Hermite advection schemes

Michel Mehrenberger

I2M, Université Aix-Marseille, France

Mini-Symposium Congrès SMAI 2021

Current works with Nicolas Crouseilles (INRIA Rennes), Laurent Navoret and Ali Elarif (IRMA Strasbourg), Emily Bourne (CEA Cadarache & I2M Marseille), Mamoun Sadaka (ENSEIRB-Matmeca Bordeaux & I2M Marseille)
We aim at solving transport equations
\[\partial_t f(t, z) + u(z) \cdot \nabla_z f(t, z) = 0 \]

In 1D with constant advection field \(u \), we have the relation
\[f(t + \Delta t, z) = f(t, z - u\Delta t) \]

This is exploited in semi-Lagrangian schemes:
- ODE solver for characteristics
- interpolation

Here we focus on Hermite interpolation, which reads in 1D:

Proposition

With \(f(a), f(b), f'(a), f'(b), a < b \), we can define explicitly a unique polynomial \(P \) of degree \(\leq 3 \) satisfying the interpolation conditions
\[P(a) = f(a), \quad P(b) = f(b), \quad P'(a) = f'(a), \quad P'(b) = f'(b). \]

\[P(a + x(b - a)) = f(a)H_0(x) + f(b)H_1(x) + (b - a)f'(a)K_0(x) + (b - a)f'(b)K_1(x) \]
\[H_0(x) = (1 - x)^2(1 + 2x) \quad K_0(x) = (1 - x)^2x \]
\[H_1(x) = x^2(3 - 2x) \quad K_1(x) = x^2(x - 1) \]
Outline

- Related works
 - high order Hermite interpolation on uniform grid
 - Hermite interpolation on cartesian grids
 - Hermite interpolation on triangular mesh
 - Conclusion and future works
Some known methods in the context of plasma physics

▶ Propagation of gradients

Cubic Interpolation Propagation *NakamuraYabe 1999*

Propagation of \(f, \partial_x f \) and \(\partial_v f \)

Example for \(\partial_t f + v \partial_x f(t, x, v) = 0 \) step:

1. Hermite interpolation for \(f \) and \(\partial_x f \) at foot of characteristic \(x_i - v_j \Delta t = x_{i0} + \alpha h \)

\[
\begin{align*}
 f_{ij}^{n+1} &= f_{i0}^n H_0(\alpha) + f_{i0+1}^n H_1(\alpha) + h \partial_x f_{i0}^n K_0(\alpha) + h \partial_x f_{i0+1}^n K_1(\alpha) \\
 h \partial_x f_{ij}^{n+1} &= f_{i0}^n H'_0(\alpha) + f_{i0+1}^n H'_1(\alpha) + h \partial_x f_{i0}^n K'_0(\alpha) + h \partial_x f_{i0+1}^n K'_1(\alpha)
\end{align*}
\]

2. for \(\partial_v f \), use of Finite Difference on \(\partial_t \partial_v f = -\partial_x (v \partial_v f(t, x, v)) \)

▶ Reconstruction of gradients

Finite Difference Hermite *FilbetSonnendrücker 2003*

The gradients are reconstructed to save memory

▶ WENO of degree 5: *CaiQiuQiu 2016 YangFilbet 2014*

use of \(f_{i0-1}, f_{i0}, f_{i0+1}, f_{i0+2} \) and \(f'_{i0-1}, f'_{i0+2} \)

▶ Hermite on triangular mesh *BesseSonnendrücker 2003*

▶ Analysis of convergence *Besse 2008*

▶ Recent work for guiding center model \(\Leftrightarrow \) 2D incompressible Euler equation

YinMercierYadavSchneiderNave 2021 following in particular SeiboldNaveRosales 2012
High order Lagrange interpolation is very efficient on uniform grid

\[P_{\text{Lag}}(x_i^0 + \alpha h) = \sum_{\ell=-d}^{d+1} f(x_i^0) L_\ell(\alpha), \quad L_\ell(\alpha) = \prod_{k=-d, k \neq \ell}^{d+1} \frac{\alpha - k}{\ell - k} \]

possible coupling with high order time splitting CasasCrouseillesFaouM2017

⇒ difficult to beat for classical Vlasov-Poisson system

\[\begin{cases}
\partial_t f + \mathbf{v} \cdot \nabla_x f + E \cdot \nabla \nu f = 0 \\
-\Delta_x \phi = \int f d\nu, \quad E = -\nabla_x \Phi.
\end{cases} \]

However, it becomes costly for multi-D interpolation

⇒ Hermite interpolation can be a solution

We have already worked in the cubic case

HamiazMSellamaSonnendrücker2016 (curvilinear 2D interpolation)
CrouseillesGlancHirstoagaMadauleMPetri2014 (conservative 2D interpolation)

We approach to the results of the high order Lagrange interpolation keeping cubic polynomials, as cubic splines, but more local
as for cubic splines, a preparation step:
reconstruction to the derivatives ↔ spline coefficients computations

We explore here the case of higher order Hermite interpolation
Lagrange and Hermite interpolations can be solved in closed form using Lagrange polynomials.

en.wikipedia.org/wiki/Lagrange_... en.wikipedia.org/wiki/Hermite_i... en.wikipedia.org/wiki/Polynomia...

\[P(x) = \sum_i a_i L_i(x) \]

\[L_i(x) = \frac{\prod_{j \neq i} (x - x_j)}{\prod_{j \neq i} (x_i - x_j)} \]

\[P(x) = \sum_i a_i H_i(x) + b_i K_i(x) \]

\[K_i(x) = L_i(x)^2 (x - x_i) \]

\[H_i(x) = L_i(x)^2 (1 - 2L_i'(x_i)(x - x_i)) \]
In 1D, we choose to use the values

\[f_{i_0 - d}, f'_{i_0 - d}, \ldots, f_{i_0 + d + 1}, f'_{i_0 + d + 1} \]

for \(d = 0 \), it is the classical cubic case: \(f_{i_0}, f'_{i_0}, f_{i_0 + 1}, f'_{i_0 + 1} \)

for \(d = 1 \), we go to degree 7 and so on...

Formulae are completely explicit:

\[
P(x_{i_0} + \alpha h) = \sum_{\ell = -d}^{d+1} f_{i_0 + \ell} H_\ell(\alpha) + \sum_{\ell = -d}^{0} f'_{i_0 + \ell + 1} K_\ell(\alpha) + \sum_{\ell = 1}^{d+1} f'_{i_0 + \ell - 1} K_\ell(\alpha)
\]

\[
K_\ell(\alpha) = L_\ell(\alpha)^2(\alpha - \ell) \quad H_\ell(\alpha) = L_\ell(\alpha)^2(1 - 2L'_\ell(\ell)(\alpha - \ell))
\]

with \(L'_\ell(\ell) = \sum_{j=-d}^{d+1} \frac{1}{\ell - j} \)

Derivatives are reconstructed in a FD fashion of order \(p \)

\(p = 1 \), \(f'_{\ell+} = f_{\ell+1} - f_\ell \), \(f'_{\ell-} = f_\ell - f_{\ell-1} \)

\(p = 2 \), \(f'_{\ell+} = f'_{\ell-} = \frac{f_{\ell+1} - f_{\ell-1}}{2} \) and so on...
Numerical results in 1D

Advection d’un créneau sur $[-1,1]$ (1 sur $[-0.75,0.25]$ 0 ailleurs)
Erreur en norme L1 L2 T=8 N=800 CFL=2.5 1280 iterations dt=0.00625

<table>
<thead>
<tr>
<th></th>
<th>lagd0</th>
<th>lagd1</th>
<th>lagd3</th>
<th>lagd5</th>
<th>lagd7</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.07135102753896079064</td>
<td>0.07135102753896079064</td>
<td>0.071479040646395186273</td>
<td>0.0054805067050428604714</td>
<td>0.0052077931298920333847</td>
</tr>
<tr>
<td></td>
<td>0.1445451654363534566</td>
<td>0.1445451654363534566</td>
<td>0.038156311666162096019</td>
<td>0.031795268136632165445</td>
<td>0.028489860646599609456</td>
</tr>
<tr>
<td>=hermed0p1</td>
<td>0.01401638742351938836</td>
<td>0.01401638742352405477</td>
<td>0.0094388775284994751169</td>
<td>0.009080083697882423761</td>
<td>0.0093936331689785934618</td>
</tr>
<tr>
<td></td>
<td>0.060218161712953091613</td>
<td>0.060218161712952966713</td>
<td>0.048231029015740556343</td>
<td>0.045464706007275194899</td>
<td>0.046271779459350390051</td>
</tr>
<tr>
<td>hermed0p3</td>
<td>0.0094388775284994751169</td>
<td>0.0094388775284994751169</td>
<td>0.0094388775284994751169</td>
<td>0.0094388775284994751169</td>
<td>0.0094388775284994751169</td>
</tr>
<tr>
<td>hermed0p4</td>
<td>0.008437720419825262344</td>
<td>0.008437720419825262344</td>
<td>0.008437720419825262344</td>
<td>0.008437720419825262344</td>
<td>0.008437720419825262344</td>
</tr>
<tr>
<td>hermed0p6</td>
<td>0.0081180422915428374075</td>
<td>0.0081180422915428374075</td>
<td>0.0081180422915428374075</td>
<td>0.0081180422915428374075</td>
<td>0.0081180422915428374075</td>
</tr>
<tr>
<td>hermed0p31</td>
<td>0.045940105237590393716</td>
<td>0.045940105237590393716</td>
<td>0.045940105237590393716</td>
<td>0.045940105237590393716</td>
<td>0.045940105237590393716</td>
</tr>
<tr>
<td></td>
<td>0.04502388401235478399</td>
<td>0.04502388401235478399</td>
<td>0.04502388401235478399</td>
<td>0.04502388401235478399</td>
<td>0.04502388401235478399</td>
</tr>
<tr>
<td>=>hermed1p7</td>
<td>0.00721606560446944479</td>
<td>0.00721606560446944479</td>
<td>0.0072584104774635313414</td>
<td>0.0073856132858420324092</td>
<td>0.0074918608196808903626</td>
</tr>
<tr>
<td>hermed1p4</td>
<td>0.009080083697882423761</td>
<td>0.009080083697882423761</td>
<td>0.045464706007275194899</td>
<td>0.03906846364966114676</td>
<td>0.022860996167439707795</td>
</tr>
<tr>
<td>hermed1p6</td>
<td>0.0043531059456163425161</td>
<td>0.0043531059456163425161</td>
<td>0.0043531059456163425161</td>
<td>0.0043531059456163425161</td>
<td>0.0043531059456163425161</td>
</tr>
<tr>
<td>hermed1p31</td>
<td>0.025151994079747261313</td>
<td>0.025151994079747261313</td>
<td>0.025151994079747261313</td>
<td>0.025151994079747261313</td>
<td>0.025151994079747261313</td>
</tr>
<tr>
<td><=hermed2p11</td>
<td>0.005546887941218479369</td>
<td>0.005546887941218479369</td>
<td>0.032061852398689388854</td>
<td>0.032061852398689388854</td>
<td>0.032061852398689388854</td>
</tr>
<tr>
<td>hermed2p4</td>
<td>0.0093936331689785934618</td>
<td>0.0093936331689785934618</td>
<td>0.046271779459350390051</td>
<td>0.046271779459350390051</td>
<td>0.046271779459350390051</td>
</tr>
<tr>
<td>hermed2p6</td>
<td>0.0073856132858420324092</td>
<td>0.0073856132858420324092</td>
<td>0.03906846364966114676</td>
<td>0.03906846364966114676</td>
<td>0.03906846364966114676</td>
</tr>
<tr>
<td>hermed2p31</td>
<td>0.0046781400163449886331</td>
<td>0.0046781400163449886331</td>
<td>0.022860996167439707795</td>
<td>0.022860996167439707795</td>
<td>0.022860996167439707795</td>
</tr>
<tr>
<td><=hermed3p15</td>
<td>0.005205448559291795892</td>
<td>0.005205448559291795892</td>
<td>0.028714805374035447944</td>
<td>0.028714805374035447944</td>
<td>0.028714805374035447944</td>
</tr>
<tr>
<td>hermed3p4</td>
<td>0.0095988609969442778569</td>
<td>0.0095988609969442778569</td>
<td>0.046833641128677688803</td>
<td>0.046833641128677688803</td>
<td>0.046833641128677688803</td>
</tr>
<tr>
<td>hermed3p6</td>
<td>0.0074918608196808903626</td>
<td>0.0074918608196808903626</td>
<td>0.039417835778082645215</td>
<td>0.039417835778082645215</td>
<td>0.039417835778082645215</td>
</tr>
<tr>
<td>hermed3p31</td>
<td>0.0046950738628183680962</td>
<td>0.0046950738628183680962</td>
<td>0.02279435029477440422</td>
<td>0.02279435029477440422</td>
<td>0.02279435029477440422</td>
</tr>
</tbody>
</table>
Numerical results for VP 1d1v
We observe better accuracy than Lagrange
... using a larger stencil...
derivatives can be computed once and reused for different stencils
accuracy is improved for $d = 1 \Rightarrow$ encouraging results
we hope to have a gain in a 2D setting (not implemented yet)
Previous strategy can lead to stability issues on more complex problems
⇒ in particular, if the grid is **non-uniform**, which can be needed for some problems localized at some regions

One solution is to use spline interpolation
AfeyanCasasCrouseillesDodhyFaouMSonnendrucker2014
⇒ smoothing effects seem to be beneficial for stability

We will explore here another more local way: the propagation of the gradients
⇒ Similar to CIP method, but we also would like to remove the FD part

Another possibility would be to use SLDG method
⇒ non uniform & 2D version are however quite complex to implement
Gain of factor $\frac{262144}{16384} = 16$ with uniform cubic splines in velocity
Looking for stability

- Some results exist for non constant advection Ferretti2013
 Convergence with odd degree Lagrange and splines interpolation
 \textit{SL scheme interpreted as a Lagrange-Galerkin scheme} FerrettiM2020
 Even degree interpolation only stable for constant advection BesseM2008
 \textsuperscript{Despres2008 CharlesDespresM2012}

- What about non uniform grids? can we explain the good behavior of cubic splines?
 \textit{results on non constant advection can be translated to non-uniform mesh, but only for smooth mapping}
A stability property in 1D

Proposition

With \(f^n : [0, L]_{\text{per}} \to \mathbb{R} \) piecewise cubic solution obtained from splines or Hermite interpolation, we have

\[
\int_0^L |(f''')^{n+1}(x)|^2 \, dx \leq \int_0^L |(f''')^n(x)|^2 \, dx
\]

- can be generalized to higher order
 - for splines: CarlDeBoor1963
 - for Hermite: GoodrichHagstromLorenz2006
- valid on non uniform mesh
Proof in the Hermite case

\[f^n \in H^2_{per}(0, L), \text{ since } f^n \in C^1_{per}([0, L]) \]

We consider Hermite interpolation and start from

\[
\int_0^L ((f^{n+1})''(x) - (f^n)''(x - v \Delta t))(f^{n+1})''(x) \, dx
\]

\[
= \sum_{i=0}^{N-1} \int_{x_i}^{x_{i+1}} ((f^{n+1})''(x) - (f^n)''(x - v \Delta t))(f^{n+1})''(x) \, dx,
\]

and integrate by parts

\[
\int_{x_i}^{x_{i+1}} ((f^{n+1})''(x) - (f^n)''(x - v \Delta t))(f^{n+1})''(x) \, dx
\]

\[
= - \int_{x_i}^{x_{i+1}} ((f^{n+1})'(x) - (f^n)'(x - v \Delta t))(f^{n+1})'''(x) \, dx
\]

\[
= \int_{x_i}^{x_{i+1}} ((f^{n+1}(x) - (f^n)(x - v \Delta t))(f^{n+1})''''(x) \, dx = 0,
\]

since \(f^{n+1}(x_i) = (f^n)(x_i - v \Delta t) \) and \((f^{n+1})'(x_i) = (f^n)'(x_i - v \Delta t) \), by definition of the semi-Lagrangian scheme, and since \((f^{n+1})''''(x) = 0 \) on \((x_i, x_{i+1}) \), as on that interval \(f^{n+1} \) is a polynomial of degree \(\leq 3 \) and thus the 4th derivative is zero.
Proof in the Hermite case

We then obtain from the previous orthogonality equality

\[
\int_{x_i}^{x_{i+1}} |(f^{n+1})''(x) - (f^n)''(x - v \Delta t)|^2 dx + \int_{x_i}^{x_{i+1}} |(f^{n+1})''(x)|^2 dx = \int_{x_i}^{x_{i+1}} |(f^n)''(x - v \Delta t)|^2 dx,
\]

and thus

\[
\int_{x_i}^{x_{i+1}} |(f^{n+1})''(x)|^2 dx \leq \int_{x_i}^{x_{i+1}} |(f^n)''(x - v \Delta t)|^2 dx,
\]

then

\[
\int_0^L |(f^{n+1})''(x)|^2 dx \leq \int_0^L |(f^n)''(x - v \Delta t)|^2 dx = \int_0^L |(f^n)''(x)|^2 dx,
\]

since \(f^n\) is \(L\)-periodic.
Proof in the splines case

\[\int_{x_i}^{x_{i+1}} ((f^{n+1})'''(x) - (f^n)'''(x - v\Delta t))(f^{n+1})''(x)dx \]

\[= \left[(f^{n+1})'(x) - (f^n)'(x - v\Delta t))(f^{n+1})''(x) \right]_{x=x_i}^{x=x_{i+1}} \]

\[- \int_{x_i}^{x_{i+1}} ((f^{n+1})'(x) - (f^n)'(x - v\Delta t))(f^{n+1})'''(x)dx \]

\[= \left[(f^{n+1})'(x) - (f^n)'(x - v\Delta t))(f^{n+1})''(x) \right]_{x=x_i}^{x=x_{i+1}} \]

using here only \(f^{n+1}(x_i) = (f^n)(x_i - v\Delta t) \) and \((f^{n+1})''''(x) = 0 \) on \((x_i, x_{i+1}) \).

As \(f^{n+1} \in C^2_{per}([0, L]) \), we have

\[\sum_{i=0}^{N-1} \left[(f^{n+1})'(x) - (f^n)'(x - v\Delta t))(f^{n+1})''(x) \right]_{x=x_i}^{x=x_{i+1}} = 0 \]

The rest of the proof is the same
A new local splines method

- Hermite advection with propagation is local but costly in memory
- Spline interpolation is not local but less costly in memory
- On uniform mesh, we could use Hermite with reconstruction of derivatives
- But on non uniform mesh, we can have to face with stability issues
- One solution is to use local splines \textit{CrouseillesLatuSonnendrücker2006}
 - we use a domain decomposition
 - derivative information is reconstructed using neighbouring points
 - on each subdomain, splines are reconstructed from Hermite boundary data
- we propose a modification:
 - Hermite boundary data are not reconstructed but propagated
 \Rightarrow no need to use large stencil to get stable derivative reconstruction of the initial local splines method
Proposition

With \(f^n : [0, L]_{\text{per}} \rightarrow \mathbb{R} \) piecewise cubic solution obtained from new local splines method, we have

\[
\int_0^L |(f''')^{n+1}(x)|^2 \, dx \leq \int_0^L |(f''')^n(x)|^2 \, dx
\]

- The proof follows the proof given for Hermite and splines
- It gives a theoretical legitimacy of the scheme
- Another method is to use spline interpolation with Greville points
 GucluZoni2019, Bourne2020 (presentation at NumKin conference)
- However stability not available there
Advection in 2D

We consider a 2D patch \([x_I, x_J] \times [y_K, y_L]\)

Unknwons are:

- point values: \(f^n_{ij} \simeq f(t_n, x_i, y_j)\) for \(i \in \{I, \ldots, J\}\), \(j \in \{K, \ldots, L\}\)
- x-derivatives: \(\p_x f^n_{ij} \simeq \p_x f(t_n, x_i, y_j)\) for \(i \in \{I, J\}\), \(j \in \{K, \ldots, L\}\)
- y-derivatives: \(\p_y f^n_{ij} \simeq \p_y f(t_n, x_i, y_j)\) for \(i \in \{I, \ldots, J\}\), \(j \in \{K, L\}\)
- xy-derivatives: \(\p_{xy} f^n_{ij} \simeq \p_{xy} f(t_n, x_i, y_j)\) for \(i \in \{I, J\}\), \(j \in \{K, L\}\)

It is enough to get a Hermite representation on each cell

We use \(f(t_{n+1}, x_i, y_j) = f(t_n, X = X(t_n; t_{n+1}, x_i, y_j), Y = Y(t_n; t_{n+1}, x_i, y_j))\)

\[
\p_x f(t_{n+1}, x_i, y_j) = \p_x X \p_x f(t_n, X, Y) + \p_x Y \p_y f(t_n, X, Y)
\]

\[
\p_y f(t_{n+1}, x_i, y_j) = \p_y X \p_x f(t_n, X, Y) + \p_y Y \p_y f(t_n, X, Y)
\]

Mixed derivative gives more terms; for rotation case, we have not all the terms:

\[
\p_{xy}^2 f(t_{n+1}, x_i, y_j) = \p_y X \p_x X \p_x^2 f(t_n, X, Y) + \p_y X \p_x Y \p_{xy}^2 f(t_n, X, Y)
\]
\[
+ \p_y Y \p_x X \p_{xy}^2 f(t_n, X, Y) + \p_y Y \p_x Y \p_y^2 f(t_n, X, Y)
\]

⇒ Numerically, we do the derivatives on the cell of the foot of characteristic (thus, there it is a polynomial)
First results: L^∞ error for rotation vs number of patch per direction

First point: splines; last point: Hermite

$\Delta t = 2\pi/32$ 100 iterations; grid: 64×64, 128×128, 256×256

$f_0(x, y) = \exp(-0.07((40x + 4.8)^2 + (40v + 4.8)^2))$ on $[-0.5, 0.5]^2$ MViolard2007
First results: L^∞ error for rotation vs N for $N \times N$ grid and solution at final time
Hermite on triangles

- Motivation: flexibility of the geometry
- CT: Reduced Clough-Tucher
 \[f, \partial_x f, \partial_y f \text{ at each node} \]
 \[C^1 \text{ Interpolation which reproduces polynomials of degree } \leq 2 \]
- MT: Mitchell
 \[f, \partial_x f, \partial_y f \text{ at each node + a mixed derivative} \]
 Reconstruction of the full Hessian matrix using the mixed derivative
 Interpolation reproduces polynomials of degree \(\leq 3 \)
Interpolation error for CT and Mitchell
Advection (rotation) error for CT and Mitchell CFL2
\[\Delta t = \frac{CFL \times h}{\max(|V_1|) + \max(|V_2|)}, \quad h = \Delta x = \Delta y \]
Advection (rotation) error for CT and Mitchell CFL10

$$\Delta t = \frac{(CFL \times h)}{\max(|V_1|) + \max(|V_2|)}, \quad h = \Delta x = \Delta y$$
Guiding center model

- We look for \(\rho = \rho(t, x, y) \) satisfying the guiding center model

\[
\begin{align*}
\frac{\partial_t \rho}{\partial y \phi \partial_x \rho - \partial_x \phi \partial_y \rho} &= 0 \\
-\Delta \phi &= \rho
\end{align*}
\]

- We take an annulus as domain

\[
\Omega = \{(x = r \cos(\theta), y = r \sin(\theta)) \in \mathbb{R}^2, 1 \leq r \leq 10, \ \theta \in [0, 2\pi]\}
\]

and consider the diocotron instability

\[
\rho_0(x, y) = (1 + \varepsilon \cos(\ell \theta)) e^{- \frac{(r-r_0)^2}{2\sigma^2}}
\]

- \(r_0 = 4.5, \ \sigma = 0.5 \)
- \(\ell \in \{2, 3, 4, 5, 6\} \)
- \(\Delta t = 0.05 \)
- this testcase has been developed on polar/curvilinear grid, hexagonal (for hexagonal domain) and cartesian grid; also with Particle in Cell method...
- we study it here on unstructured triangular grid with Hermite advection scheme (other works on unstructured grids: SLDG method, Lattice Boltzmann...)
"Analytical solution" and meshes

Figure 1: (a) regular mesh, (b) non regular mesh of an annulus

<table>
<thead>
<tr>
<th>mode</th>
<th>growth rate of instability</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.1521506183167334</td>
</tr>
<tr>
<td>3</td>
<td>0.17522906264985497</td>
</tr>
<tr>
<td>4</td>
<td>0.16808429177954187</td>
</tr>
<tr>
<td>5</td>
<td>0.1351611435009326</td>
</tr>
<tr>
<td>6</td>
<td>0.07950579246451214</td>
</tr>
</tbody>
</table>

Table 1: Theoretical growth rate of diocotron instability
Example for the mode $\ell = 3$
Instability growth rate for $\ell \in \{2, 3, 4, 5, 6\}$
About the scheme in time

- We use a second order scheme in time based on predictor corrector method

\[f^{n+\frac{1}{2}}(x) = f^n(x - \frac{\Delta t}{2} V_n(x)) \]
\[\partial_x f^{n+\frac{1}{2}}(x) = (1 - \frac{\Delta t}{2} \partial_x V_1(x))\partial_x f^n(X^n) - (\frac{\Delta t}{2} \partial_x V_2(x))\partial_y f^n(X^n) \]
\[\partial_y f^{n+\frac{1}{2}}(x) = (-\frac{\Delta t}{2} \partial_y V_1(x))\partial_x f^n(X^n) + (1 - \frac{\Delta t}{2} \partial_y V_2(x))\partial_y f^n(X^n) \]

with \(X^n := x - \frac{\Delta t}{2} V_n(x) \)

To compute the derivatives of the velocity in this step, we use the average of the P1 gradient in all triangles around the nodes.

- Compute \(V_{n+\frac{1}{2}} \) by solving Poisson equation:

\[-\Delta \phi_{n+\frac{1}{2}} = f_{n+\frac{1}{2}} \quad \text{and} \quad V_{n+\frac{1}{2}} = \text{curl} \ \phi_{n+\frac{1}{2}} \]

- Compute the characteristic’s foot \(X(t_n) \)

The derivatives of \(X^n \) are computed by using a fixed point method. By denoting \(X^n = (X^n_1, X^n_2) \), we get:

\[
\begin{aligned}
X^n_1 &= x - \Delta t \ V_1^{n+1/2} \left(\frac{x+X^n_1}{2}, \frac{y+X^n_2}{2} \right) \\
X^n_2 &= y - \Delta t \ V_2^{n+1/2} \left(\frac{x+X^n_1}{2}, \frac{y+X^n_2}{2} \right)
\end{aligned}
\]
By deriving the equations of above system, one obtains:

\[
\begin{align*}
\partial_x X_1^n &= 1 - \frac{\Delta t}{2} \left[(1 + \partial_x X_1^n)\partial_x V_1^{n+1/2} \left(\frac{x+X_1^n}{2}, \frac{y+X_2^n}{2} \right) + \partial_x X_2^n \partial_y V_1^{n+1/2} \left(\frac{x+X_1^n}{2}, \frac{y+X_2^n}{2} \right) \right] \\
\partial_y X_1^n &= -\frac{\Delta t}{2} \left[\partial_y X_1^n \partial_x V_1^{n+1/2} \left(\frac{x+X_1^n}{2}, \frac{y+X_2^n}{2} \right) + (1 + \partial_y X_2^n)\partial_y V_1^{n+1/2} \left(\frac{x+X_1^n}{2}, \frac{y+X_2^n}{2} \right) \right] \\
\partial_x X_2^n &= -\frac{\Delta t}{2} \left[(1 + \partial_x X_1^n)\partial_x V_2^{n+1/2} \left(\frac{x+X_1^n}{2}, \frac{y+X_2^n}{2} \right) + \partial_x X_2^n \partial_y V_2^{n+1/2} \left(\frac{x+X_1^n}{2}, \frac{y+X_2^n}{2} \right) \right] \\
\partial_y X_2^n &= 1 - \frac{\Delta t}{2} \left[\partial_y X_1^n \partial_x V_2^{n+1/2} \left(\frac{x+X_1^n}{2}, \frac{y+X_2^n}{2} \right) + (1 + \partial_y X_2^n)\partial_y V_2^{n+1/2} \left(\frac{x+X_1^n}{2}, \frac{y+X_2^n}{2} \right) \right]
\end{align*}
\]

where \(V_1^{n+1/2}(X) = V(t_{n+1/2}, X) \).

In this step, we can use either P1 or CT interpolation to approximate the velocity on the midpoints \(\frac{x+X}{2} \). For the CT one, we will need the gradient of \(V^{n+1/2} \) in the mesh points.
Conclusion

- New high order Hermite advection on uniform mesh for Vlasov-Poisson
- $1D$ stability property for splines on patches with propagation of gradients of the boundary of the patch
- New Hermite $2D$ advection with propagation of mixed derivative
- Generalization in a new local splines method in $2D$ and first tests on rotation
- Development of Hermite methods on triangular mesh:
 - CT method for guiding center model
 - first results on higher order Mitchell method

Perspectives

- guiding center model for new high order Hermite on uniform mesh, local splines, Mitchell
- Influence of the mesh for other tokamak like poloidal planes (cf polar, non polar)
- Parallelization
- Drift kinetic simulation (4D)
- stability and convergence: positivity? conservative version?
- multi-resolution, multi-patch...