Uniform grid

Cartesian grid

Triangular mesh

Conclusion/Perspectives

Hermite advection schemes

Michel Mehrenberger

I2M, Université Aix-Marseille, France

Mini-Symposium Congrès SMAI 2021

Current works with Nicolas Crouseilles (INRIA Rennes), Laurent Navoret and Ali Elarif (IRMA Strasbourg), Emily Bourne (CEA Cadarache & I2M Marseille), Mamoun Sadaka (ENSEIRB-Matmeca Bordeaux & I2M Marseille)

Uniform grid

Cartesian grid

Triangular mesh

Conclusion/Perspectives

We aim at solving transport equations

 $\partial_t f(t,z) + u(z) \cdot \nabla_z f(t,z) = 0$

In 1D with constant advection field u, we have the relation

 $f(t + \Delta t, z) = f(t, z - u\Delta t)$

- This is exploited in semi-Lagrangian schemes:
 - ODE solver for characteristics
 - interpolation
- Here we focus on Hermite interpolation, which reads in 1D:

Proposition

With f(a), f(b), f'(a), f'(b), a < b, we can define explicitly a unique polynomial P of degree ≤ 3 satisfying the interpolation conditions</p>

$$P(a) = f(a), P(b) = f(b), P'(a) = f'(a), P'(b) = f'(b).$$

► $P(a+x(b-a)) = f(a)H_0(x) + f(b)H_1(x) + (b-a)f'(a)K_0(x) + (b-a)f'(b)K_1(x)$

$$\begin{array}{ll} H_0(x) = (1-x)^2(1+2x) & {\cal K}_0(x) = (1-x)^2 x \\ H_1(x) = x^2(3-2x) & {\cal K}_1(x) = x^2(x-1) \end{array}$$

Uniform grid

Cartesian grid

Triangular mesh

Conclusion/Perspectives

Outline

- Related works
- high order Hermite interpolation on uniform grid
- Hermite interpolation on cartesian grids
- Hermite interpolation on triangular mesh
- Conclusion and future works

Triangular mesh

Some known methods in the context of plasma physics

Propagation of gradients

Cubic Interpolation Propagation NakamuraYabe1999 **Propagation of** f, $\partial_X f$ and $\partial_V f$

Example for $\partial_t f + v \partial_x f(t, x, v) = 0$ step:

1. Hermite interpolation for f and $\partial_x f$ at foot of characteristic $x_i - v_j \Delta t = x_{i_0} + \alpha h$

$$\begin{split} &f_{ij}^{n+1} = f_{i_0 i}^n H_0(\alpha) + f_{i_0+1 j}^n H_1(\alpha) + h\partial_x f_{i_0 j}^n K_0(\alpha) + h\partial_x f_{i_0+1 j}^n K_1(\alpha) \\ &h\partial_x f_{ij}^{n+1} = f_{i_0 j}^n H_0'(\alpha) + f_{i_0+1 j}^n H_1'(\alpha) + h\partial_x f_{i_0 j}^n K_0'(\alpha) + h\partial_x f_{i_0+1 j}^n K_1'(\alpha) \end{split}$$

2. for $\partial_v f$, use of Finite Difference on $\partial_t \partial_v f = -\partial_x (v \partial_v f(t, x, v))$

Reconstruction of gradients

Finite Difference Hermite FilbetSonnendrücker2003

The gradients are reconstructed to save memory

WENO of degree 5: CaiQiuQiu2016 YangFilbet2014

use of
$$f_{i_0-1}$$
, f_{i_0} , f_{i_0+1} , f_{i_0+2} and f'_{i_0-1} , f'_{i_0+2}

- Hermite on triangular mesh BesseSonnendrücker2003
- Analysis of convergence Besse2008
- ► Recent work for guiding center model (⇔ 2D incompressible Euler equation) YinMercierYadavSchneiderNave2021 following in particular SeiboldNaveRosales2012

Triangular mesh

- ► High order Lagrange interpolation is very efficient on uniform grid $P_{Lag}(x_{i_0} + \alpha h) = \sum_{\ell=-d}^{d+1} f(x_{i_0})L_{\ell}(\alpha), \ L_{\ell}(\alpha) = \prod_{k=-d, k \neq \ell}^{d+1} \frac{\alpha - k}{\ell - k}$ possible coupling with high order time splitting CasasCrouseillesFaouM2017
- \Rightarrow difficult to beat for classical Vlasov-Poisson system

$$\begin{cases} \partial_t f + \mathbf{v} \cdot \nabla_x f + \mathbf{E} \cdot \nabla_\mathbf{v} f = \mathbf{0} \\ -\Delta_x \phi = \int f d\mathbf{v}, \ \mathbf{E} = -\nabla_x \Phi. \end{cases}$$

However, it becomes costly for multi-D interpolation

<

- \Rightarrow Hermite interpolation can be a solution
- We have already worked in the cubic case

HamiazMSellamaSonnendrücker2016 (curvilinear 2D interpolation) CrouseillesGlancHirstoagaMadauleMPetri2014 (conservative 2D interpolation) We approach to the results of the high order Lagrange interpolation keeping cubic polynomials, as cubic splines, but more local as for cubic splines, a preparation step: reconstruction fo the derivatives ↔ spline coefficients computations

We explore here the case of higher order Hermite interpolation

Uniform grid

Cartesian grid

Triangular mesh

Conclusion/Perspectives

The beginning

Gabriel Peyré @gabrielpeyre

Lagrange and Hermite interpolations can be solved in closed form using Lagrange polynomials.

en.wikipedia.org/wiki/Lagrange_... en.wikipedia.org /wiki/Hermite_i... en.wikipedia.org/wiki/Polynomia...

7:00 AM · 26 mars 2021 · TweetDeck

Uniform grid

Cartesian grid

Triangular mesh

Conclusion/Perspectives

In 1D, we choose to use the values

$$f_{i_0-d}, f'_{i_0-d}, \ldots, f_{i_0+d+1}, f'_{i_0+d+1}$$

- ▶ for d = 0, it is the classical cubic case: $f_{i_0}, f'_{i_0}, f_{i_0+1}, f'_{i_0+1}$
- for d = 1, we go to degree 7 and so on...
- Formulae are completely explicit:

$$P(x_{i_0} + \alpha h) = \sum_{\ell = -d}^{d+1} f_{i_0+\ell} H_{\ell}(\alpha) + \sum_{\ell = -d}^{0} f'_{i_0+\ell+} K_{\ell}(\alpha) + \sum_{\ell=1}^{d+1} f'_{i_0+\ell-} K_{\ell}(\alpha)$$
$$K_{\ell}(\alpha) = L_{\ell}(\alpha)^2 (\alpha - \ell) \quad H_{\ell}(\alpha) = L_{\ell}(\alpha)^2 (1 - 2L'_{\ell}(\ell)(\alpha - \ell))$$
with $L'_{\ell}(\ell) = \sum_{j=-d, \ j \neq \ell}^{d+1} \frac{1}{\ell-j}$

Derivatives are reconstructed in a FD fashion of order p

$$p = 1, f'_{\ell+} = f_{\ell+1} - f_{\ell}, f'_{\ell-} = f_{\ell} - f_{\ell-1}$$
$$p = 2, f'_{\ell+} = f'_{\ell-} = \frac{f_{\ell+1} - f_{\ell-1}}{2} \text{ and so on...}$$

Uniform grid

Cartesian grid

Triangular mesh

Conclusion/Perspectives

Numerical results in 1D

Advection d'un créneau sur [-1,1] (1 sur [-0.75,0.25] 0 ailleurs) Erreur en norme L1 L2 T=8 N=800 CFL=2.5 1280 iterations dt=0.00625

lagd0 =hermited0p1	0.071351027538960679064 0.071351027538960679064	0.1445451654363534566 0.1445451654363534566
Jagd1	0 01/016387/52351038836	0 060218161712953091613
-bermited0n3	0 014016387452351350650	0.060218161712953091013
hermited0p4	0 000/38877528/00/751160	0.000210101/12952500/15
hermited0p4	0.0094300773204394731109	0.040231023013740330343
hermited@p21	0.000437720419023202344	0.04503200401325470300
nermittedupsi	0.0001100422913420374075	0.04502508401255478599
lagd3	0.0071479040646395186273	0.038156311666162096019
<=>hermited1p7	0.00721606560446944479	0.038397040620029292135
hermited1p4	0.0090800838697882423761	0.045464706007275194899
hermited1p6	0.0072584107446353133414	0.03856728851643521222
hermited1p31	0.0043531059456163425161	0.025151994079747261313
lagd5	0.0054805067050428604714	0.031795268136632165445
<=>hermited2p11	0.005546887941218479369	0.032061852398689388854
hermited2p4	0.0093936331689785934618	0.046271779459350390051
hermited2p6	0.0073856132858420324092	0.039068463648966114676
hermited2p31	0.0046781400163449886331	0.022860996167439077975
lagd7	0.0052077931298920333847	0.028489860646599609456
<=>hermited3p15	0.0052054485592919795892	0.028714805374035447944
hermited3p4	0.0095988609969442778569	0.046833641128677688803
hermited3p6	0.0074918608196808903626	0.039417835778082645215
hermited3p31	0.0046950738628183680962	0.02279435029477440422

Related works	Uniform grid	Cartesian grid	Triangular mesh	Conclusion/Perspectives
0	000000	00000000000	000000000	0

Numerical results for VP 1d1v

	32x32	64x64	128x128	256x256
lagd1		•	•	0
lagd3	•	•	0	0
lagd5	۲	0		
lagd7	•	0	\bigcirc	
hermited0p31	•	•	0	0
hermited1p31	۲	0		
hermited2p31	•	0		
hermited3p31	0	0	\bigcirc	

- We observe better accuracy than Lagrange
- ... using a larger stencil...
- derivatives can be computed once and reused for different stencils
- accuracy is improved for $d = 1 \Rightarrow$ encouraging results
- we hope to have a gain in a 2D setting (not implemented yet)

- Previous strategy can lead to stability issues on more complex problems in particular, if the grid is **non-uniform**, which can be needed for some problems
 - ⇒ In particular, if the grid is non-uniform, which can be needed for some probler localized at some regions
- One solution is to use spline interpolation

AfeyanCasasCrouseillesDodhyFaouMSonnendrucker2014

⇒ smoothing effects seem to be beneficial for stability

- We will explore here another more local way: the propagation of the gradients
 - ⇒ Similar to CIP method, but we also would like to remove the FD part
- Another possibility would be to use SLDG method
 - \Rightarrow non uniform & 2D version are however quite complex to implement

12/33

Uniform grid

Cartesian grid

Triangular mesh

Conclusion/Perspectives

Looking for stability

Some results exist for non constant advection Ferretti2013
 Convergence with odd degree Lagrange and splines interpolation
 SL scheme interpreted as a Lagrange-Galerkin scheme FerrettiM2020
 Even degree interpolation only stable for constant advection BesseM2008
 Despres2008 CharlesDespresM2012

What about non uniform grids? can we explain the good behavior of cubic splines? results on non constant advection can be translated to non-uniform mesh, but only for smooth mapping

Uniform grid

Cartesian grid

Triangular mesh

Conclusion/Perspectives

A stability property in 1D

Proposition

With $f^n: [0, L]_{per} \to \mathbb{R}$ piecewise cubic solution obtained from splines or Hermite interpolation, we have

$$\int_0^L |(f'')^{n+1}(x)|^2 dx \le \int_0^L |(f'')^n(x)|^2 dx$$

- can be generalized to higher order
 - for splines: CarlDeBoor1963
 - for Hermite: GoodrichHagstromLorenz2006
- valid on non uniform mesh

Uniform grid

Cartesian grid

Triangular mesh

Conclusion/Perspectives

Proof in the Hermite case

 $f^n \in H^2_{per}(0, L)$, since $f^n \in C^1_{per}([0, L])$ We consider Hermite interpolation and start from

$$\int_{0}^{L} ((f^{n+1})''(x) - (f^{n})''(x - v\Delta t))(f^{n+1})''(x)dx$$

= $\sum_{i=0}^{N-1} \int_{x_{i}}^{x_{i+1}} ((f^{n+1})''(x) - (f^{n})''(x - v\Delta t))(f^{n+1})''(x)dx,$

and integrate by parts

$$\begin{split} \int_{x_i}^{x_{i+1}} ((f^{n+1})''(x) - (f^n)''(x - v\Delta t))(f^{n+1})''(x)dx \\ &= -\int_{x_i}^{x_{i+1}} ((f^{n+1})'(x) - (f^n)'(x - v\Delta t))(f^{n+1})'''(x)dx \\ &= \int_{x_i}^{x_{i+1}} ((f^{n+1}(x) - (f^n)(x - v\Delta t))(f^{n+1})'''(x)dx = 0, \end{split}$$

since $f^{n+1}(x_i) = (f^n)(x_i - v\Delta t)$ and $(f^{n+1})'(x_i) = (f^n)'(x_i - v\Delta t)$, by definition of the semi-Lagrangian scheme, and since $(f^{n+1})'''(x) = 0$ on (x_i, x_{i+1}) , as on that interval f^{n+1} is a polynomial of degree ≤ 3 and thus the 4th derivative is zero.

Uniform grid

Cartesian grid

Triangular mesh

Conclusion/Perspectives

Proof in the Hermite case

We then obtain from the previous orthogonality equality

$$\int_{x_{i}}^{x_{i+1}} |(f^{n+1})''(x) - (f^{n})''(x - v\Delta t)|^{2} dx + \int_{x_{i}}^{x_{i+1}} |(f^{n+1})''(x)|^{2} dx = \int_{x_{i}}^{x_{i+1}} |(f^{n})''(x - v\Delta t)|^{2} dx,$$

and thus

$$\int_{x_i}^{x_{i+1}} |(f^{n+1})''(x)|^2 dx \leq \int_{x_i}^{x_{i+1}} |(f^n)''(x-v\Delta t)|^2 dx,$$

then

$$\int_0^L |(f^{n+1})''(x)|^2 dx \leq \int_0^L |(f^n)''(x-v\Delta t)|^2 dx = \int_0^L |(f^n)''(x)|^2 dx,$$

since *fⁿ* is *L*-periodic.

Re	lated	works	

Uniform grid

Cartesian grid

Triangular mesh

Conclusion/Perspectives

Proof in the splines case

$$\int_{x_{i}}^{x_{i+1}} ((f^{n+1})''(x) - (f^{n})''(x - v\Delta t))(f^{n+1})''(x)dx$$

$$= \left[(f^{n+1})'(x) - (f^{n})'(x - v\Delta t))(f^{n+1})''(x) \right]_{x=x_{i}}^{x=x_{i+1}}$$

$$- \int_{x_{i}}^{x_{i+1}} ((f^{n+1})'(x) - (f^{n})'(x - v\Delta t))(f^{n+1})'''(x)dx$$

$$= \left[(f^{n+1})'(x) - (f^{n})'(x - v\Delta t))(f^{n+1})''(x) \right]_{x=x_{i}}^{x=x_{i+1}}$$

using here only $f^{n+1}(x_i) = (f^n)(x_i - v\Delta t)$ and $(f^{n+1})'''(x) = 0$ on (x_i, x_{i+1}) . As $f^{n+1} \in C^2_{per}([0, L])$, we have

$$\sum_{i=0}^{N-1} \left[(f^{n+1})'(x) - (f^n)'(x - v\Delta t))(f^{n+1})''(x) \right]_{x=x_i}^{x=x_{i+1}} = 0$$

The rest of the proof is the same

Cartesian grid

Triangular mesh

A new local splines method

- Hermite advection with propagation is local but costly in memory
- Spline interpolation is not local but less costly in memory
- On uniform mesh, we could use Hermite with reconstruction of derivatives
- But on non uniform mesh, we can have to face with stability issues
- One solution is to use local splines CrouseillesLatuSonnendrücker2006
 - we use a domain decomposition
 - derivative information is reconstructed using neighbooring points
 - on each subdomain, splines are reconstructed from Hermite boundary data
- we propose a modification:
 - Hermite boundary data are not reconstructed but propagated
 - ⇒ no need to use large stencil to get stable derivative reconstruction of the initial local splines method

```
Related works
O
```

Uniform grid

Cartesian grid

Triangular mesh

Proposition

With $f^n:[0,L]_{per}\to\mathbb{R}$ piecewise cubic solution obtained from new local splines method, we have

$$\int_0^L |(f'')^{n+1}(x)|^2 dx \le \int_0^L |(f'')^n(x)|^2 dx$$

- The proof follows the proof given for Hermite and splines
- \Rightarrow It gives a theoretical legitimity of the scheme
- Another method is to use spline interpolation with Greville points GucluZoni2019, Bourne2020 (presentation at NumKin conference)
- \Rightarrow However stability not available there

Triangular mesh

Conclusion/Perspectives

Advection in 2D

- We consider a 2*D* patch $[x_I, x_J] \times [y_K, y_L]$
- Unknowns are:

point values: $f_{ij}^n \simeq f(t_n, x_i, y_j)$ for $i \in \{I, ..., J\}$, $j \in \{K, ..., L\}$ x-derivatives: $\partial_x f_{ij}^n \simeq \partial_x f(t_n, x_i, y_j)$ for $i \in \{I, J\}$, $j \in \{K, ..., L\}$ y-derivatives: $\partial_y f_{ij}^n \simeq \partial_y f(t_n, x_i, y_j)$ for $i \in \{I, ..., J\}$, $j \in \{K, L\}$ xy-derivatives: $\partial_{xy}^2 f_{ij}^n \simeq \partial_{xy} f(t_n, x_i, y_j)$ for $i \in \{I, J\}$, $j \in \{K, L\}$

- It is enough to get a Hermite representation on each cell
- We use $f(t_{n+1}, x_i, y_j) = f(t_n, X = X(t_n; t_{n+1}, x_i, y_j), Y = Y(t_n; t_{n+1}, x_i, y_j))$

- $\blacktriangleright \partial_y f(t_{n+1}, x_i, y_j) = \partial_y X \partial_x f(t_n, X, Y) + \partial_y Y \partial_y f(t_n, X, Y)$
- mixed derivative gives more terms; for rotation case, we have not all the terms:

$$\begin{split} \partial_{xy}^{2}f(t_{n+1}, x_{i}, y_{j}) &= \partial_{y} X \partial_{x} X \partial_{x}^{2} f(t_{n}, X, Y) + \partial_{y} X \partial_{x} Y \partial_{xy}^{2} f(t_{n}, X, Y) \\ &+ \partial_{y} Y \partial_{x} X \partial_{xy}^{2} f(t_{n}, X, Y) + \partial_{y} Y \partial_{x} Y \partial_{y}^{2} f(t_{n}, X, Y) \end{split}$$

 $\Rightarrow\,$ Numerically, we do the derivatives on the cell of the foot of characteristic (thus, there it is a polynomial)

Related works	Uniform grid	Cartesian grid	Triangular mesh	Conclusion/Perspective
0	000000	00000000000	000000000	0

First results: L^{∞} error for rotation vs number of patch per direction

First point: splines; last point: Hermite

 $\Delta t = 2\pi/32$ 100 iterations; grid: 64 × 64, 128 × 128, 256 × 256

 $f_0(x,y) = \exp(-0.07((40x + 4.8)^2 + (40v + 4.8)^2))$ on $[-0.5, 0.5]^2$ MViolard2007

Related works	Uniform grid	Cartesian grid	Triangular mesh	Conclusion/Perspectives
0	000000	0000000000	000000000	0
First results:	L^{∞} error for	r rotation vs <i>N</i> for	N imes N grid and	l solution at

Cartesian grid

Triangular mesh

Conclusion/Perspectives

Hermite on triangles

- Motivation: flexibility of the geometry
- CT: Reduced Clough-Tucher
 - $\Rightarrow f, \partial_x f, \partial_y f$ at each node
 - C^1 Interpolation which reproduces polynomials of degree \leq 2
- MT: Mitchell
 - $\Rightarrow f, \partial_x f, \partial_y f \text{ at each node + a mixed derivative} \\ \text{Reconstruction of the full Hessian matrix using the mixed derivative} \\ \text{Interpolation reproduces polynomials of degree } \leq 3 \\ \end{array}$

Related works	Uniform grid	Cartesian grid	Triangular mesh	Conclusion/Perspectives
0	000000	00000000000	000000000	0

Interpolation error for CT and Mitchell

Cartesian grid

Triangular mesh

Conclusion/Perspectives

Advection (rotation) error for CT and Mitchell CFL2 $\Delta t = (CFL * h)/(\max(|V_1|) + \max(|V2|)), h = \Delta x = \Delta y$

Related works	Uniform grid	Cartesian grid	Triangular mesh
0	000000	00000000000	000000000

Conclusion/Perspectives

Advection (rotation) error for CT and Mitchell CFL10 $\Delta t = (CFL * h)/(\max(|V_1|) + \max(|V2|)), h = \Delta x = \Delta y$

Cartesian grid

Triangular mesh

Conclusion/Perspectives

Guiding center model

• We look for $\rho = \rho(t, x, y)$ satisfying the guiding center model

$$\begin{cases} \partial_t \rho + \partial_y \phi \partial_x \rho - \partial_x \phi \partial_y \rho = \mathbf{0} \\ -\Delta \phi = \rho \end{cases}$$

We take an annulus as domain

$$\Omega = \{ (x = r \cos(\theta), y = r \sin(\theta)) \in \mathbb{R}^2, 1 \le r \le 10, \ \theta \in [0, 2\pi] \}$$

and consider the diocotron instability

$$\rho_0(x,y) = (1 + \varepsilon \cos(\ell\theta))e^{-\frac{(r-r_0)^2}{2\sigma^2}}$$

$$r_0 = 4.5, \ \sigma = 0.5$$

- ▶ $l \in \{2, 3, 4, 5, 6\}$
- ▲*t* = 0.05
- this testcase has been developed on polar/curvilinear grid, hexagonal (for hexagonal domain) and cartesian grid; also with Particle in Cell method...
- we study it here on unstructured triangular grid with Hermite advection scheme (other works on unstructured grids: SLDG method, Lattice Boltzmann...)

Figure 1: (a) regular mesh, (b) non regular mesh of an annulus

mode	growth rate of instability
2	0.1521506183167334
3	0.17522906264985497
4	0.16808429177954187
5	0.13516114350009326
6	0.07950579246451214

Table 1: Theoretical growth rate of diocotron instability

Related works	Uniform grid	Cartesian grid	Triangular mesh	Conclusion/Perspec
0	000000	00000000000	0000000000	0

Example for the mode $\ell = 3$

Related	works
0	

Uniform grid

Cartesian grid

Triangular mesh

Conclusion/Perspectives

Instability growth rate for $\ell \in \{2, 3, 4, 5, 6\}$

30/33

Triangular mesh

Conclusion/Perspectives

About the scheme in time

> We use a second order scheme in time based on predictor corrector method

$$\begin{aligned} f^{n+\frac{1}{2}}(\mathbf{x}) &= f^{n}(\mathbf{x} - \frac{\Delta t}{2}\mathbf{V}_{n}(\mathbf{x})) \\ \partial_{x} f^{n+\frac{1}{2}}(\mathbf{x}) &= (1 - \frac{\Delta t}{2}\partial_{x}\mathbf{V}_{1}(\mathbf{x}))\partial_{x} f^{n}(\mathbf{X}_{v}^{n}) - (\frac{\Delta t}{2}\partial_{x}\mathbf{V}_{2}(\mathbf{x}))\partial_{y} f^{n}(\mathbf{X}_{v}^{n}) \\ \partial_{y} f^{n+\frac{1}{2}}(\mathbf{x}) &= (-\frac{\Delta t}{2}\partial_{y}\mathbf{V}_{1}(\mathbf{x}))\partial_{x} f^{n}(\mathbf{X}_{v}^{n}) + (1 - \frac{\Delta t}{2}\partial_{y}\mathbf{V}_{2}(\mathbf{x}))\partial_{y} f^{n}(\mathbf{X}_{v}^{n}) \end{aligned}$$

with $\mathbf{X}_{v}^{n} := \mathbf{x} - \frac{\Delta t}{2} \mathbf{V}_{n}(\mathbf{x})$

To compute the derivatives of the velocity in this step, we use the average of the P1 gradient in all triangles around the nodes.

• Compute $V_{n+\frac{1}{2}}$ by solving Poisson equation :

$$-\Delta \phi_{n+rac{1}{2}} = f_{n+rac{1}{2}}$$
 and $\mathbf{V}_{n+rac{1}{2}} = \mathbf{curl} \ \phi_{n+rac{1}{2}}$

Compute the characteristic's foot X(t_n) The derivatives of Xⁿ are computed by using a fixed point method. By denoting Xⁿ = (Xⁿ₁, Xⁿ₂), we get:

$$\begin{cases} X_1^n &= x - \Delta t \, \mathbf{V}_1^{n+1/2} \left(\frac{x + X_1^n}{2}, \frac{y + X_2^n}{2} \right) \\ X_2^n &= y - \Delta t \, \mathbf{V}_2^{n+1/2} \left(\frac{x + X_1^n}{2}, \frac{y + X_2^n}{2} \right) \end{cases}$$

Uniform grid

Cartesian grid

Triangular mesh

Conclusion/Perspectives

By deriving the equations of above system, one obtains :

$$\begin{cases} \partial_{x}X_{1}^{n} &= 1 - \frac{\Delta t}{2} \left[(1 + \partial_{x}X_{1}^{n})\partial_{x}\mathbf{V}_{1}^{n+1/2} \left(\frac{x + X_{1}^{n}}{2}, \frac{y + X_{2}^{n}}{2}\right) + \partial_{x}X_{2}^{n}\partial_{y}\mathbf{V}_{1}^{n+1/2} \left(\frac{x + X_{1}^{n}}{2}, \frac{y + X_{2}^{n}}{2}\right) \right] \\ \partial_{y}X_{1}^{n} &= -\frac{\Delta t}{2} \left[\partial_{y}X_{1}^{n}\partial_{x}\mathbf{V}_{1}^{n+1/2} \left(\frac{x + X_{1}^{n}}{2}, \frac{y + X_{2}^{n}}{2}\right) + (1 + \partial_{y}X_{2}^{n})\partial_{y}\mathbf{V}_{1}^{n+1/2} \left(\frac{x + X_{1}^{n}}{2}, \frac{y + X_{2}^{n}}{2}\right) \right] \\ \partial_{x}X_{2}^{n} &= -\frac{\Delta t}{2} \left[(1 + \partial_{x}X_{1}^{n})\partial_{x}\mathbf{V}_{2}^{n+1/2} \left(\frac{x + X_{1}^{n}}{2}, \frac{y + X_{2}^{n}}{2}\right) + \partial_{x}X_{2}^{n}\partial_{y}\mathbf{V}_{2}^{n+1/2} \left(\frac{x + X_{1}^{n}}{2}, \frac{y + X_{2}^{n}}{2}\right) \right] \\ \partial_{y}X_{2}^{n} &= 1 - \frac{\Delta t}{2} \left[\partial_{y}X_{1}^{n}\partial_{x}\mathbf{V}_{2}^{n+1/2} \left(\frac{x + X_{1}^{n}}{2}, \frac{y + X_{2}^{n}}{2}\right) + (1 + \partial_{y}X_{2}^{n})\partial_{y}\mathbf{V}_{2}^{n+1/2} \left(\frac{x + X_{1}^{n}}{2}, \frac{y + X_{2}^{n}}{2}\right) \right] \end{cases}$$

where $\mathbf{V}^{n+1/2}(\mathbf{X}) = \mathbf{V}(t_{n+1/2}, \mathbf{X})$ In this step, we can use either P1 or CT interpolation to approximate the velocity on the midpoints $\frac{\mathbf{x}+\mathbf{X}}{2}$. For the CT one, we will need the gradient of $\mathbf{V}^{n+\frac{1}{2}}$ in the mesh points.

ed works	Uniform grid	Cartesian grid
	000000	00000000000

Triangular mesh

Conclusion

Relate

- New high order Hermite advection on uniform mesh for Vlasov-Poisson
- 1D stability property for splines on patches with propagation of gradients of the boundary of the patch
- New Hermite 2D advection with propagation of mixed derivative
- Generalization in a new local splines method in 2D and first tests on rotation
- Development of Hermite methods on triangular mesh:
 - CT method for guiding center model
 - first results on higher order Mitchell method

Perspectives

- b guiding center model for new high order Hermite on uniform mesh, local splines, Mitchell
- Influence of the mesh for other tokamak like poloidal planes (cf polar, non polar)
- Parallelization
- Drift kinetic simulation (4D)
- stability and convergence; positivity? conservative version?
- multi-resolution, multi-patch...