A posteriori error estimates for the time dependent convection-diffusion-reaction equation coupled with the Navier-Stokes system

Joanna FADDOUL

Sorbonne Paris North University and Saint-Joseph University of Beirut

 $24 \ \mathrm{June} \ 2021$

SMAI 2021

Guided by :	Pascal OMNES	_	LAGA-Sorbonne Paris North University, France.
	Toni SAYAH	_	Faculty of Sciences-USJ, Lebanon.
	Jad DAKROUB	—	Faculty of Engineering-USJ, Lebanon.

1 Introduction

- 2 Continuous problem
- 3 Discrete problem
- 4 *A posteriori* error analysis
- **5** Numerical simulations
- 6 Conclusion and perspectives

Convection-diffusion-reaction equation coupled with the Navier-Stokes system

 $\Omega: \text{a connected bounded open domain in } \mathbb{R}^d \ (\ d=2, \ 3), \ \ \partial \Omega: \text{boundary of } \Omega.$

$$\begin{array}{rcl} \frac{\partial \mathbf{u}}{\partial t}(x,t) - \operatorname{div}(\nu(C(x,t))\nabla \mathbf{u}(x,t)) \\ &+ (\mathbf{u}(x,t) \cdot \nabla) \mathbf{u}(x,t) + \nabla p(x,t) &=& \mathbf{f}(x,t,C(x,t)) & \text{in } \Omega \times]0,T[,\\ & & & & & \\ \mathrm{div } \mathbf{u}(x,t) &=& 0 & \text{in } \Omega \times]0,T[,\\ & & & & \\ \frac{\partial C}{\partial t}(x,t) + (\mathbf{u}(x,t) \cdot \nabla)C(x,t) - \alpha \Delta C(x,t) + r_0C(x,t) &=& g(x,t) & \text{in } \Omega \times]0,T[,\\ & & & & & \\ \frac{\partial C}{\partial t}(x,t) &=& 0 & \text{on } \partial \Omega \times]0,T[,\\ & & & & & \\ C(x,t) &=& 0 & \text{on } \partial \Omega \times]0,T[,\\ & & & & \\ \mathbf{u}(x,0) &=& \mathbf{u}_0 & \text{in } \Omega,\\ & & & & \\ C(x,0) &=& C_0 & \text{in } \Omega. \end{array}$$

- u : fluid velocity.
- $\bullet \ p$: fluid pressure.
- C : concentration in the fluid.

- ν : fluid viscosity.
- α : diffusion coefficient.
- r_0 : positive constant.
- $\mathbf{f} = (f_1, ..., f_d) \in H^{-1}(\Omega)^d$: external force.
- g : external concentration source.

<u>NB</u>: Our main purpose in this thesis is to study the case where α depends on the concentration C, but as a first step we will consider α constant.

Variational formulation

Variational formulation

 $X=H^1_0(\Omega)^d,\;M=L^2_0(\Omega)\quad\text{and}\quad Y=H^1_0(\Omega),$

$$(E) \begin{cases} Find (\mathbf{u}, p, C) \in X \times M \times Y \text{ such that} \\ \frac{d}{dt}(\mathbf{u}(t), \mathbf{v}) + (\nu(C(t))\nabla \mathbf{u}(t), \nabla \mathbf{v}) - (p(t), \operatorname{div} \mathbf{v}) + c_{\mathbf{u}}(\mathbf{u}(t), \mathbf{u}(t), \mathbf{v}) &= (\mathbf{f}(t, C(t)), \mathbf{v}) & \forall \mathbf{v} \in X, \\ (\operatorname{div} \mathbf{u}(t), q) &= 0 & \forall q \in M, \\ \frac{d}{dt}(C(t), r) + c_C(\mathbf{u}(t), C(t), r) + \alpha(\nabla C(t), \nabla r) + r_0(C(t), r) &= (g(t), r) & \forall r \in Y, \\ \mathbf{u}(0) &= \mathbf{u}_0 & \operatorname{in} \Omega, \\ C(0) &= C_0 & \operatorname{in} \Omega. \end{cases}$$

with

$$c_{\mathbf{u}}(\mathbf{u}(t),\mathbf{u}(t),\mathbf{v}) = \int_{\Omega} ((\mathbf{u}(t)\cdot\nabla)\mathbf{u}(t))\cdot\mathbf{v}\;dt \qquad \text{and} \qquad c_{C}(\mathbf{u}(t),C(t),r) = \int_{\Omega} ((\mathbf{u}(t)\cdot\nabla)C(t))\;r\;dt\;.$$

Variational formulation

Hypothesis

Assumption

١

 $\mathbf{f}(x,t,C(x,t)) = \mathbf{f}_0(x,t) + \mathbf{f}_1(x,C(x,t)),$

where $\mathbf{f}_0 \in C^0(0, T; L^2(\Omega)^d)$ and \mathbf{f}_1 is $c^*_{\mathbf{f}_1}$ -lipschitz with respect to its second argument, and

 $\forall x \in \Omega, \forall \xi \in \mathbb{R}, |\mathbf{f}_1(x,\xi)| \le c_{\mathbf{f}_1} |\xi|,$

where $c_{\mathbf{f}_1}$ is a positive constant.

 $g \in C^0(0,T;L^2(\Omega)),$

 $\begin{array}{l} \bullet \quad \nu \in L^{\infty}(\mathbb{R}) \text{ and is Lipschitz-continuous, with Lipschitz constant } c_{\nu}. \\ \text{Furthermore, there exist two positive constants } \hat{\nu}_1 \text{ and } \hat{\nu}_2 \text{ such that, for any} \\ \theta \in \mathbb{R}. \end{array}$

 $\hat{\nu}_1 \leq \nu(\theta) \leq \hat{\nu}_2.$

 $\mathbf{O} \quad \mathbf{u}_0 \in L^2(\Omega)^d, \text{ div } \mathbf{u}_0 = 0, \ \mathbf{u}_0 \cdot \mathbf{n}_{\partial\Omega} = 0 \text{ and } C_0 \in L^2(\Omega).$

Variational formulation

Existence and uniqueness

Theorem

Under the fixed Hypothesis, Problem (E) admits at least one solution

 $(\mathbf{u}, p, C) \in L^2(0, T; H^1_0(\Omega)^d) \cap L^\infty(0, T; L^2(\Omega)^d) \times L^2(0, T; L^2(\Omega)) \times L^2(0, T; H^1_0(\Omega)) \cap L^\infty(0, T; L^2(\Omega)).$

This solution is unique if

 $\mathbf{u} \in L^p(0,T; W^{1,r}(\Omega)^d)$, where $p \ge 4$ and $r \ge 4$.

Every solution of (E) satisfies the bound

 $\| \mathbf{u} \|_{L^{\infty}(0,T;L^{2}(\Omega)^{d})} + \| \mathbf{u} \|_{L^{2}(0,T;H^{1}_{0}(\Omega)^{d})} + \| C \|_{L^{\infty}(0,T;L^{2}(\Omega))} + \| C \|_{L^{2}(0,T;H^{1}_{0}(\Omega))}$ $\leq \hat{C} \bigg(\| g \|_{L^{2}(0,T;L^{2}(\Omega))} + \| \mathbf{f}_{0} \|_{L^{2}(0,T;L^{2}(\Omega)^{d})} + \| \mathbf{u}_{0} \|_{L^{2}(\Omega)^{d}} + \| C_{0} \|_{L^{2}(\Omega)} \bigg)$

where \hat{C} is a positive constant which depends of S_2^0 , $\hat{\nu}_1$, α , r_0 and $c_{\mathbf{f}_1}$.

Aldbaissy R., Hecht F., Sayah T., Mansour G., A full discretisation of the time-dependent Boussinesq (buoyancy) model with nonlinear viscosity. Calcolo, 4 (2018).

Discretization

Space and time discretization

- We use a regular mesh.
- We descritize (\mathbf{u}, p, C) using finite element $(P_{1b}/P_1/P_1)$.
- We discritize in time using semi-implicit Euler method.

Let X_{nh}, M_{nh} and Y_{nh} such that $X_{nh} \subset X, M_{nh} \subset M$ and $Y_{nh} \subset Y$, and for each $n \in \{1, \dots, N\}$,

$$Z_{nh} = \{q_h \in C^0(\bar{\Omega}) \ \forall \kappa \in \mathcal{T}_{nh}, q_{h|\kappa} \in P_1\},$$

$$X_{nh} = \{\mathbf{v}_h \in C^0(\bar{\Omega})^d ; \forall \kappa \in \mathcal{T}_{nh}, \mathbf{v}_{h|\kappa} \in P_{1b}, \mathbf{v}_{h|\partial\Omega=0}\},$$

$$Y_{nh} = \{r_h \in Z_{nh}; \ r_{h|\partial\Omega=0}\},$$

$$M_{nh} = \{q_h \in Z_{nh}; \ \int_{\Omega} q_h \, \mathbf{dx} = 0\}.$$

Discretization

Full discrete scheme

For every $n \in \{1, \dots, N\}$, having $\mathbf{u}_h^{n-1} \in X_{(n-1)h}$ and $C_h^{n-1} \in Y_{(n-1)h}$, Find $(\mathbf{u}_h^n, p_h^n) \in X_{nh} \times M_{nh}, C_h^n \in Y_{nh}$ such that,

$$\text{Eds1} \begin{cases} \frac{1}{\tau_n} (\mathbf{u}_h^n - \mathbf{u}_h^{n-1}, \mathbf{v}_h) + (\nu(C_h^{n-1}) \nabla \mathbf{u}_h^n, \nabla \mathbf{v}_h) \\ + d_{\mathbf{u}} (\mathbf{u}_h^{n-1}, \mathbf{u}_h^n, \mathbf{v}_h) - (p_h^n, \text{div } \mathbf{v}_h) = (\mathbf{f}^n(C_h^{n-1}), \mathbf{v}_h) & \forall \mathbf{v}_h \in X_{nh}, \\ (q_h, \text{div } \mathbf{u}_h^n) = 0 & \forall q_h \in M_{nh}, \\ \frac{1}{\tau_h} (C_h^n - C_h^{n-1}, r_h) + d_C (\mathbf{u}_h^n, C_h^n, r_h) \end{cases}$$

$$\begin{aligned} & \quad +\alpha(\nabla C_h^n, \nabla r_h) + r_0(C_h^n, r_h) = (g^n, r_h) \\ & \quad \forall r_h \in Y_{nh}, \end{aligned}$$

with

$$d_{\mathbf{u}}(\mathbf{u}_{h}^{n-1},\mathbf{u}_{h}^{n},\mathbf{v}_{h}) = ((\mathbf{u}_{h}^{n-1}\cdot\nabla)\mathbf{u}_{h}^{n},\mathbf{v}_{h}) + \frac{1}{2}(\operatorname{div}(\mathbf{u}_{h}^{n-1})\mathbf{u}_{h}^{n},\mathbf{v}_{h})$$

and

$$d_C(\mathbf{u}_h^n, C_h^n, r_h) = ((\mathbf{u}_h^n \cdot \nabla) C_h^n, r_h) + \frac{1}{2} (\operatorname{div}(\mathbf{u}_h^n) C_h^n, r_h).$$

Discretization

Existence and uniqueness

Theorem

At each time step n, for a given $\mathbf{u}_h^{n-1} \in X_{(n-1)h}, C_h^{n-1} \in Y_{(n-1)h}$ and under the fixed Assumption, problem (Eds1) admits a unique solution $(\mathbf{u}_h^n, p_h^n, C_h^n) \in X_{nh} \times M_{nh} \times Y_{nh}$. Furthermore we have, for $m = 1, \dots, N$, the following bounds

$$\begin{split} \frac{1}{2} \parallel \mathbf{u}_{h}^{m} \parallel_{L^{2}(\Omega)^{d}}^{2} + \frac{\hat{\nu}_{1}}{2} \sum_{n=0}^{m} \tau_{n} |\mathbf{u}_{h}^{n}|_{H_{0}^{1}(\Omega)^{d}}^{2} \\ & \leq \tilde{C}_{d} \bigg(\sum_{n=0}^{m} \tau_{n} \parallel g^{n} \parallel_{L^{2}(\Omega)}^{2} + \sum_{n=0}^{m} \tau_{n} \parallel \mathbf{f}_{0}^{n} \parallel_{L^{2}(\Omega)}^{2} + \parallel C_{h}^{0} \parallel_{L^{2}(\Omega)}^{2} + \parallel \mathbf{u}_{h}^{0} \parallel_{L^{2}(\Omega)^{d}}^{2} \bigg), \end{split}$$

$$\begin{split} \frac{1}{2} \parallel C_h^m \parallel_{L^2(\Omega)}^2 + & \frac{\alpha}{2} \sum_{n=0}^m \tau_n |C_h^n|_{H_0^1(\Omega)}^2 + r_0 \sum_{n=0}^m \tau_n \parallel C_h^n \parallel_{L^2(\Omega)}^2 \\ & \leq \tilde{C'}_d \bigg(\sum_{n=0}^m \tau_n \parallel g^n \parallel_{L^2(\Omega)}^2 + \parallel C_h^0 \parallel_{L^2(\Omega)}^2 \bigg). \end{split}$$

where \tilde{C}_d et \tilde{C}'_d are positive constants independent of h and m.

Indicators Bound

A posteriori error

- Putting up the local error indicators in time and in space
- Bounding the solution error :

 $\begin{array}{ll} C_1 \text{ indicators} & \leq ||u-u_h|| \leq & C_2 \text{ indicators} \\ + & \text{data oscillations} & + & \text{data oscillations} \end{array}$

FIGURE – Mesh evolution

Indicators Bound

Indicators

$$(\eta_{u,n,\kappa_n}^{\tau})^2 = \tau_n \parallel \mathbf{u}_h^n - \mathbf{u}_h^{n-1} \parallel_{H^1(\kappa_n)}^2,$$

$$(\eta_{c,n,\kappa_n}^{\tau})^2 = \tau_n \parallel C_h^n - C_h^{n-1} \parallel^2_{H^1(\kappa_n)},$$

$$\begin{split} (\eta^{h}_{u,n,\kappa_{n}})^{2} &= \quad h^{2}_{\kappa_{n}} \parallel \mathbf{f}^{n}(C_{h}^{n-1}) - \frac{1}{\tau_{n}}(\mathbf{u}_{h}^{n} - \mathbf{u}_{h}^{n-1}) + \operatorname{div}(\nu(C_{h}^{n-1})\nabla\mathbf{u}_{h}^{n}) - \mathbf{u}_{h}^{n-1} \cdot \nabla\mathbf{u}_{h}^{n} \\ &- \frac{1}{2}\operatorname{div}\mathbf{u}_{h}^{n-1}\mathbf{u}_{h}^{n} - \nabla p_{h}^{n})(x) \parallel^{2}_{0,\kappa_{n}} + \frac{1}{2}\sum_{e_{n} \in \varepsilon_{\kappa_{n}}} h_{e_{n}} \parallel [(\nu(C_{h}^{n-1})\nabla\mathbf{u}_{h}^{n} - p_{h}^{n}\mathbb{I})(\sigma)]_{e_{n}}\mathbf{n} \parallel^{2}_{0,\epsilon_{n}} \\ &+ \parallel \operatorname{div}\mathbf{u}_{h}^{n} \parallel^{2}_{0,\kappa_{n}}, \\ (\eta^{h}_{c,n,\kappa_{n}})^{2} &= \quad h^{2}_{\kappa_{n}} \parallel g^{n} - \frac{1}{\tau_{n}}(C_{h}^{n} - C_{h}^{n-1}) + \alpha\Delta C_{h}^{n} - \mathbf{u}_{h}^{n} \cdot \nabla C_{h}^{n} - \frac{1}{2}\operatorname{div}(\mathbf{u}_{h}^{n})C_{h}^{n} - r_{0}C_{h}^{n} \parallel^{2}_{0,\kappa_{n}} \\ &+ \frac{1}{2}\sum_{e_{n} \in \varepsilon_{\kappa_{n}}} h_{e_{n}} \parallel [\alpha\nabla C_{h}^{n}(\sigma)]_{e_{n}} \cdot \mathbf{n} \parallel^{2}_{0,e_{n}}. \end{split}$$

We prove optimal a *posteriori* error estimates by using the norms

$$\begin{split} [[\mathbf{u} - \mathbf{u}_h]] &= \left(\| \mathbf{u}(t_n) - \mathbf{u}_h(t_n) \|_{L^2(\Omega)^2}^2 \\ &+ \hat{\nu}_1 \max \left(\int_0^{t_n} \| \mathbf{u}(t) - \mathbf{u}_h(t) \|_X^2 dt, \sum_{m=1}^n \int_{t_{m-1}}^{t_m} \| \mathbf{u}(t) - \pi_\tau \mathbf{u}_h(t) \|_X^2 dt \right) \right)^{1/2} \end{split}$$

and

$$\begin{split} [[C - C_h]] &= \left(\parallel C(t_n) - C_h(t_n) \parallel_{L^2(\Omega)^2}^2 \\ &+ \alpha \; \max\left(\int_0^{t_n} \parallel C(t) - C_h(t) \parallel_Y^2 dt, \sum_{m=1}^n \int_{t_{m-1}}^{t_m} \parallel C(t) - \pi_\tau C_h(t) \parallel_Y^2 dt \right) \right)^{1/2}. \end{split}$$

Indicators Bound

Upper bound

Theorem

Let $h_n \leq c_s \tau_n, \forall n \in \{1, \dots, N\}$, where c_s is a positive constant independent of n. for each $m \in \{1, \dots, N\}$, the solutions (\mathbf{u}, p, C) of (E) and (\mathbf{u}_h, p_h, C_h) of (Eds1) satisfy the following *a posteriori* estimation :

$$\begin{split} [[\mathbf{u} - \mathbf{u}_{h}]]^{2}(t_{m}) + \parallel \frac{\partial}{\partial t}(\mathbf{u} - \mathbf{u}_{h}) + \mathbf{u} \cdot \nabla \mathbf{u} - \pi_{l,\tau} \mathbf{u}_{h} \cdot \nabla \pi_{\tau} \mathbf{u}_{h} - \frac{1}{2} \operatorname{div}(\pi_{l,\tau} \mathbf{u}_{h}) \pi_{\tau} \mathbf{u}_{h} + \nabla(p - p_{h}) \parallel_{L^{2}(0,t_{m};X')} \\ + [[C - C_{h}]]^{2}(t_{m}) + \parallel \frac{\partial}{\partial t}(C - C_{h}) + \mathbf{u} \cdot \nabla C - \pi_{\tau} \mathbf{u}_{h} \cdot \nabla \pi_{\tau} C_{h} - \frac{1}{2} \operatorname{div}(\pi_{\tau} \mathbf{u}_{h}) \pi_{\tau} C_{h} \parallel_{L^{2}(0,t_{m};Y')} \end{split}$$

$$\leq c \bigg(\| g - \pi_{\tau} g \|_{L^{2}(0,t_{m};Y')}^{2} + \| C_{0} - C_{h}^{0} \|_{L^{2}(\Omega)}^{2} + \| \mathbf{u}_{0} - \mathbf{u}_{h}^{0} \|_{L^{2}(\Omega)}^{2} + \tau_{0} \| \mathbf{u}_{0} - \mathbf{u}_{h}^{0} \|_{X}^{2} + \| \mathbf{f}_{0} - \pi_{\tau} \mathbf{f}_{0} \|_{L^{2}(0,t_{m};L^{2}(\Omega)^{2})}^{2} + \sum_{n=1}^{m} \sum_{\kappa_{n} \in \tau_{nh}} \big((\eta_{c,n,\kappa_{n}}^{\tau})^{2} + (\eta_{u,n,\kappa_{n}}^{\tau})^{2} + \tau_{n} (\eta_{c,n,\kappa_{n}}^{h})^{2} \big) + \tau_{n} (\eta_{u,n,\kappa_{n}}^{h})^{2} \Big) \bigg).$$

Indicators Bound

Lower bound

Theorem

We have for all $n \in \{1, \cdots, N\}$:

•
$$(\eta_{c,n,\kappa_n}^{\tau})^2 \leq c \left(\| C - C_h \|_{L^2(t_{n-1},t_n;H^1(\kappa_n))}^2 + \| C - \pi_{\tau}C_h \|_{L^2(t_{n-1},t_n;H^1(\kappa_n))}^2 \right),$$

•
$$\tau_n(\eta_{c,n,\kappa_n}^h)^2 \leq c \left(\| \frac{\partial}{\partial t} (C - C_h)(t) + \mathbf{u} \cdot \nabla C - \mathbf{u}_h^n \cdot \nabla C_h^n - \frac{1}{2} \operatorname{div} \mathbf{u}_h^n C_h^n + r_0 (C - C_h^n) \|_{L^2(t_{n-1},t_n;H^{-1}(\kappa_n))}^2 \right) + \| C - \pi_\tau C_h \|_{L^2(t_{n-1},t_n;H^{-1}(\kappa_n))}^2 + \| g - \pi_\tau g \|_{L^2(t_{n-1},t_n;H^{-1}(\kappa_n))}^2 + \tau_n h_{\kappa_n}^2 \| g^n - g_h^n \|_{L^2(\kappa_n)}^2 \right).$$

Indicators Bound

Lower bound

Theorem

Let $\nabla \mathbf{u} \in L^{\infty}(0,T; L^4(\Omega)^{2 \times 2})$, we have for all $n \in \{1, \cdots, N\}$:

• $(\eta_{u,n,\kappa_n}^{\tau})^2 \leq c \left(\parallel \mathbf{u} - \mathbf{u}_h \parallel_{L^2(t_{n-1},t_n;H^1(\kappa_n)^2)}^2 + \parallel \mathbf{u} - \pi_{\tau} \mathbf{u}_h \parallel_{L^2(t_{n-1},t_n;H^1(\kappa_n)^2)}^2 \right),$

$$\begin{split} \bullet & \tau_{n}(\eta_{u,n,\kappa_{n}}^{h})^{2} \leq \\ c \bigg(\parallel \frac{\partial}{\partial t}(\mathbf{u} - \mathbf{u}_{h}) + (\mathbf{u} \cdot \nabla \mathbf{u} - \mathbf{u}_{h}^{n-1} \cdot \nabla \mathbf{u}_{h}^{n} - \frac{1}{2} \operatorname{div}(\mathbf{u}_{h}^{n-1})\mathbf{u}_{h}^{n} + \nabla(p - p_{h}) \parallel_{L^{2}(t_{n-1},t_{n};H^{-1}(\kappa_{n})^{2})} \\ & + \parallel C - C_{h} \parallel_{L^{2}(t_{n-1},t_{n};L^{2}(\kappa_{n}))} + & \tau_{n} \parallel C_{h}^{n} - C_{h}^{n-1} \parallel_{L^{2}(\kappa_{n})} + \parallel \mathbf{u} - \mathbf{u}_{h} \parallel_{L^{2}(t_{n-1},t_{n};H^{-1}(\kappa_{n}))} \\ & + \parallel \mathbf{u}_{h}^{n} - \mathbf{u} \parallel_{L^{2}(t_{n-1},t_{n};H^{-1}(\kappa_{n}))} + \parallel \nu_{h}(C) - \nu(C) \parallel_{L^{2}(t_{n-1},t_{n};L^{2}(\kappa_{n}))} \\ & + \parallel \mathbf{f}_{0} - \mathbf{f}_{0}(t_{n}) \parallel_{L^{2}(t_{n-1},t_{n};L^{2}(\kappa_{n}))} + h_{\kappa_{n}}^{2} \parallel \mathbf{f}_{h}^{n}(C) - \mathbf{f}^{n}(C) \parallel_{L^{2}(t_{n-1},t_{n};H^{-1}(\kappa_{n}))^{2}} \bigg). \end{split}$$

Algorithm Numerical results

Numerical Results

- FreeFem++.
- $\Omega = [0,1]^2$, T = 1, $\alpha = 1$, $r_0 = 1$ and $\nu(C) = 0.2\sin(C) + 1$.
- The exact solution $(\mathbf{u}_{ex}, p_{ex}, C_{ex}) = (\mathbf{rot} \ \psi, p_{ex}, C_{ex})$, where

$$\begin{split} \psi(x,y,t) &= x^2(x-1)^2 y^2(y-1)^2 \sin(t), \\ p_{ex}(x,y,t) &= (t+1) \cos(\pi x) \cos(\pi y), \\ C_{ex}(x,y,t) &= -t \, e^{-100((x-0.3-0.3t)^2+(y-0.3)^2)}. \end{split}$$

• The initial time step $\tau = \frac{1}{N}$ and an initial mesh corresponding to N = 20.

Algorithm Numerical results

Algorithm :

- (1) $\mathbf{u}_h^n \to \mathbf{u}_h^{n+1}$ and $C_h^n \to C_h^{n+1}$. We calculate the indicators.
- (2) If the error is less than a fixed tolerance \rightarrow go to the next time step \rightarrow go to (1).

Other case \rightarrow (3).

(3) if the error in space is smaller than the error in time \rightarrow adaptation of the time step \rightarrow go to (1).

if the error in time is smaller than the error in space \rightarrow adaptation of the mesh \rightarrow go to (1).

Algorithm Numerical results

Mesh evolution

FIGURE – Initial mesh

FIGURE – Mesh at t = 0.768

FIGURE – Mesh at t = 0.496

FIGURE – Mesh at t = 0.897

Algorithm Numerical re<u>sults</u>

FIGURE – Total indicators erreur .

- Total error reduce by 26,59%
- \bullet Error indicator reduced by 48.66%
- $\bullet\,$ Time reduced by 40 $\%\,$

Algorithm Numerical results

We define the efficiency index as following :

$$EI = \left(\frac{\sum_{n=1}^{N} \sum_{\kappa_n \in \mathcal{T}_{nh}} (\tau_n (\eta_{u,n,\kappa_n}^{\tau})^2 + \tau_n (\eta_{c,n,\kappa_n}^{\tau})^2 + \tau_n (\eta_{u,n,\kappa_n}^{h})^2 + \tau_n (\eta_{c,n,\kappa_n}^{h})^2}{\sum_{n=1}^{N} \tau_n (|\mathbf{u}_h^n - \mathbf{u}^n|_{H^1(\Omega)^2}^2 + ||p_h^n - p^n||_{L^2(\Omega)}^2 + |C_h^n - C^n|_{H^1(\Omega)}^2)}\right)^{1/2}$$

STU	$10 \ 308$	18 767	21 857	$69\ 065$	$242 \ 458$
EI	8.75	7.79	9.12	8.97	7.52

TABLE – Efficiency index with respect to the total number of space-time unknowns.

Conclusion

- Convection-diffusion-reaction equation coupled with the Navier-Stokes system.
- A posteriori analysis .
- Validation of theoretical results by numerical simulations.

Perspectives

• Non-constant diffusion term.

References

- Aldbaissy R., Hecht F., Sayah T., Mansour G., A full discretisation of the time-dependent Boussinesq (buoyancy) model with nonlinear viscosity.
- Bernardi C., Sayah T., A posteriori error analysis of the time dependent Navier-Stokes equations with mixed boundary conditions.
- Girault Vivette, Raviart Pierre-Arnaud. Finite Element Methods for Navier Stokes Equations.
- Temam Roger. Navier Stokes Equations, Theory and Numerical Analysis.
- Nassreddine G., Omnes P., Sayah T., A posteriori error estimates for the Large Eddy Simulation applied to stationary Navier-Stokes equations.

THANK YOU FOR YOUR ATTENTION

Proof

Concentration error :

• Upper bound of the error between the solution C of problem (E) and the discrete solution C_h .

The result depends on the velocity error.

Velocity error :

- Auxiliary problem : time-discretization only.
- Upper bound of the error between the exact solution ${\bf u}$ of Problem (E) and the time-affine function ${\bf u}_\tau$.
- Upper bound of the error between \mathbf{u}_{τ} and the discrete solution \mathbf{u}_h .
- Combination of these two previous.

The result depends on the concentration error.

The combination of the concentration error and the velocity error gives us the result using the Gronwall Lemma.

Proof

1 - Concentration error

Theorem

Let **u** and *C* be the velocity and concentration solutions of problem (E). Supposing that $\mathbf{u} \in L^{\infty}(0,T; L^{3}(\Omega)^{2}), C \in L^{\infty}(0,T; L^{3}(\Omega))$ and $\nabla C \in L^{\infty}(0,T; L^{2}(\Omega)^{2})$, the following *a* posteriori error estimate holds between *C* and the solution C_{h} associated to $(C_{h}^{m})_{0 \leq n \leq N}$, solution of problem (Eds1) : for $1 \leq m \leq N$,

$$| C(t_m) - C_h(t_m) ||_{L^2(\Omega)}^2 + \alpha \int_0^{t_m} || C(s) - C_h(s) ||_Y^2 ds + 2r_0 \int_0^{t_m} || C(s) - C_h(s) ||_{L^2(\Omega)}^2 ds$$

$$\leq c \bigg(\sum_{n=1}^m || g - g^n ||_{L^2(t_{n-1}, t_n; Y')}^2 + || C_0 - C_h^0 ||_{L^2(\Omega)}^2 + || \mathbf{u} - \mathbf{u}_h ||_{L^2(0, t_m; X)}^2$$

$$+ \sum_{n=1}^m \sum_{\kappa_n \in \tau_{nh}} \left((\eta_{c, n, \kappa_n}^\tau)^2 + (\eta_{u, n, \kappa_n}^\tau)^2 + \tau_n (\eta_{c, n, \kappa_n}^h)^2 \right) \bigg),$$

where c is a constant independent of the time and mesh steps.

Proof

2 - Velocity error

We introduce the following time semi-discrete problem :

 $(P_{aux}) \left\{ \begin{array}{ll} \mathrm{Let}\; C_h^{n-1} \; \mathrm{be \; the \; concentration \; component \; of \; the \; finite \; element \; solution \; of \; (\mathrm{Eds1}), \; \mathrm{then} \\ \mathrm{knowing}\; \mathbf{u}^{n-1}, \; \mathrm{find}(\mathbf{u}^n, p^n) \in X \times M \; \mathrm{such \; that} \\ \\ \frac{1}{\tau_n} (\mathbf{u}^n - \mathbf{u}^{n-1}, \mathbf{v}) + (\nu(C_h^{n-1})\nabla \mathbf{u}^n, \nabla \mathbf{v}) \\ + (\mathbf{u}^{n-1} \cdot \nabla \mathbf{u}^n, \mathbf{v}) - (\mathrm{div}\; \mathbf{v}, p^n) \; = \; (\mathbf{f}^n(C_h^{n-1}), \mathbf{v}) \quad \; \forall \mathbf{v} \in X, \\ \\ (\mathrm{div}\; \mathbf{u}^n, q) \; = \; 0 \qquad \; \forall q \in M, \end{array} \right.$

with $\mathbf{u}^0 = \mathbf{u}_0$ and $\mathbf{f}^n(C_h^{n-1}) = \mathbf{f}_0^n + \mathbf{f}_1(C_h^{n-1})$ with $\mathbf{f}_0^n = \mathbf{f}_0(t_n)$.

Proof

2 - Velocity error

Theorem

Let **u** be the velocity of problem (3) and \mathbf{u}_{τ} the velocity associated to $(\mathbf{u}^n)_{0 \leq n \leq N}$ solution of the auxiliary problem (P_{aux}) . Suppose that $\nabla \mathbf{u} \in L^{\infty}(0,T; L^4(\Omega)^{2 \times 2})$ and $\mathbf{u} \in L^{\infty}(0,T; L^3(\Omega)^2)$. Then, the following a posteriori error estimate holds

$$\begin{split} \| \mathbf{u}(t) - \mathbf{u}_{\tau}(t) \|_{L^{2}(\Omega)^{2}}^{2} + \hat{\nu}_{1} \int_{0}^{t} \| \mathbf{u}(\tau) - \mathbf{u}_{\tau}(\tau) \|_{X}^{2} d\tau \\ & \leq c \bigg(\| \mathbf{f}_{0} - \pi_{\tau} \mathbf{f}_{0} \|_{L^{2}(0,t;L^{2}(\Omega)^{2})}^{2} + \| C - \pi_{l,\tau} C_{h} \|_{L^{2}(0,t;L^{4}(\Omega))}^{2} + \| \pi_{\tau} \mathbf{u} - \pi_{l,\tau} \mathbf{u} \|_{L^{2}(0,t;X)}^{2} \bigg). \end{split}$$

where c is a positive constant independent of the time and mesh steps.

Theorem

Let $t \in [t_{m-1}, t_m]$. Let $h_n \leq c_s \tau_n, \forall n \in \{1, \dots, N\}$, where c_s is a positive constant independent of n. The following *a posteriori* error holds between $\mathbf{u}_{\tau}(t)$ and $\mathbf{u}_h(t)$:

$$\begin{split} \| (\mathbf{u}_{\tau} - \mathbf{u}_{h})(t) \|_{L^{2}(\Omega)^{2}}^{2} + \int_{0}^{t} \| \mathbf{u}_{\tau} - \mathbf{u}_{h} \|_{X}^{2} (s) ds \\ & \leq c \bigg(\| \mathbf{u}_{0} - \mathbf{u}_{h}^{0} \|_{L^{2}(\Omega)^{2}}^{2} + \tau_{0} \| \mathbf{u}_{0} - \mathbf{u}_{h}^{0} \|_{X}^{2} + \sum_{n=1}^{m} \sum_{\kappa_{n} \in \mathcal{T}_{n,h}} \tau_{n} (\eta_{u,n,\kappa_{n}}^{h})^{2} \bigg), \end{split}$$

where c is a positive constant independent of the time and mesh steps.

Proof

2 - Velocity error

Theorem

Let $h_n \leq c_s \tau_n, \forall n \in \{1, \dots, N\}$, where c_s is a positive constant independent of n. Under our assumptions of Theorem , for $t \in]t_{m-1}, t_m]$, we have the following *a posteriori* estimation between the velocity **u** solution of problem (E) and \mathbf{u}_h corresponding to \mathbf{u}_h^n of problem (Eds1) :

$$\| \mathbf{u}(t) - \mathbf{u}_{h}(t) \|_{L^{2}(\Omega)^{2}}^{2} + \hat{\nu}_{1} \int_{0}^{t} \| \mathbf{u}(s) - \mathbf{u}_{h}(s) \|_{X}^{2} ds \leq c \bigg(\| \mathbf{f}_{0} - \pi_{\tau} \mathbf{f}_{0} \|_{L^{2}(0,t;L^{2}(\Omega)^{2})}^{2} + \| \mathbf{u}_{0} - \mathbf{u}_{h}^{0} \|_{L^{2}(\Omega)^{2}}^{2} + \tau_{0} \| \mathbf{u}_{0} - \mathbf{u}_{h}^{0} \|_{X}^{2} + \| C - \pi_{l,\tau} C_{h} \|_{L^{2}(0,t;L^{4}(\Omega))}^{2} + \| \pi_{\tau} \mathbf{u} - \pi_{l,\tau} \mathbf{u} \|_{L^{2}(0,t;X)}^{2} + \sum_{n=1}^{m} \tau_{n} \sum_{\kappa_{n} \in \mathcal{T}_{nh}} (\eta_{u,n,\kappa_{n}}^{h})^{2} \bigg),$$

where c is a positive constant.

3 - Error

The combination of the concentration error and the velocity error gives us the result using the Gronwall Lemma.