈ FK , p>f(t) = 〈f,K (·, t)p〉K , for t ∈ T, p ∈ RQ, f ∈ FK

There is a one-to-one correspondence between K and (FK , 〈·, ·〉K )
[Micheli and Glaunès, 2014], so changing T or 〈·, ·〉K changes K .



Representer theorem in vRKHSs

Theorem (Representer theorem with constraints, P.-C. Aubin, 2021)

Let (FK , 〈·, ·〉K ) be a vRKHS defined on a set T. For a “loss“ L : RN0 →
R ∪ {+∞}, strictly increasing “regularizer“ Ω : R+ → R, and constraints
di : RNi → R, consider the optimization problem

f̄ ∈ arg min
f∈FK

L
(
c>0,1f(t0,1), . . . , c>0,N0f(t0,N0)

)
+ Ω (‖f‖K )

s.t.
λi‖f‖K ≤ di(c>i ,1f(ti ,1), . . . , c>i ,Ni f(ti ,Ni )), ∀ i ∈ [[1,P]].

Then there exists {pi ,m}m∈[[1,Ni ]] ⊂ RQ and αi ,m ∈ R such that

f̄ =
∑P

i=0
∑Ni

m=1 K (·, ti ,m)pi ,m with pi ,m = αi ,mci ,m.



Objective: Turn the state-constrained LQR into “KRR“
We have a vector space S of controlled trajectories x(·) : [t0,T ]→ RQ

S[t0,T ] := {x(·) | ∃u(·) ∈ L2(t0,T ) s.t. x′(t) = A(t)x(t) + B(t)u(t) a.e. }
Given x(·) ∈ S[t0,T ], for the pseudoinverse B(t)	 of B(t), set

u(t) := B(t)	[x′(t)− A(t)x(t)] a.e. in [t0,T ].
〈x1(·), x2(·)〉S := x1(tref )>Jref x2(tref )

+
∫ T

t0

[
x1(t)>Q(t)x2(t) + u1(t)>R(t)u2(t)

]
dt

LQR for Q ≡ 0, R ≡ Id

min
x(·)∈S
u(·)∈L2

L(x(tj)j∈[J]) + ‖u(·)‖2L2(t0,T )

ci(t)>x(t) ≤ di(t), t ∈ Tc , i ∈ [I]

“KRR“ (Kernel Ridge Regression)

min
x(·)∈S

L(x(tj)j∈[J]) + ‖x(·)‖2S

ci(t)>x(t) ≤ di(t), t ∈ Tc , i ∈ [I]

Is (S, 〈·, ·〉S) a RKHS?
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〈x1(·), x2(·)〉S := x1(tref )>Jref x2(tref )

+
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[
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Lemma (P.-C. Aubin, 2021)
(S[t0,T ], 〈·, ·〉S) is a vRKHS over [t0,T ] with uniformly continuous
K (·, ·; [t0,T ]).



Splitting S[t0,T ] into subspaces and identifying their kernels

It is hard to identify K , but take Q ≡ 0, R ≡ Id, tref = t0, Jref = Id

〈x1(·), x2(·)〉S := x1(t0)>x2(t0) +
∫ T

t0
u1(t)>u2(t)dt.

S0 := {x(·) | x′(t) = A(t)x(t), a.e. in [t0,T ]} ‖x(·)‖2K0 = ‖x(t0)‖2

Su := {x(·) | x(·) ∈ S and x(t0) = 0} ‖x(·)‖2K1 = ‖u(·)‖2L2(t0,T ).

As S = S0 ⊕ Su, K = K0 + K1.

Since dim(S0) = Q, for ΦA(t, s) ∈ RQ×Q

the state-transition matrix s → t of x′(τ) = A(τ)x(τ)

K0(s, t) = ΦA(s, t0)ΦA(t, t0)>.

K1 obtained using only the reproducing property and variation of constants

K1(s, t) =
∫ min(s,t)

t0
ΦA(s, τ)B(τ)B(τ)>ΦA(t, τ)>dτ .
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Examples: controllability Gramian/transversality condition

Steer a point from (0, 0) to (T , xT ), with e.g. g(x(T )) = ‖xT − x(T )‖2Q

Exact planning (x(T ) = xT )

min
x(·)∈S
x(0)=0

χxT (x(T )) + 1
2‖u(·)‖2L2(t0,T )

Relaxed planning (g ∈ C1 convex)

min
x(·)∈S
x(0)=0

g(x(T )) + 1
2‖u(·)‖2L2(t0,T )

x(0) = 0⇔ x(·) ∈ Su. Representer theorem: ∃pT , x̄(·) = K1(·,T )pT

Controllability Gramian

K1(T ,T ) =

∫ T

0

ΦA(T , τ)B(τ)B(τ)>ΦA(T , τ)>dτ

x̄(T ) = xT ⇔ xT ∈ Im(K1(T ,T ))

Transversality Condition

0 = ∇
(
p 7→ g(K1(T ,T )p) +

1
2
p>K1(T ,T )p

)
(pT )

= K1(T ,T )(∇g(K1(T ,T )pT ) + pT ).

Sufficient to take pT = −∇g(x̄(T ))



Relation with the differential Riccati equation

Take tref = T , Jref = JT � 0. Let J(t,T ) be the solution of

-∂1J(t,T ) = A(t)>J(t,T ) + J(t,T )A(t)
−J(t,T )B(t)R(t)−1B(t)>J(t,T ) + Q(t),

J(T ,T ) = JT ,

Theorem (P.-C. Aubin, 2021)
Let Kdiag : t0 ∈]−∞,T ] 7→ K (t0, t0; [t0,T ]). Then
Kdiag(t0) = J(t0,T )−1. More generally, K (·, t; [t0,T ]) is given by a matrix
Hamiltonian system for all t ∈ [t0,T ]

∂1K (s, t) = A(s)K(s, t) + B(s)R(s)−1B(s)>
{
Π(s, t) + ΦA(t0, s)> −ΦA(t, s)>, s ≥ t,

Π(s, t) + ΦA(t0, s)>, s < t.

∂1Π(s, t) = −A(s)>Π(s, t) + Q(s)K (s, t),
Π(t0, t) = −IdN ,
K (t,T ) = −J−1T (Π(T , t)> + ΦA(t,T )−ΦA(t0,T )).



Relation with the differential Riccati equation

x̄(·) := arg min
x(·)∈S[t0,T ]

x(T )>JT x(T ) +
∫ T

t0
[x(t)>Q(t)x(t) + u(t)>R(t)u(t)]dt︸ ︷︷ ︸

‖x(·)‖2S

s.t.
x(t0) = x0,

Pontryagine’s Maximum Principle (PMP)
p(t) = −J(t,T )x̄(t) and
ū(t) = R(t)−1B(t)>p(t) = −R(t)−1B(t)>J(t,T )x̄(t) =: G(t)x̄(t)
↪→ online and differential approach

Representer theorem from kernel methods
x̄(t) = K (t, t0; [t0,T ])p0, with p0 = K (t0, t0; [t0,T ])−1x0 ∈ RQ

↪→ offline and integral approach (∼ Green kernel in PDEs)



Numerical example: submarine in a cavern

Original control problem

min
z(·)∈W 2,2,u(·)∈L2

∫ 1

0
|u(t)|2dt

s.t.
z(0) = 0, ż(0) = 0,
z̈(t) = −ż(t) + u(t), ∀t ∈ [0, 1],
z(t) ∈ [zlow(t), zup(t)], ∀ t ∈ [0, 1].



Numerical example: submarine in a cavern

Original control problem

min
z(·)∈W 2,2,u(·)∈L2

∫ 1

0
|u(t)|2dt

s.t.
z(0) = 0, ż(0) = 0,
z̈(t) = −ż(t) + u(t), ∀t ∈ [0, 1],
z(t) ∈ [zlow(t), zup(t)], ∀ t ∈ [0, 1].

Rewriting in standard form

min
z(·)∈W 1,2,u(·)∈L2

∫ 1

0
|u(t)|2dt

s.t.
z(0) = 0,
z′(t) a.e.= Az(t) + Bu(t),
z1(t) ∈ [zlow(t), zup(t)], ∀ t ∈ [0, 1]

z =
(
z
ż

)
, A =

(
0 1
0 -1

)
, B =

(
0
1

)



Numerical example: submarine in a cavern

RKHS regression

min
z(·) ∈ Su

‖z(·)‖2K1

s.t.
z1(t) ∈ [zlow(t), zup(t)], ∀ t ∈ [0, 1]

Rewriting in standard form

min
z(·)∈W 1,2,u(·)∈L2

∫ 1

0
|u(t)|2dt

s.t.
z(0) = 0,
z′(t) a.e.= Az(t) + Bu(t),
z1(t) ∈ [zlow(t), zup(t)], ∀ t ∈ [0, 1]

Su := {z(·) | z(·) ∈ S and z(0) = 0} ‖z(·)‖2K1 = ‖u(·)‖2L2(0,1).



Numerical example: submarine in a cavern

RKHS regression

min
z(·) ∈ Su

‖z(·)‖2K1

s.t.
z1(t) ∈ [zlow(t), zup(t)], ∀ t ∈ [0, 1]
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Numerical example: submarine in a cavern

RKHS regression

min
z(·) ∈ Su

‖z(·)‖2K1

s.t.
z1(t) ∈ [zlow,m, zup,m],
∀ t ∈ [tm − δm, tm + δm], ∀m ∈ [M]
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Numerical example: submarine in a cavern

RKHS regression

min
z(·) ∈ Su

‖z(·)‖2K1

s.t.
z1(tm) ∈ [zlow,m, zup,m]± ηm‖z(·)‖K1 ,

∀ t ∈ [tm − δm, tm + δm], ∀m ∈ [M]
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Take-home messages

“State-constrained LQ Optimal Control is a
shape-constrained kernel regression.“

“Controlled trajectories have the adequate structure to
use kernel methods, most of all for path-planning.“

“In general, positive definite kernels are much too linear
to tackle nonlinear control problems → Linearize! “

This talk summarizes
Linearly-constrained Linear Quadratic Regulator from the viewpoint of kernel
methods, Aubin, SIAM J. on Control and Optimization, 2021 (to appear)
Interpreting the dual Riccati equation through the LQ reproducing kernel, Aubin,
Comptes Rendus. Mathématique, 2021
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SOC tightening of state-constrained LQ optimal control

Problem of time-varying linear quadratic optimal control with finite
horizon and affine inequality state constraints

min
x(·) ∈ S[t0,T ]

χx0(x(t0)) + g(x(T )) + ‖x(·)‖2K

s.t.
ci(t)>x(t) ≤ di(t), ∀ t ∈ [t0,T ], ∀ i ∈ [I],

with [t0,T ] ⊂
⋃
m∈[M][tm− δm, tm + δm], and two values defined at each tm

ηi(δm, tm) := sup
t ∈ [tm−δm,tm+δm]∩[0,T ]

‖K (·, tm)ci(tm)− K (·, t)ci(t)‖K ,

di ,m := inf
t ∈ [tm−δm,tm+δm]∩[t0,T ]

di(t).



SOC tightening of state-constrained LQ optimal control

Problem of time-varying linear quadratic optimal control with finite
horizon and affine inequality state constraints with SOC tightening

min
x(·) ∈ S[t0,T ]

χx0(x(t0)) + g(x(T )) + ‖x(·)‖2K

s.t.
ηi(δm, tm)‖x(·)‖K + ci(ti ,m)>x(ti ,m) ≤ di ,m, ∀m ∈ [Mi ],∀ i ∈ [I],

with [t0,T ] ⊂
⋃
m∈[M][tm− δm, tm + δm], and two values defined at each tm

ηi(δm, tm) := sup
t ∈ [tm−δm,tm+δm]∩[0,T ]

‖K (·, tm)ci(tm)− K (·, t)ci(t)‖K ,

di ,m := inf
t ∈ [tm−δm,tm+δm]∩[t0,T ]

di(t).



Deriving SOC constraints through continuity moduli

Take δ ≥ 0 and t s.t. |t − tm| ≤ δ

|c(t)>x(t)− c(tm)>x(tm)| = |〈x(·),K (·, t)c(t)− K (·, tm)c(tm)〉K |
≤ ‖x(·)‖K sup

{t | |t−tm|≤δ}
‖K (·, t)c(t)− K (·, tm)c(tm)‖K︸ ︷︷ ︸

ηm(δ)

ωm(x , δ) := sup
{t | |t−tm|≤δ}

|c(t)>x(t)− c(tm)>x(tm)| ≤ ηm(δ)‖x(·)‖K

For a covering [0,T ] =
⋃
m∈[M][tm − δm, tm + δm]

“c(t)>x(t) ≤ d , ∀t ∈ [0,T ]“⇔ “c(tm)>x(tm) + ωm(x , δ) ≤ d ,∀m ∈ [M]“



Deriving SOC constraints through continuity moduli

Take δ ≥ 0 and t s.t. |t − tm| ≤ δ

|c(t)>x(t)− c(tm)>x(tm)| = |〈x(·),K (·, t)c(t)− K (·, tm)c(tm)〉K |
≤ ‖x(·)‖K sup

{t | |t−tm|≤δ}
‖K (·, t)c(t)− K (·, tm)c(tm)‖K︸ ︷︷ ︸

ηm(δ)

ωm(x , δ) := sup
{t | |t−tm|≤δ}

|c(t)>x(t)− c(tm)>x(tm)| ≤ ηm(δ)‖x(·)‖K

For a covering [0,T ] =
⋃
m∈[M][tm − δm, tm + δm]

“c(t)>x(t) ≤ d , ∀t ∈ [0,T ]“⇐ “c(tm)>x(tm)+ηm‖x(·)‖ ≤ d ,∀m ∈ [M]“

‖K(·, t)c(t)− K(·, tm)c(tm)‖2K :=c(t)>K(t, t)c(t) + c(tm)>K(tm, tm)c(tm)

− 2c(tm)>K(tm, t)c(t)

Since the kernel is smooth, for c(·) ∈ C0, δ → 0 gives ηm(δ)→ 0.



Deriving SOC constraints through continuity moduli

Take δ ≥ 0 and t s.t. |t − tm| ≤ δ

|c(t)>x(t)− c(tm)>x(tm)| = |〈x(·),K (·, t)c(t)− K (·, tm)c(tm)〉K |
≤ ‖x(·)‖K sup

{t | |t−tm|≤δ}
‖K (·, t)c(t)− K (·, tm)c(tm)‖K︸ ︷︷ ︸

ηm(δ)

ωm(x , δ) := sup
{t | |t−tm|≤δ}

|c(t)>x(t)− c(tm)>x(tm)| ≤ ηm(δ)‖x(·)‖K

For a covering [0,T ]⊂
⋃
m∈[M][tm − δm, tm + δm]

“c(t)>x(t) ≤ d(t),∀t ∈ [0,T ]“⇐ “c(tm)>x(tm)+ηm‖x(·)‖ ≤ dm,∀m ∈ [M]“

with dm := inft ∈ [tm−δm,tm+δm] d(t).



From affine state constraints to SOC constraints
Take (tm, δm) such that [0,T ] ⊂ ∪m∈[[1,NP ]][tm − δm, tm + δm], define

ηi(δm, tm) := sup
t ∈ [tm−δm,tm+δm]∩[0,T ]

‖K (·, tm)ci(tm)− K (·, t)ci(t)‖K ,

di(δm, tm) := inf
t ∈ [tm−δm,tm+δm]∩[0,T ]

di(t).

We have strengthened SOC constraints that enable a representer theorem

ηi(δm, tm)‖x(·)‖K+ ci(tm)>x(tm) ≤ di(δm, tm), ∀m ∈ [[1,NP ]],∀ i ∈ [[1,P]]

⇓

ci(t)>x(t) ≤ di(t), ∀ t ∈ [0,T ], ∀ i ∈ [[1,P]]

Lemma (Uniform continuity of tightened constraints)

As K (·, ·) is UC, if ci(·) and di(·) are C0-continuous, when δ → 0+, ηi(·, t)
converges to 0 and di(·, t) converges to di(t), uniformly w.r.t. t.



Main theoretical result in P.-C. Aubin, SICON, 2021

(H-gen) A(·),Q(·) ∈ L1 and B(·),R(·) ∈ L2, ci(·) and di(·) ∈ C0.
(H-sol) ci(t0)>x0 < di(t0) and there exists a trajectory xε(·) ∈ S

satisfying strictly the affine constraints, as well as the initial
condition.2

(H-obj) g(·) is convex and continuous.

Theorem (∃/Approximation by SOC constraints, P.-C. Aubin, 2021)

Both the original problem and its strengthening have unique optimal
solutions. For any ρ > 0, there exists δ̄ > 0 such that for all (δm)m∈[[1,N0]],
with [t0,T ] ⊂ ∪m∈[[1,N0]][tm − δm, tm + δm] satisfying δ̄ ≥ maxm∈[[1,N0]] δm,

1
γK

sup
t∈[t0,T ]

‖x̄η(t)− x̄(t)‖ ≤ ‖x̄η(·)− x̄(·)‖K ≤ ρ

with γK := supt∈[0,T ], p∈BN

√
p>K (t, t)p.

2(H-sol) is implied for instance by an inward-pointing condition at the boundary.



Main practical result in P.-C. Aubin, SICON, 2021

Problem of time-varying linear quadratic optimal control with finite
horizon and affine inequality state constraints with SOC tightening

min
x(·) ∈ S[t0,T ]

χx0(x(t0)) + g(x(T )) + ‖x(·)‖2K

s.t.
ηi(δm, tm)‖x(·)‖K + ci(ti ,m)>x(ti ,m) ≤ di ,m, ∀m ∈ [Mi ],∀ i ∈ [I].

By the representer theorem, the optimal solution has the form

x̄(·) =
P∑
j=0

Nj∑
m=1

K (·, tj,m)p̄j,m,

where t0,1 = t0 and t0,2 = T , and the coefficients
(p̄j,m)j,m solve a finite dimensional second-order cone problem.



Main practical result in P.-C. Aubin, SICON, 2021

More precisely, setting t0,1 = t0 and t0,2 = T , the coefficients of the
optimal solution x̄(·) =

∑P
j=0

∑Nj
m=1 K (·, tj,m)p̄j,m solve

min
z∈R+,

pj,m∈RN ,
αj,m∈R

χx0

 P∑
j=0

Nj∑
m=1

K (t0, tj,m)p̄j,m

+ g

 P∑
j=0

Nj∑
m=1

K (T , tj,m)p̄j,m

+ z2

s.t. z2 =
P∑
i=0

Ni∑
n=1

P∑
j=0

Nj∑
m=1

p>i ,nK (ti ,n, tj,m)pj,m,

pj,m = αj,mcj(tm), ∀m ∈ [[1,Nj ]],∀ j ∈ [[1,P]],

ηi(δi ,m, ti ,m)z +
∑P

j=0
∑Nj

m=1 ci(ti ,m)>K (ti ,m, tj,m)pj,m
≤ di(δi ,m, ti ,m),

∀m ∈ [[1,Ni ]],
∀ i ∈ [[1,P]], .

which can be written equivalently as a finite dimensional second-order
cone problem (SOCP).



What are state constraints?

Optimal control State constraints

“avoid the wall“
x(t) ∈ [xlow , xhigh]
“abide by the speed limit“
x ′(t) ∈ [vlow , vhigh]
“do not stress the pilot“
x”(t) ∈ [alow , ahigh]

Physical constraints
↪→ provides feasible trajectories in

path-planning

Shape/state constraints are ubiquitous and handled through optimization:
in this talk constraints are

affine pointwise inequality constraints over Hilbert spaces



Content of the talk

Optimization in infinite dimensions with infinitely many constraints
LQ optimal control is usually solved approximately through time
discretization, whereas state constraints are theoretically difficult
kernel methods only provide exact numerical solutions through
representer theorems for finitely many constraints

Challenges to tackle
handle infinitely many constraints in kernel methods with guarantees
apply kernel methods to state-constrained LQ optimal control

Contributions
use compact coverings in infinite dimensions to tighten infinitely
many constraints by other finitely many constraints
identify the LQ reproducing kernel corresponding to LQ optimal
control
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Annex: Green kernels and RKHSs

Let D be a differential operator, D∗ its formal adjoint. Define the Green
function GD∗D,x (y) : Ω→ R s.t. D∗D GD∗D,x (y) = δz(y) then, if the
integrals over the boundaries in Green’s formula are null, for any f ∈ Fk

f (x) =
∫

Ω
f (y)D∗DGD∗D,x (y)dy =

∫
Ω
Df (y)DGD∗D,x (y) =: 〈f ,GD∗D,x 〉Fk ,

so k(x , y) = GD∗D,x (y) [Saitoh and Sawano, 2016, p61]. For vector-valued
contexts, e.g. FK = W s,2(Rd ,Rd) and D∗D = (1− σ2∆)s
component-wise, see [Micheli and Glaunès, 2014, p9].

Alternatively, in 1D, D GD,x (y) = δz(y), the kernel associated to the inner
product

∫
Ω Df (y)Dg(y)dy for the space of f “null at the border“ writes as

k(x , y) =
∫

Ω
GD,x (z)GD,y (z)dz

see [Berlinet and Thomas-Agnan, 2004, p286] and [Heckman, 2012].



Annex: Why are state constraints difficult to study?

Theoretical obstacle: Pontryagine’s Maximum Principle involves not only
an adjoint vector p(t) but also measures/BV functions ψ(t) supported at
times where the constraints are saturated. You cannot just backpropagate
the Hamiltonian system from the transversality condition.

Numerical obstacle: Time discretization of constraints may fail e.g.

Speed cameras in traffic control

In between two cameras, drivers
always break the speed limit.



Annex: IPC gives strictly feasible trajectories

(H-sol) C(0)x0 < d(0) and there exists a trajectory xε(·) ∈ S satisfying
strictly the affine constraints, as well as the initial condition.
(H1) A(·),B(·) ∈ C0, ci(·), di(·) ∈ C1 and C(0)x0 < d(0).
(H2) There exists Mu > 0 s.t. , for all t ∈ [t0,T ] and x ∈ RQ satisfying

C(t)x ≤ d(t), and ‖x‖ ≤ (1 + ‖x0‖)eT‖A(·)‖L∞(t0,T )+TMu‖B(·)‖L∞(t0,T ) ,
there exists ut,x ∈ MuBM such that

∀ i ∈ {j | cj(t)>x = dj(t)}, c′i(t)>x−d ′i (t)+ci(t)>(A(t)x+B(t)ut,x ) < 0.

This is an inward-pointing condition (IPC) at the boundary.

Lemma (Existence of interior trajectories)

If (H1) and (H2) hold, then (H-sol) holds.



Annex: control proof main idea, nested property

ηi(δ, t) := sup ‖K (·, t)ci(t)− K (·, s)ci(s)‖K , ωi(δ, t) := sup |di(t)− di(s)|,
di(δm, tm) := inf di(s), over s ∈ [tm − δm, tm + δm] ∩ [t0,T ]

For −→ε ∈ RP
+, the constraints we shall consider are defined as follows

V0 := {x(·) ∈ S |C(t)x(t) ≤ d(t), ∀ t ∈ [t0,T ]},
Vδ,fin := {x(·) ∈ S |−→η (δm, tm)‖x(·)‖K + C(tm)x(tm) ≤ d(δm, tm), ∀m ∈ [[1,M0]]},
Vδ,inf := {x(·) ∈ S |−→η (δ, t)‖x(·)‖K +−→ω (δ, t) + C(t)x(t) ≤ d(t), ∀ t ∈ [t0,T ]},
V−→ε := {x(·) ∈ S |−→ε + C(t)x(t) ≤ d(t), ∀ t ∈ [t0,T ]}.

Proposition (Nested sequence)

Let δmax := maxm∈[[1,M0]] δm. For any δ ≥ δmax, if, for a given y0 ≥ 0,
εi ≥ supt∈[t0,T ][ηi(δ, t)y0 + ωi(δ, t)], then we have a nested sequence

(V−→ε ∩ y0BK ) ⊂ Vδ,inf ⊂ Vδ,fin ⊂ V0.

Only the simpler V−→ε constraints matter!



Annex: Van Loan’s trick for time-invariant Gramians

Use matrix exponentials as in [Van Loan, 1978]

exp
((

A Qc
0 −A>

)
∆
)

=
(
F2(∆) G2(∆)

0 F3(∆)

)

F̂2(t) = eAt

F̂3(t) = e−A>t

Ĝ2(t) =
∫ t

0
e(t−τ)AQce−τA

>dτ

K1(s, t) =
∫ min(s,t)

0
e(s−τ)ABB>e(t−τ)A>dτ

Set QC = BR−1B>.

For s ≤ t, K1(s, t) = Ĝ2(s)F̂2(t)>

For t ≤ s, K1(s, t) = F̂2(s)Ĝ2(t)>


	Finding the RKHS of LQ optimal control

