

Partial Matching in the Space of Varifolds

SMAI 2021, June 24th Pierre-Louis Antonsanti (GE Healthcare, MAP5)

Joint work with :

Joan Glaunès, Irène Kaltenmark (MAP5, Université de Paris) Thomas Benseghir and Vincent Jugnon (GE Healthcare)

Partial Matching in Medical Images

Livers Surfaces

Segmented liver

Volume

Partial Matching in Medical Images

СТ

Volume

Input images

Reference (T1)

[Bashiri 2019] Cerebral MRI

Segmented liver

Partial Matching in Medical Images

СТ

Volume

Reference (T1)

[Bashiri 2019] Cerebral MRI

Pelvic Arterial Trees

Segmented liver

Partial Matching in Medical Images

СТ

Volume

Reference (T1)

[Bashiri 2019] Cerebral MRI

Pelvic Arterial Trees

Segmented liver

Retinal Nerve Fiber Layer [Lee 2017] 5

Outline

- The Shape Space
 - Large Diffeomorphic Deformation Metric Mapping
- Data fidelity metrics
 - Overview
 - Building Metrics to Compare Shapes
- Partial Matching
 - First Idea
 - Localized Partial Matching
 - Localized and Normalized Partial Matching
 - Applications

The Shape Space

The Large Deformations Diffeomorphic Metric Mapping (LDDMM)

See the shapes through the deformations between them [Grenander, Miller, Trouvé, Younes, Beg, ..., Arguillère]

Distance between shapes through actions of deformations :

$$d_{S}(S_{0}, S_{2}) = \inf\{d_{G}(id, g') | g'.S_{0} = S_{2} \}$$

$$d_{S}(S_{0}, S_{2}) = E(S_{0}, S_{2})$$

The Shape Space

The Large Deformations Diffeomorphic Metric Mapping (LDDMM)

See the shapes through the deformations between them [Grenander, Miller, Trouvé, Younes, Beg, ..., Arguillère]

Distance between shapes through actions of deformations :

$$d_{S}(S_{0}, S_{2}) = inf\{d_{G}(id, g') | g'. S_{0} = S_{2} \}$$

$$d_{S}(S_{0}, S_{2}) = E(S_{0}, S_{2})$$

Data attachment term: Being robust to noise, nondiffeomorphic changes...

The Shape Space

The Large Deformations Diffeomorphic Metric Mapping (LDDMM)

See the shapes through the deformations between them [Grenander, Miller, Trouvé, Younes, Beg, ..., Arguillère]

Distance between shapes through actions of deformations :

$$d_{S}(S_{0}, S_{2}) = \inf\{d_{G}(id, g') | g'. S_{0} = S_{2} \}$$

$$d_{S}(S_{0}, S_{2}) = E(S_{0}, S_{2})$$

Data attachment term: Being robust to noise, nondiffeomorphic changes...

Inexact Registration Framework: Minimize the energy

 $E(S_0, S_2) + A(g'(S_0), S_2)$

How to compare shapes ?

What we expect :

- Adapted to large type of data (landmarks, images, curves or surfaces)
- Independent to parametrization
- No need to compute points correspondences

Currents [Glaunès 2005] Varifolds [Charon 2013] Oriented Varifolds [Kaltenmark 2017]

Some other metrics : Normal Cycles [Roussillon 2017] Optimal Transport as Data Term [Feydy 2017] Square Root Velocity Functions [Srivastava 2012]

Landmarks

How can two shapes "see" each others ?

How can two shapes "see" each others ?

How can two shapes "see" each others ?

0.75 S S S 0.50 -0.5 0.25 ? 0.00 Т -0.25 -0.5 -0.50 -0.75 -1.0 -1.00 --2.0 -1.5 1.5 -1.0 -0.5 0.5 1.0 2.0 00 $\omega_T(y) = \int_T e^{-\frac{\|x-y\|^2}{s^2}} dx$ $\omega_S(y) = \int_S e^{-\frac{\|x-y\|^2}{s^2}} dx$ $\omega_T(y) = \int_T e^{-\frac{\|x-y\|^2}{s^2}} dx$ *s* = 0.4

s = 0.4

Reproducing Kernel Hilbert Spaces (RKHS)

Definition

Let $(H, \| . \|_{H})$ be a Hilbert space of functions from a set X onto an euclidean space *E* of finite dimension. H is a RKHS if $\forall (x, \alpha) \in X \times E$ the evaluation functions $\delta_{x}^{\alpha} : \omega \mapsto \omega(x)\alpha$ are continuous linear forms on H.

Reproducing Kernel Hilbert Spaces (RKHS)

Definition

Let $(H, \| . \|_{H})$ be a Hilbert space of functions from a set X onto an euclidean space *E* of finite dimension. H is a RKHS if $\forall (x, \alpha) \in X \times E$ the evaluation functions $\delta_{x}^{\alpha} : \omega \mapsto \omega(x)\alpha$ are continuous linear forms on H.

- Isometry between H and H'
- To a RKHS **H** corresponds a unique RK k_H
- $\forall (x, y) \in X \times X, \forall (\alpha, \beta) \in E \times E: \left\langle \delta_x^{\alpha} \middle| \delta_y^{\beta} \right\rangle_{H'} = k_H((x, \alpha), (y, \beta))$

Reproducing Kernel Hilbert Spaces (RKHS)

Definition

Let $(H, \| . \|_{H})$ be a Hilbert space of functions from a set X onto an euclidean space *E* of finite dimension. H is a RKHS if $\forall (x, \alpha) \in X \times E$ the evaluation functions $\delta_{x}^{\alpha} : \omega \mapsto \omega(x)\alpha$ are continuous linear forms on H.

- Isometry between H and H'
- To a RKHS **H** corresponds a unique RK k_H
- $\forall (x, y) \in X \times X, \forall (\alpha, \beta) \in E \times E: \left\langle \delta_x^{\alpha} \middle| \delta_y^{\beta} \right\rangle_{H'} = k_H((x, \alpha), (y, \beta))$

Reproducing Kernel Hilbert Spaces (RKHS)

Definition

Let $(H, \| . \|_{H})$ be a Hilbert space of functions from a set X onto an euclidean space *E* of finite dimension. H is a RKHS if $\forall (x, \alpha) \in X \times E$ the evaluation functions $\delta_{x}^{\alpha} : \omega \mapsto \omega(x)\alpha$ are continuous linear forms on H.

- Isometry between H and H'
- To a RKHS **H** corresponds a unique RK k_H
- $\forall (x, y) \in X \times X, \forall (\alpha, \beta) \in E \times E: \left\langle \delta_x^{\alpha} \middle| \delta_y^{\beta} \right\rangle_{H'} = k_H((x, \alpha), (y, \beta))$

 $\mu_X \in H'$,

$$\mu_X(\omega) = \int_X \, \boldsymbol{\delta}_x^{\boldsymbol{\alpha}}(\omega) dvol^X(x)$$

Building metrics to compare shapes

$$\omega \in W = C_0\left(\left(\mathbb{R}^d \times \mathbb{S}^{d-1}\right), \mathbb{R}\right), d = 2,3$$
$$\|\mu_X\|_{W'}^2 = \int_X \int_X k_W((x, \alpha), (y, \beta)) dvol^X(x) dvol^X(x)$$

 $\forall (x, y) \in X \times X, \forall (\alpha, \beta) \in S^{\{d-1\}} \times S^{\{d-1\}}:$

- $\langle k_W((x,\alpha),.)|k_W((y,\beta),.)\rangle_W = k_H(x,y).\langle\beta|\alpha\rangle^2$ - $\langle k_W((x,\alpha),.)|k_W((y,\beta),.)\rangle_W = k_H(x,y).e^{-\frac{\langle\beta|\alpha\rangle^2}{\sigma^2}}$

In practice, X is a rectifiable subset of \mathbb{R}^d And we are interested in kernel invariant to rotations and translations.

We take
$$k_H(x, y) = \tilde{k}_H(|x - y|_{\mathbb{R}^d})$$
, for example $e^{-\frac{||x - y||^2}{s^2}}$

N.B : If $k_H RK$ of H and $k_{\widehat{H}} RK$ of \widehat{H} , then $k_H \times k_{\widehat{H}} RK$ of $H \times \widehat{H} = W$

Varifolds

Oriented Varifolds

Current

Unor varifold

Toward real world applications

The data attachment term in the space of Varifolds :

 $A(S,T) = \|\mu_S - \mu_T\|_{W'}^2 = \|\mu_S\|_{W'}^2 - 2 \cdot \langle \mu_S | \mu_T \rangle + \|\mu_T\|_{W'}^2$

Registration of a trimmed source (blue) onto a richer target (red).

Toward real world applications

The data attachment term in the space of Varifolds :

 $A(S,T) = \|\mu_S - \mu_T\|_{W'}^2 = \|\mu_S\|_{W'}^2 - 2 \cdot \langle \mu_S | \mu_T \rangle + \|\mu_T\|_{W'}^2$

Registration of a trimmed source (blue) onto a richer target (red).

Partial matching dissimilarity function (first idea)

$$A(S,T) = (\|\mu_S\|_{W'}^2 - \langle \mu_S | \mu_T \rangle)^2$$

$$= \langle \mu_S | \mu_S - \mu_T \rangle^2$$

Step by step : 1st idea

The data attachment term in the LDDMM framework :

 $A(S,T) = \|\mu_S\|_{W'}^2 - 2 \cdot \langle \mu_S | \mu_T \rangle + \|\mu_T\|_{W'}^2$

Partial matching dissimilarity function (first idea) :

 $A(S,T) = (\|\mu_S\|_{W'}^2 - \langle \mu_S |\mu_T \rangle)^2$

$$= \langle \mu_S | \mu_S - \mu_T \rangle^2$$
$$= \left(\int_S \omega_S(\mathbf{x}) - \omega_T(\mathbf{x}) d\mathbf{x} \right)^2$$

With $x \in S \times T_x S$

Registration of a trimmed source (blue) onto a richer target (red)

Step by step : 1st idea

The data attachment term in the LDDMM framework :

 $A(S,T) = \|\mu_S\|_{W'}^2 - 2 \cdot \langle \mu_S | \mu_T \rangle + \|\mu_T\|_{W'}^2$

Partial matching dissimilarity function (first idea) :

 $A(S,T) = (\|\mu_S\|_{W'}^2 - \langle \mu_S |\mu_T \rangle)^2$

$$= \langle \mu_S | \mu_S - \mu_T \rangle^2$$
$$= \left(\int_S \omega_S(\mathbf{x}) - \omega_T(\mathbf{x}) d\mathbf{x} \right)^2$$

With $x \in S \times T_x S$

Registration of a trimmed source (blue) onto a richer target (red)

Localized version : **definition**

Partial matching dissimilarity function (second idea):

$$A_1(S,T) = \int_S g(\omega_S(x) - \omega_T(x)) dx$$

With
$$g : \mathbb{R} \to \mathbb{R}$$

 $x \mapsto \begin{cases} 0 \text{ if } x \leq 0 \\ x^2 \text{ otherwise} \end{cases}$

Registration of a trimmed source (blue) onto a richer target (red)

Localized version : the local mass problem

Partial matching dissimilarity function (second idea):

$$A_1(S,T) = \int_S g(\omega_S(x) - \omega_T(x)) dx$$

With
$$g : \mathbb{R} \to \mathbb{R}$$

 $x \mapsto \begin{cases} 0 \text{ if } x \leq 0 \\ x^2 \text{ otherwise} \end{cases}$

Registration of a trimmed source (blue) onto a richer target (red)

Weighted-Localized version : **definition**

Partial matching dissimilarity function (localized, normalized):

$$\boldsymbol{A_2}(S,T) = \int_S g(\omega_S(\boldsymbol{x}) - \widetilde{\omega}_T(\boldsymbol{x})) d\boldsymbol{x}$$

With :

$$\begin{split} \widetilde{\omega}_{T}(\boldsymbol{x}) &= \int_{T} \min\left(1, \frac{\omega_{S}(\boldsymbol{x})}{\omega_{T}(\boldsymbol{y})}\right) k(\boldsymbol{x}, \boldsymbol{y}) d\boldsymbol{y}, \\ g &: \mathbb{R} \to \mathbb{R} \\ & \mathbf{x} \mapsto \begin{cases} 0 \text{ if } \boldsymbol{x} \leq 0 \\ \boldsymbol{x}^{2} \text{ otherwise} \end{cases} \end{split}$$

S

ωs

Registration of a trimmed source (blue) onto a richer target (red), **Data attachment term A**₂

 ω_T

 $\omega_T - \omega_S''$

Application to Livers Surfaces

Source (CBCT)

Target (CT)

Registration with classic varifolds data attachment

Registration with local, normalized, partial matching

Applications

Application to Vascular Trees

Source : set of arteries manually selected that could be matched to target.

Targets (new subjects)

Registration with classic varifolds data attachment

Registrations with local, normalized,partial matching27

Partial Matching in the Space of Varifolds

Antonsanti, Glaunès, Benseghir, Jugnon, Kaltenmark

Take-home message

LDDMM and Partial Matching ? Possible ! Adapted to different shapes just like varifolds and cie.

To go further ...

We can also include the target into the source... More generic framework ? [Bronstein 2009] Improve the normalization.

Toward real world applications

Registration with classic varifolds data attachment, with the best regularization setting observed.