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I We aim at solving transport equations

∂t f (t , z) + u(z) · ∇z f (t , z) = 0

I In 1D with constant advection field u, we have the relation

f (t + ∆t , z) = f (t , z − u∆t)

I This is exploited in semi-Lagrangian schemes:
I ODE solver for characteristics
I interpolation

I Here we focus on Hermite interpolation, which reads in 1D:

Proposition
I With f (a), f (b), f ′(a), f ′(b), a < b, we can define explicitly a unique polynomial P

of degree ≤ 3 satisfying the interpolation conditions

P(a) = f (a), P(b) = f (b), P′(a) = f ′(a), P′(b) = f ′(b).

I P(a + x(b−a)) = f (a)H0(x) + f (b)H1(x) + (b−a)f ′(a)K0(x) + (b−a)f ′(b)K1(x)

H0(x) = (1− x)2(1 + 2x) K0(x) = (1− x)2x
H1(x) = x2(3− 2x) K1(x) = x2(x − 1)
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I Hermite interpolation on triangular mesh
I Conclusion and future works
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Some known methods in the context of plasma physics
I Propagation of gradients

Cubic Interpolation Propagation NakamuraYabe1999

Propagation of f , ∂x f and ∂v f
Example for ∂t f + v∂x f (t , x , v) = 0 step:

1. Hermite interpolation for f and ∂x f at foot of characteristic xi − vj ∆t = xi0 + αh

f n+1
ij = f n

i0 j H0(α) + f n
i0+1j H1(α) + h∂x f n

i0 j K0(α) + h∂x f n
i0+1j K1(α)

h∂x f n+1
ij = f n

i0 j H
′
0(α) + f n

i0+1j H
′
1(α) + h∂x f n

i0 j K
′
0 (α) + h∂x f n

i0+1j K
′
1 (α)

2. for ∂v f , use of Finite Difference on ∂t∂v f = −∂x (v∂v f (t, x, v))

I Reconstruction of gradients
Finite Difference Hermite FilbetSonnendrücker2003

The gradients are reconstructed to save memory
I WENO of degree 5: CaiQiuQiu2016 YangFilbet2014

use of fi0−1, fi0 , fi0+1, fi0+2 and f ′i0−1, f ′i0+2

I Hermite on triangular mesh BesseSonnendrücker2003

I Analysis of convergence Besse2008

I Recent work for guiding center model (⇔ 2D incompressible Euler equation)
YinMercierYadavSchneiderNave2021 following in particular
SeiboldNaveRosales2012
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I High order Lagrange interpolation is very efficient on uniform grid

PLag(xi0 + αh) =
∑d+1
`=−d f (xi0 )L`(α), L`(α) =

∏d+1
k=−d, k 6=`

α−k
`−k

possible coupling with high order time splitting CasasCrouseillesFaouM2017

⇒ difficult to beat for classical Vlasov-Poisson system{
∂t f + v · ∇x f + E · ∇v f = 0
−∆xφ =

∫
fdv , E = −∇x Φ.

I However, it becomes costly for multi-D interpolation

⇒ Hermite interpolation can be a solution
I We have already worked in the cubic case

HamiazMSellamaSonnendrücker2016 (curvilinear 2D interpolation)
CrouseillesGlancHirstoagaMadauleMPetri2014 (conservative 2D interpolation)
We approach to the results of the high order Lagrange interpolation
keeping cubic polynomials, as cubic splines, but more local
as for cubic splines, a preparation step:
reconstruction fo the derivatives↔ spline coefficients computations

I We explore here the case of higher order Hermite interpolation
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The beginning
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I In 1D, we choose to use the values

fi0−d , f ′i0−d , . . . , fi0+d+1, f ′i0+d+1

I for d = 0, it is the classical cubic case: fi0 , f
′
i0
, fi0+1, f ′i0+1

I for d = 1, we go to degree 7 and so on...
I Formulae are completely explicit:

P(xi0 + αh) =
d+1∑
`=−d

fi0+`H`(α) +
0∑

`=−d

f ′i0+`+K`(α) +
d+1∑
`=1

f ′i0+`−K`(α)

K`(α) = L`(α)2(α− `) H`(α) = L`(α)2(1− 2L′`(`)(α− `))

with L′`(`) =
∑d+1

j=−d, j 6=`
1
`−j

I Derivatives are reconstructed in a FD fashion of order p

p = 1, f ′`+ = f`+1 − f`, f ′`− = f` − f`−1

p = 2, f ′`+ = f ′`− =
f`+1−f`−1

2 and so on...
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Numerical results in 1D
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Numerical results for VP 1d1v
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I We observe better accuracy than Lagrange
I ... using a larger stencil...
I derivatives can be computed once and reused for different stencils
I accuracy is improved for d = 1⇒ encouraging results
I we hope to have a gain in a 2D setting (not implemented yet)
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I Previous strategy can lead to stability issues on more complex problems
⇒ in particular, if the grid is non-uniform, which can be needed for some problems

localized at some regions
I One solution is to use spline interpolation

AfeyanCasasCrouseillesDodhyFaouMSonnendrucker2014
⇒ smoothing effects seem to be beneficial for stability

I We will explore here another more local way: the propagation of the gradients
⇒ Similar to CIP method, but we also would like to remove the FD part

I Another possibility would be to use SLDG method
⇒ non uniform & 2D version are however quite complex to implement
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Gain of factor 262144
16384 = 16 with on uniform cubic splines in velociity
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Looking for stability

I Some results exist for non constant advection Ferretti2013

Convergence with odd degree Lagrange and splines interpolation

SL scheme interpreted as a Lagrange-Galerkin scheme FerrettiM2020

Even degree interpolation only stable for constant advection BesseM2008

Despres2008 CharlesDespresM2012

I What about non uniform grids? can we explain the good behavior of cubic splines?

results on non constant advection can be translated to non-uniform mesh, but only
for smooth mapping
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A stability property in 1D

Proposition
With f n : [0, L]per → R piecewise cubic solution obtained from splines or Hermite
interpolation, we have ∫ L

0
|(f ′′)n+1(x)|2dx ≤

∫ L

0
|(f ′′)n(x)|2dx

I can be generalized to higher order
I for splines: CarlDeBoor1963
I for Hermite: GoodrichHagstromLorenz2006

I valid on non uniform mesh
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Proof in the Hermite case
f n ∈ H2

per (0, L), since f n ∈ C1
per ([0, L])

We consider Hermite interpolation and start from

∫ L

0
((f n+1)′′(x)− (f n)′′(x − v∆t))(f n+1)′′(x)dx

=

N−1∑
i=0

∫ xi+1

xi

((f n+1)′′(x)− (f n)′′(x − v∆t))(f n+1)′′(x)dx ,

and integrate by parts∫ xi+1

xi

((f n+1)′′(x)− (f n)′′(x − v∆t))(f n+1)′′(x)dx

= −
∫ xi+1

xi

((f n+1)′(x)− (f n)′(x − v∆t))(f n+1)′′′(x)dx

=

∫ xi+1

xi

((f n+1(x)− (f n)(x − v∆t))(f n+1)′′′′(x)dx = 0,

since f n+1(xi ) = (f n)(xi − v∆t) and (f n+1)′(xi ) = (f n)′(xi − v∆t), by definition of the
semi-Lagrangian scheme, and since (f n+1)′′′′(x) = 0 on (xi , xi+1), as on that interval
f n+1 is a polynomial of degree ≤ 3 and thus the 4th derivative is zero.

15 / 33



Related works Uniform grid Cartesian grid Triangular mesh Conclusion/Perspectives

Proof in the Hermite case

We then obtain from the previous orthogonality equality∫ xi+1

xi

|(f n+1)′′(x)−(f n)′′(x−v∆t)|2dx+

∫ xi+1

xi

|(f n+1)′′(x)|2dx =

∫ xi+1

xi

|(f n)′′(x−v∆t)|2dx ,

and thus ∫ xi+1

xi

|(f n+1)′′(x)|2dx ≤
∫ xi+1

xi

|(f n)′′(x − v∆t)|2dx ,

then ∫ L

0
|(f n+1)′′(x)|2dx ≤

∫ L

0
|(f n)′′(x − v∆t)|2dx =

∫ L

0
|(f n)′′(x)|2dx ,

since f n is L-periodic.
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Proof in the splines case

∫ xi+1

xi

((f n+1)′′(x)− (f n)′′(x − v∆t))(f n+1)′′(x)dx

=
[
(f n+1)′(x)− (f n)′(x − v∆t))(f n+1)′′(x)

]x=xi+1

x=xi

−
∫ xi+1

xi

((f n+1)′(x)− (f n)′(x − v∆t))(f n+1)′′′(x)dx

=
[
(f n+1)′(x)− (f n)′(x − v∆t))(f n+1)′′(x)

]x=xi+1

x=xi

using here only f n+1(xi ) = (f n)(xi − v∆t) and (f n+1)′′′′(x) = 0 on (xi , xi+1).
As f n+1 ∈ C2

per ([0, L]), we have

N−1∑
i=0

[
(f n+1)′(x)− (f n)′(x − v∆t))(f n+1)′′(x)

]x=xi+1

x=xi
= 0

The rest of the proof is the same
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A new local splines method

I Hermite advection with propagation is local but costly in memory
I Spline interpolation is not local but less costly in memory
I On uniform mesh, we could use Hermite with reconstruction of derivatives
I But on non uniform mesh, we can have to face with stability issues
I One solution is to use local splines CrouseillesLatuSonnendrücker2006

I we use a domain decomposition
I derivative information is reconstructed using neighbooring points
I on each subdomain, splines are reconstructed from Hermite boundary data

I we propose a modification:
I Hermite boundary data are not reconstructed but propagated
⇒ no need to use large stencil to get stable derivative reconstruction of the initial local

splines method
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Proposition
With f n : [0, L]per → R piecewise cubic solution obtained from new local splines
method, we have ∫ L

0
|(f ′′)n+1(x)|2dx ≤

∫ L

0
|(f ′′)n(x)|2dx

I The proof follows the proof given for Hermite and splines

⇒ It gives a theoretical legitimity of the scheme
I Another method is to use spline interpolation with Greville points

GucluZoni2019, Bourne2020 (presentation at NumKin conference)

⇒ However stability not available there
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Advection in 2D

I We consider a 2D patch [xI , xJ ]× [yK , yL]

I Unknowns are:

point values: f n
ij ' f (tn, xi , yj ) for i ∈ {I, . . . , J}, j ∈ {K , . . . , L}

x-derivatives: ∂x f n
ij ' ∂x f (tn, xi , yj ) for i ∈ {I, J}, j ∈ {K , . . . , L}

y-derivatives: ∂y f n
ij ' ∂y f (tn, xi , yj ) for i ∈ {I, . . . , J}, j ∈ {K , L}

xy-derivatives: ∂2
xy f n

ij ' ∂xy f (tn, xi , yj ) for i ∈ {I, J}, j ∈ {K , L}
I It is enough to get a Hermite representation on each cell
I We use f (tn+1, xi , yj ) = f (tn,X = X(tn; tn+1, xi , yj ),Y = Y (tn; tn+1, xi , yj ))

I ∂x f (tn+1, xi , yj ) = ∂x X∂x f (tn,X ,Y ) + ∂x Y∂y f (tn,X ,Y )

I ∂y f (tn+1, xi , yj ) = ∂y X∂x f (tn,X ,Y ) + ∂y Y∂y f (tn,X ,Y )

I mixed derivative gives more terms; for rotation case, we have not all the terms:

∂2
xy f (tn+1, xi , yj ) = ∂y X∂x X∂2

x f (tn,X ,Y ) + ∂y X∂x Y∂2
xy f (tn,X ,Y )

+ ∂y Y∂x X∂2
xy f (tn,X ,Y ) + ∂y Y∂x Y∂2

y f (tn,X ,Y )

⇒ Numerically, we do the derivatives on the cell of the foot of characteristic (thus,
there it is a polynomial)
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First results: L∞ error for rotation vs number of patch per direction
First point: splines; last point: Hermite
∆t = 2π/32 100 iterations; grid: 64× 64, 128× 128, 256× 256
f0(x , y) = exp(−0.07((40x + 4.8)2 + (40v + 4.8)2)) on [−0.5, 0.5]2 MViolard2007

21 / 33



Related works Uniform grid Cartesian grid Triangular mesh Conclusion/Perspectives

First results: L∞ error for rotation vs N for N × N grid and solution at
final time
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Hermite on triangles

I Motivation: flexibility of the geometry
I CT: Reduced Clough-Tucher
⇒ f , ∂x f , ∂y f at each node

C1 Interpolation which reproduces polynomials of degree ≤ 2
I MT: Mitchell
⇒ f , ∂x f , ∂y f at each node + a mixed derivative

Reconstruction of the full Hessian matrix using the mixed derivative
Interpolation reproduces polynomials of degree ≤ 3
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Interpolation error for CT and Mitchell
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Advection (rotation) error for CT and Mitchell CFL2
∆t = (CFL ∗ h)/(max(|V1|) + max(|V2|)), h = ∆x = ∆y
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Advection (rotation) error for CT and Mitchell CFL10
∆t = (CFL ∗ h)/(max(|V1|) + max(|V2|)), h = ∆x = ∆y
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Guiding center model

I We look for ρ = ρ(t , x , y) satisfying the guiding center model{
∂tρ+ ∂yφ∂xρ− ∂xφ∂yρ = 0
−∆φ = ρ

I We take an annulus as domain

Ω = {(x = r cos(θ), y = r sin(θ)) ∈ R2, 1 ≤ r ≤ 10, θ ∈ [0, 2π]}

and consider the diocotron instability

ρ0(x , y) = (1 + ε cos(`θ))e−
(r−r0)2

2σ2

I r0 = 4.5, σ = 0.5
I ` ∈ {2, 3, 4, 5, 6}
I ∆t = 0.05
I this testcase has been developed on polar/curvilinear grid, hexagonal (for

hexagonal domain) and cartesian grid; also with Particle in Cell method...
I we study it here on unstructured triangular grid with Hermite advection scheme

(other works on unstructured grids: SLDG method, Lattice Boltzmann...)
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"Analytical solution" and meshes
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Example for the mode ` = 3
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Instability growth rate for ` ∈ {2,3,4,5,6}
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About the scheme in time

I We use a second order scheme in time based on predictor corrector method

f n+ 1
2 (x) = f n(x− ∆t

2 Vn(x))

∂x f n+ 1
2 (x) = (1− ∆t

2 ∂x V1(x))∂x f n(Xn
v )− ( ∆t

2 ∂x V2(x))∂y f n(Xn
v )

∂y f n+ 1
2 (x) = (−∆t

2 ∂y V1(x))∂x f n(Xn
v ) + (1− ∆t

2 ∂y V2(x))∂y f n(Xn
v )

with Xn
v := x− ∆t

2 Vn(x)
To compute the derivatives of the velocity in this step, we use the average of the
P1 gradient in all triangles around the nodes.

I Compute Vn+ 1
2

by solving Poisson equation :

−∆φn+ 1
2

= fn+ 1
2

and Vn+ 1
2

= curl φn+ 1
2

I Compute the characteristic’s foot X(tn)
The derivatives of Xn are computed by using a fixed point method. By denoting
Xn = (X n

1 ,X
n
2 ), we get: X n

1 = x −∆t Vn+1/2
1

(
x+Xn

1
2 ,

y+Xn
2

2

)
X n

2 = y −∆t Vn+1/2
2

(
x+Xn

1
2 ,

y+Xn
2

2

)
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By deriving the equations of above system, one obtains :



∂x X n
1 = 1−

∆t
2

[
(1 + ∂x X n

1 )∂x Vn+1/2
1

(
x+Xn

1
2 ,

y+Xn
2

2

)
+ ∂x X n

2 ∂y Vn+1/2
1

(
x+Xn

1
2 ,

y+Xn
2

2

)]
∂y X n

1 = −
∆t
2

[
∂y X n

1 ∂x Vn+1/2
1

(
x+Xn

1
2 ,

y+Xn
2

2

)
+ (1 + ∂y X n

2 )∂y Vn+1/2
1

(
x+Xn

1
2 ,

y+Xn
2

2

)]
∂x X n

2 = −
∆t
2

[
(1 + ∂x X n

1 )∂x Vn+1/2
2

(
x+Xn

1
2 ,

y+Xn
2

2

)
+ ∂x X n

2 ∂y Vn+1/2
2

(
x+Xn

1
2 ,

y+Xn
2

2

)]
∂y X n

2 = 1−
∆t
2

[
∂y X n

1 ∂x Vn+1/2
2

(
x+Xn

1
2 ,

y+Xn
2

2

)
+ (1 + ∂y X n

2 )∂y Vn+1/2
2

(
x+Xn

1
2 ,

y+Xn
2

2

)]
where Vn+1/2(X) = V(tn+1/2,X)
In this step, we can use either P1 or CT interpolation to approximate the velocity on the
midpoints x+X

2 . For the CT one, we will need the gradient of Vn+ 1
2 in the mesh points.
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I Conclusion
I New high order Hermite advection on uniform mesh for Vlasov-Poisson
I 1D stability property for splines on patches with propagation of gradients of the

boundary of the patch
I New Hermite 2D advection with propagation of mixed derivative
I Generalization in a new local splines method in 2D and first tests on rotation
I Development of Hermite methods on triangular mesh:

I CT method for guiding center model
I first results on higher order Mitchell method

I Perspectives
I guiding center model for new high order Hermite on uniform mesh, local splines, Mitchell
I Influence of the mesh for other tokamak like poloidal planes (cf polar, non polar)
I Parallelization
I Drift kinetic simulation (4D)
I stability and convergence; positivity? conservative version?
I multi-resolution, multi-patch...
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