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» We aim at solving transport equations
Of(t,z) + u(z) - V:f(t,z) =0
> In 1D with constant advection field u, we have the relation
f(t+ At, z) = f(t,z — uAt)

> This is exploited in semi-Lagrangian schemes:

> ODE solver for characteristics
> interpolation

> Here we focus on Hermite interpolation, which reads in 1D:

Proposition

> With f(a), f(b), f'(a), f'(b), a < b, we can define explicitly a unique polynomial P
of degree < 3 satisfying the interpolation conditions

P(a) = f(a), P(b) = f(b), P'(a) = f'(a), P'(b) = f'(b).
> P(a+x(b—a)) = f(a)Ho(x) + f(b)Hy (x) + (b— a)f' (a)Ko(x) + (b — a)f' (b) K1 (X)
Ho(x) = (1 = x)?(1 +2x)  Ko(x) = (1 — x)?x
Hi(x) = x3(3 — 2x) Ki(x) = x3(x — 1)

2/33



Related works Uniform grid Cartesian grid Triangular mesh Conclusion/Perspectives
[e] 000000 000000000000 0000000000 [e]

Outline

Related works

high order Hermite interpolation on uniform grid
Hermite interpolation on cartesian grids
Hermite interpolation on triangular mesh
Conclusion and future works

vVvyVYyVvyy

3/33



Related works Uniform grid Cartesian grid Triangular mesh Conclusion/Perspectives
L] 000000 000000000000 0000000000 [e]

Some known methods in the context of plasma physics
> Propagation of gradients
Cubic Interpolation Propagation NakamuraYabel 999
Propagation of f, 0xf and o, f
Example for 0;f 4+ vOxf(t, x,v) = 0 step:
1. Hermite interpolation for f and Oxf at foot of characteristic x; — v;At = Xiy + ah

BT = 17 Ho(0) + 17 4yHy () + how Ko ) + hox /K (o)

hoxiT = 17 Hg (o) + 17,y Hi (@) + hox K () + houf? . K{ (o)
2. for 0, f, use of Finite Difference on 9;0,f = —0x(vo,f(t, x, v))
» Reconstruction of gradients
Finite Difference Hermite FilbetSonnendriicker2003
The gradients are reconstructed to save memory

> WENO of degree 5: CaiQiuQiu2016 YangFilbet2014
use of fi0—17 fl'o’ fio-f—h fl'0+2 and fi/0717 f;'/0+2

> Hermite on triangular mesh BesseSonnendriicker2003

v

Analysis of convergence Besse2008

> Recent work for guiding center model (< 2D incompressible Euler equation)
YinMercierYadavSchneiderNave2021 following in particular
SeiboldNaveRosales2012
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> High order Lagrange interpolation is very efficient on uniform grid

Prag(Xiy +ah) = S0 f(Xi)Le(a), Le(a) = ;’i‘_m Kott ok

possible coupling with high order time splitting CasasCrouseillesFaouM2017
= difficult to beat for classical Vlasov-Poisson system

Hf+V-Vxf+E-V,f=0
—Dx¢ = [fdv, E = —Vxo.

> However, it becomes costly for multi-D interpolation

= Hermite interpolation can be a solution
> We have already worked in the cubic case

HamiazMSellamaSonnendriicker2016 (curvilinear 2D interpolation)
CrouseillesGlancHirstoagaMadauleMPetri2014 (conservative 2D interpolation)
We approach to the results of the high order Lagrange interpolation
keeping cubic polynomials, as cubic splines, but more local
as for cubic splines, a preparation step:
reconstruction fo the derivatives < spline coefficients computations

> We explore here the case of higher order Hermite interpolation
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The beginning

< Tweet

%, Gabriel Peyré
1@ @gabrielpeyre
Lagrange and Hermite interpolations can be solved in
closed form using Lagrange polynomials.
en.wikipedia.org/wiki/Lagrange._... en.wikipedia.org
/wiki/Hermite_i... en.wikipedia.org/wiki/Polynomia...

Theorem: Y distinct ()7, V (a:)i, 3P € Ry[X], Vi, P(x;) = a;.
= Td PN [1zi(= — x5)
P(z) = 32; a:Li(x) Li(z) = m
Theorem: ¥ distinct (z:)%q, ¥ (as, b3)i, P € Ronsa[X], Vi, { ﬁ,((’;?)z %
Ki(z) = Li(2)*(z — 1)
H;(z) = Li(2)(1 — 2Lj(z:) (@ — )

P(z) = 3; a:H;(z) + b Ky(x)

7:00 AM - 26 mars 2021 - TweetDeck
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> In 1D, we choose to use the values

! 7
fio—dy fjofdv ceey fio+d+1 3 fi0+d+1

> for d = 0, it is the classical cubic case: f,U, f! f,-0+1,f,;+1

> for d = 1, we go to degree 7 and so on...

> Formulae are completely explicit:

d+1 d+1
Py +ah) = 3 foreHe(a) + Z e K@) 3 By Kale)

l=—d
Ke(a) = Le(a)2(a =) H(a) = Le(e)?(1 = 2Ly (O)(a — 1))

with L (£) = Z/,_d e é =
» Derivatives are reconstructed in a FD fashion of order p
p=1,f, =fo1—"fo, fi_=fo—fr_y

fopq1—1
= o fr — 1T
p=21f, =f_= 5 and so on...
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Numerical results in 1D

Advection d’un créneau sur [-1,1] (1 sur [-0.75,0.25] @ ailleurs)
Erreur en norme L1 L2 T=8 N=800 CFL=2.5 1280 iterations dt=0.00625

lagde
=hermitedopl

lagdl
=hermited@p3
hermitedop4
hermited@p6
hermited@p31

lagd3
<=>hermitedlp7
hermitedlp4
hermited1p6
hermited1p31

lagd5
<=>hermited2pll
hermited2p4
hermited2p6
hermited2p31

lagd7
<=>hermited3pl5
hermited3p4
hermited3p6
hermited3p31

0.071351027538960679064
0.071351027538960679064

0.014016387452351938836
0.014016387452352405477
0.0094388775284994751169
0.008437720419825262344
0.0081180422915428374075

0.0071479040646395186273
0.00721606560446944479

0.0090800838697882423761
0.0072584107446353133414
0.0043531059456163425161

0.0054805067050428604714
0.005546887941218479369

0.0093936331689785934618
0.0073856132858420324092
0.0046781400163449886331

0.0052077931298920333847
0.0052054485592919795892
0.0095988609969442778569
0.0074918608196808903626
0.0046950738628183680962

Cartesian grid
000000000000

Triangular mesh
0000000000

0.1445451654363534566
0.1445451654363534566

0.060218161712953091613
0.060218161712952966713
0.048231029015740556343
0.045940105237590393716
0.04502388401235478399

0.038156311666162096019
0.038397040620029292135
0.045464706007275194899
0.03856728851643521222

0.025151994079747261313

0.031795268136632165445
0.032061852398689388854
0.046271779459350390051
0.039068463648966114676
0.022860996167439077975

0.028489860646599609456
0.028714805374035447944
0.046833641128677688803
0.039417835778082645215
0.02279435029477440422

Conclusion/Perspectives

[e]
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Numerical results for VP 1d1v

32 64x64 128x128 256x256

- Em@

hemited2p31

fermited3p3l
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Related works

We observe better accuracy than Lagrange

... using a larger stencil...

derivatives can be computed once and reused for different stencils
accuracy is improved for d = 1 = encouraging results

we hope to have a gain in a 2D setting (not implemented yet)

vVvyVvyVvyy
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> Previous strategy can lead to stability issues on more complex problems
= in particular, if the grid is non-uniform, which can be needed for some problems
localized at some regions
> One solution is to use spline interpolation
AfeyanCasasCrouseillesDodhyFaouMSonnendrucker2014
= smoothing effects seem to be beneficial for stability

00005

Nv:‘léJM uniform lr‘unBﬁ)
Nv=32768 uniform (run87)
Nv=65536 uniform (run90)
Nv=16384 non-uniform (run77)

00005

0001 H

00015 +

0002 - i

00025 I I I I
0 200 400 600 800 1000

30 40 50 60 70 80

> We will explore here another more local way: the propagation of the gradients
= Similar to CIP method, but we also would like to remove the FD part

> Another possibility would be to use SLDG method
= non uniform & 2D version are however quite complex to implement
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Conclusion/Perspectives
o

Gain of factor g7 = 16 with on uniform cubic splines in velociity

1elg

0 (LU A

il 4l 84 ] v )
A= ] =
R EHEMTI
N N0 ) =
A8 64 oo )
N8 S e ) -
s 536 s ot )
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Looking for stability

> Some results exist for non constant advection Ferretti2013
Convergence with odd degree Lagrange and splines interpolation
SL scheme interpreted as a Lagrange-Galerkin scheme FerrettiM2020
Even degree interpolation only stable for constant advection BesseM2008
Despres2008 CharlesDespresM2012
» What about non uniform grids? can we explain the good behavior of cubic splines?

results on non constant advection can be translated to non-uniform mesh, but only
for smooth mapping
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A stability property in 1D

Proposition
With 7 : [0, L]per — R piecewise cubic solution obtained from splines or Hermite
interpolation, we have

L L
[ ieapax< [ yeoPex
0 0

> can be generalized to higher order

> for splines: Car1DeBoor1963
P for Hermite: GoodrichHagstromLorenz2006

» valid on non uniform mesh
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Proof in the Hermite case

fhe ng,(o, L), since f" € c;e,([o, L])
We consider Hermite interpolation and start from

/L((f”*‘)”(X) — (1) (x = vAD)(F"1)" (x)dx
0
N-1 Xip1
= Z/ (1) (x) = ()" (x = vAB)(FH1)" (x)dx,
=0 v Xi
and integrate by parts

L7700 = (07 (= Va0 (0

i

- /x/'+1 ((f"+1)'(X) — (Y (x — vAl‘))(an)u/(X)dX

i

= [0 = (- van) ™) (dx =0,

since f™1(x;) = (f")(x; — vAt) and (f"1)(x;) = (f")'(x; — vAt), by definition of the
semi-Lagrangian scheme, and since (1) (x) = 0 on (x;, Xi11), as on that interval
"1 is a polynomial of degree < 3 and thus the 4th derivative is zero.
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Proof in the Hermite case

We then obtain from the previous orthogonality equality
Xit1 1 2 Xi+1 1 2 Xit1 2
[y -y eevaniPaer [0y 0ofax = [ () (x-van Ry,
Xi Xi Xi
and thus

X1 Xjt1
[y paxc< [Ty - vanPa,
X X

then . . .
[y eofax < [ 1m0 - vz = [ 1) Gof2ax,
0 0 0

since f" is L-periodic.
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Proof in the splines case

/Xi+1 ((FM1)(0) = (1) (x = vAD)(F™1)" (x)dx

=Xij+1

= [(71Y () = (1) (= vaD) (™) ()]

- /X,'+1 ((f”+1 )/(X) _ (fn)'(X _ VAt))(fn+1 )///(X)dX

= [ 00 = () (x = van) ey ()]
X=X;

using here only f™1(x;) = (f")(x; — vAt) and (Ff7t1)""(x) = 0 on (X;, Xi31).

As fH1 e C2..([0, L]), we have

N—1 =Xjt1
>[0T 00 = (Y (x = van)(Hy (0] =0
i=0 I

The rest of the proof is the same
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Conclusion/Perspectives

A new local splines method

> Hermite advection with propagation is local but costly in memory

> Spline interpolation is not local but less costly in memory

> On uniform mesh, we could use Hermite with reconstruction of derivatives

» But on non uniform mesh, we can have to face with stability issues

»> One solution is to use local splines CrouseillesLatuSonnendriicker2006

P> we use a domain decomposition
> derivative information is reconstructed using neighbooring points
> on each subdomain, splines are reconstructed from Hermite boundary data

> we propose a modification:

> Hermite boundary data are not reconstructed but propagated
= no need to use large stencil to get stable derivative reconstruction of the initial local
splines method
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Proposition
With " : [0, L]per — R piecewise cubic solution obtained from new local splines
method, we have

L L
[ teopax< [1yeoPax
0 0

> The proof follows the proof given for Hermite and splines
= It gives a theoretical legitimity of the scheme

» Another method is to use spline interpolation with Greville points
GucluZoni2019, Bourne2020 (presentation at NumKin conference)

=- However stability not available there
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Advection in 2D
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Cartesian grid
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Conclusio

We consider a 2D patch [x;, xy] X [yk, yL]

Unknowns are:

point values: f,.l’.’ ~ f(tn,x;, yj) forie {l,...,J}, je{K,..., L}
x-derivatives: BX)‘,./’? ~ Oxf(tn, X, yj) fori € {1, J}, j € {K,...,L}
y-derivatives: 8yf,.j’.’ ~ Oyf(tn, xj, yj) forie {I,...,J}, je {K,L}
xy-derivatives: 8§yf,j’7 ~ Oxyf(tn, X;, ;) for i € {1, J}, j € {K, L}

It is enough to get a Hermite representation on each cell

We use f(thy1, X, ¥j) = f(tn, X = X(tn; th1, X3, ¥7), Y = Y (i g1, X, ¥j))
At (toi1, X, ¥j) = OxXOxf(tn, X, Y) + 8x Yy F(tn, X, Y)

Oy f(tni1, Xi, ¥j) = Oy XOxF(tn, X, Y) + 0y YOy f(tn, X, Y)

mixed derivative gives more terms; for rotation case, we have not all the terms:

02y F(tns1, Xi, ¥j) = Oy XOxXO5H(tn, X, Y) + Oy XOx Y05, f(tn, X, Y)
+ 0y YOx X5, f(tn, X, Y) + By YOx Y21 (1, X, Y)

Numerically, we do the derivatives on the cell of the foot of characteristic (thus,
there it is a polynomial)

erspectives
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First results: L> error for rotation vs number of patch per direction
First point: splines; last point: Hermite
At = 27 /32 100 iterations; grid: 64 x 64, 128 x 128, 256 x 256
fo(X, y) = exp(—0.07((40x + 4.8)2 + (40v + 4.8)2)) on [-0.5,0.5]2 Mviolard2007

0.0023 - —— error for 64
—— 10*error for 128
—— 100+*error for 256

0.0022 4 T

0.0021 4

0.0020 A

0.0019 4

0.0018 +

0.0017 M\’w
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First results: L> error for rotation vs N for N x N grid and solution at
final time

Linf error vs N from 32 to 256

100_
o G4x64patch
— Hermite
splines
— #10"5N"{-3.8}
10-1_
1072
10711
3x100 4x100  6x10! 102 2x10?
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Hermite on triangles

> Motivation: flexibility of the geometry
» CT: Reduced Clough-Tucher
= f, Oxf, Oyf at each node
C" Interpolation which reproduces polynomials of degree < 2
» MT: Mitchell

= f, Oxf, Oyf at each node + a mixed derivative
Reconstruction of the full Hessian matrix using the mixed derivative
Interpolation reproduces polynomials of degree < 3

Conclusion/Perspectives
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Interpolation error for CT and Mitchell
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Advection (rotation) error for CT and Mitchell CFL2
At = (CFL * h)/(max(|Vq|) + max(|V2])), h= Ax = Ay

- -t - [0, — - iU, -t —

—i e -

falt? ! 21! LSO TS ] x10? s 2010 et gl
nhsie ahsze
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Advection (rotation) error for CT and Mitchell CFL10
At = (CFL * h)/(max(|Vq|) + max(|V2])), h= Ax = Ay

-

[l-

ot — PR = —

- —r 0 [u-vl —

'

i
H
:
i

60! Jis var’ 3wl ot Jis 1 part gt
meshsize meshsze
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Guiding center model

| 2

vvyyy

v

We look for p = p(t, x, y) satisfying the guiding center model

{ Otp + OypOxp — OxpOyp = 0
—Ap=p

We take an annulus as domain
Q={(x=rcos(9),y = rsin(0)) € R?,1 < r <10, 0 € [0,2x]}
and consider the diocotron instability

7(r—r0)2
po(x,¥) = (1 + e cos(t))e™ 202~
fp=45, 0=05
¢€{2,3,4,5,6}
At =0.05

this testcase has been developed on polar/curvilinear grid, hexagonal (for
hexagonal domain) and cartesian grid; also with Particle in Cell method...

we study it here on unstructured triangular grid with Hermite advection scheme
(other works on unstructured grids: SLDG method, Lattice Boltzmann...)

erspectives
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"Analytical solution" and meshes

Figure 1: (a) regular mesh, (b) non regular mesh of an annulus

mode | growth rate of instability
0.1521506183167334
0.17522906264985497
0.16808429177954187
0.13516114350009326
0.07950579246451214

AU WN

Table 1: Theoretical growth rate of diocotron instability
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Example for the mode ¢ = 3

Il =

[ % 05 0% 1 e 0XEE  OMIE 076K 10058 Q006 ol 0406

Solution atVetes 2 oot at Vet of2 Sloton it Vetloss ot 2
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[e]

Instability growth rate for ¢ € {2,3,4,5,6}

= iy i
=l /

il
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About the scheme in time

» We use a second order scheme in time based on predictor corrector method

f12(x) = F(x — StVn(x))
BIME(x) = (1 210V (%)) " (X7) — (5 0xV2(%))y F(X7)
&yIME(x) = (=31 OpV1(x))0x"(X]) + (1 — 510y V2 (%)) 0y (X7)

with X7 := x — £!Vp(x)
To compute the derivatives of the velocity in this step, we use the average of the
P1 gradient in all triangles around the nodes.

> Compute V1 by solving Poisson equation :
2

—A¢n+1 = and Vn+% = curl ¢n+1§

» Compute the characteristic’s foot X(tn)

The derivatives of X" are computed by using a fixed point method. By denoting
X" = (X7, X7), we get:

_ n1/2 (x+ X7 y+XJ
{Xf = x— AtVTE (R R

_ n1/2 (x+X] y+XJ
Xg =y—-AtY, (7%F7%

erspectives
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By deriving the equations of above system, one obtains :

At XN ped X XD
OcX =1 2 [(1 + 8XX1n)8XV;H1/2 <X+2 ts y+2 2) + Bxxznayvqﬂ/z (X+2 t yjz ? )]

At 172 (x+X) y+Xf 172 (x+X] y+X§
Xy == [oxpaTTE (S5 L5 ) (14 xR (S e )

At D yxg XP oy
oXg == [(1+oxXPaNgT (K5 LR ) L auxga Vgt (K51, 1L )|

At 1/2 +X” +X 1/2 (x+ X7 y+X§
oxXp =1- = [ayXfaxv’27+ / (X SR An 4 ) +(1+ayXna Vg <XT17 yTZ)]

where V1/2(X) = V(ty. 12, X)
In this step, we can use either P1 or CT interpolation to approximate the velocity on the
midpoints % For the CT one, we will need the gradient of V”*% in the mesh points.
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» Conclusion
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New high order Hermite advection on uniform mesh for Vlasov-Poisson

1D stability property for splines on patches with propagation of gradients of the
boundary of the patch

New Hermite 2D advection with propagation of mixed derivative
Generalization in a new local splines method in 2D and first tests on rotation
Development of Hermite methods on triangular mesh:

> CT method for guiding center model
> first results on higher order Mitchell method

> Perspectives

VYVVYYY

guiding center model for new high order Hermite on uniform mesh, local splines, Mitchell
Influence of the mesh for other tokamak like poloidal planes (cf polar, non polar)
Parallelization

Drift kinetic simulation (4D)

stability and convergence; positivity? conservative version?

multi-resolution, multi-patch...
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