
Partial Matching in the Space of 
Varifolds

SMAI 2021, June 24th

Pierre-Louis Antonsanti (GE Healthcare, MAP5)

Joint work with :

Joan Glaunès, Irène Kaltenmark (MAP5, Université de Paris) 

Thomas Benseghir and Vincent Jugnon (GE Healthcare)



Partial Matching in Medical Images 

Context
CBCT CT

Volume

Segmented 
liver

2

Livers Surfaces



Partial Matching in Medical Images 

Context
CBCT CT

Volume

Segmented 
liver

3

Livers Surfaces

[Bashiri 2019]

Cerebral MRI



Partial Matching in Medical Images 

Context
CBCT CT

Volume

Segmented 
liver

4

Livers Surfaces

[Bashiri 2019]

Cerebral MRI

Pelvic Arterial Trees



Partial Matching in Medical Images 

Context
CBCT CT

Volume

Segmented 
liver

5

Livers Surfaces

[Bashiri 2019]

Cerebral MRI

Pelvic Arterial Trees

Retinal Nerve Fiber Layer [Lee 2017]



Outline

• The Shape Space
• Large Diffeomorphic Deformation Metric Mapping

• Data fidelity metrics
• Overview

• Building Metrics to Compare Shapes

• Partial Matching
• First Idea

• Localized Partial Matching

• Localized and Normalized Partial Matching

• Applications 

6



See the shapes through the deformations between them [Grenander, Miller, Trouvé, Younes, Beg, …, Arguillère]

The Shape Space
The Large Deformations Diffeomorphic Metric Mapping (LDDMM)

Distance between shapes through actions 
of deformations : 

𝑑𝑆 𝑆0 , 𝑆2 = 𝑖𝑛𝑓 𝑑𝐺 𝑖𝑑, 𝑔′ | 𝑔′. S0 = S2

𝑑𝑆 𝑆0 , 𝑆2 = 𝐸 𝑆0 , 𝑆2
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Data attachment term:
Being robust to noise, non-
diffeomorphic changes…
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Data attachment term:
Being robust to noise, non-
diffeomorphic changes…

Inexact Registration Framework:
Minimize the energy

𝐸 𝑆0 , 𝑆2 + A(g’(S0), S2)



Data fidelity metrics
How to compare shapes ? 

What we expect :
- Adapted to large type of data (landmarks, images, curves or surfaces) 
- Independent to parametrization
- No need to compute points correspondences 

Currents [Glaunès 2005]
Varifolds [Charon 2013]
Oriented Varifolds [Kaltenmark 2017]

Some other metrics : 
Normal Cycles [Roussillon 2017]
Optimal Transport as Data Term [Feydy 2017]
Square Root Velocity Functions [Srivastava 2012]

Landmarks

Surfaces

Curves
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Data fidelity metrics
How can two shapes “see” each others ?
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Riesz representation theorem             Aronzajn Theorem 

Definition
Let (H, . 𝐻) be a Hilbert space of functions from a set X onto an euclidean space 𝐸 of finite dimension.
H is a RKHS if ∀ 𝑥, 𝛼 ∈ 𝑋 × 𝐸 the evaluation functions 𝛿𝑥

𝛼: 𝜔 ↦ 𝜔 𝑥 𝛼 are continuous linear forms on H.

Data fidelity metrics
Reproducing Kernel Hilbert Spaces (RKHS) 
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• Isometry between H and H’
• To a RKHS H corresponds a unique RK 𝒌𝑯

• ∀ 𝑥, 𝑦 ∈ 𝑋 × 𝑋, ∀ 𝛼, 𝛽 ∈ 𝐸 × 𝐸:   𝜹𝒙
𝜶 𝜹𝒚
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𝑯
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In practice,  X is a rectifiable subset of ℝ𝑑

And we are interested in kernel invariant to rotations and translations. 

We take 𝑘𝐻 𝑥, 𝑦 = ෨𝑘𝐻 𝑥 − 𝑦 ℝ𝑑 , for example 𝑒
−

𝑥−𝑦 2

𝑠2 .

∀ 𝑥, 𝑦 ∈ 𝑋 × 𝑋, ∀ 𝛼, 𝛽 ∈ 𝑆 𝑑−1 × 𝑆 𝑑−1 :   

- 𝑘𝑊 (𝑥, 𝛼), . 𝑘𝑊 (𝑦, 𝛽), . 𝑊 = 𝑘𝐻 𝑥, 𝑦 . 𝛽 𝛼 2 Varifolds

- 𝑘𝑊 (𝑥, 𝛼), . 𝑘𝑊 (𝑦, 𝛽), . 𝑊 = 𝑘𝐻 𝑥, 𝑦 . 𝑒
−
𝛽 𝛼

2

𝜎2 Oriented Varifolds

N.B : 
If kH RK of H and 𝑘෡𝐻 RK of ෡𝐻 , then kH × 𝑘෡𝐻 RK of 𝐻 × ෡𝐻 = 𝑊

Data fidelity metrics
Building metrics to compare shapes 
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𝜇𝑋 𝑊′
2 = න

𝑋

න
𝑋

𝑘𝑊 𝑥, 𝛼 , 𝑦, 𝛽 𝑑𝑣𝑜𝑙𝑋(𝑥)𝑑𝑣𝑜𝑙𝑋(𝑥)

𝜔 ∈ 𝑊 = 𝐶0 ℝ𝑑 × 𝕊𝑑−1 , ℝ , 𝑑 = 2,3



The data attachment term in the space of Varifolds :

𝐴 𝑆, 𝑇 = 𝜇𝑆 − 𝜇𝑇 𝑊′
2 = 𝜇𝑆 𝑊′

2 − 2. 𝜇𝑆 𝜇𝑇 + 𝜇𝑇 𝑊′
2

Registration of a trimmed source (blue) onto a richer target (red).

Toward real world applications

Partial Matching

19

𝜔𝑆

S

𝜔𝑇

"𝜔𝑇 − 𝜔𝑆"

T



The data attachment term in the space of Varifolds :

𝐴 𝑆, 𝑇 = 𝜇𝑆 − 𝜇𝑇 𝑊′
2 = 𝜇𝑆 𝑊′

2 − 2. 𝜇𝑆 𝜇𝑇 + 𝜇𝑇 𝑊′
2

Registration of a trimmed source (blue) onto a richer target (red).

Toward real world applications

Partial Matching

20

𝜔𝑆

S

𝜔𝑇

"𝜔𝑇 − 𝜔𝑆"

T

Partial matching dissimilarity function (first idea) :

𝐴 𝑆, 𝑇 = 𝜇𝑆 𝑊′
2 − 𝜇𝑆 𝜇𝑇

2

= 𝜇𝑆 𝜇𝑆 − 𝜇𝑇
2



Partial Matching
Step by step : 1st idea

The data attachment term in the LDDMM framework :

𝐴 𝑆, 𝑇 = 𝜇𝑆 𝑊′
2 − 2. 𝜇𝑆 𝜇𝑇 + 𝜇𝑇 𝑊′

2

Registration of a trimmed source (blue) onto a richer target (red)

= න
𝑆

𝜔𝑆 𝒙 − 𝜔𝑇 𝒙 𝑑𝑥

2

Partial matching dissimilarity function (first idea) :

𝐴 𝑆, 𝑇 = 𝜇𝑆 𝑊′
2 − 𝜇𝑆 𝜇𝑇

2

= 𝜇𝑆 𝜇𝑆 − 𝜇𝑇
2

With 𝒙 ∈ 𝑆 × 𝑻𝑥𝑆
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Localized version : definition

Registration of a trimmed source (blue) onto a richer target (red)

Partial matching dissimilarity function (second idea):

𝑨𝟏 𝑆, 𝑇 = න
𝑆

𝑔 𝜔𝑆 𝒙 − 𝜔𝑇 𝒙 𝑑𝑥

With 𝑔 ∶ ℝ → ℝ

x ↦ ቊ
0 𝑖𝑓 𝑥 ≤ 0

𝑥2 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Partial Matching
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Localized version : the local mass problem

Registration of a trimmed source (blue) onto a richer target (red)

Partial Matching

Partial matching dissimilarity function (second idea):

𝑨𝟏 𝑆, 𝑇 = න
𝑆

𝑔 𝜔𝑆 𝒙 − 𝜔𝑇 𝒙 𝑑𝑥

With 𝑔 ∶ ℝ → ℝ

x ↦ ቊ
0 𝑖𝑓 𝑥 ≤ 0

𝑥2 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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Registration of a trimmed source (blue) onto a richer target (red),
Data attachment term A2

𝑔 ∶ ℝ → ℝ

x ↦ ቊ
0 𝑖𝑓 𝑥 ≤ 0

𝑥2 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Weighted-Localized version : definition

Partial Matching

Partial matching dissimilarity function (localized, 
normalized):

𝑨𝟐 𝑆, 𝑇 = න
𝑆

𝑔 𝜔𝑆 𝒙 − ෥𝜔𝑇 𝒙 𝑑𝑥

With :

෥𝜔𝑇 𝒙 = 𝑇׬ min 1,
𝜔𝑆 𝒙

𝜔𝑇 𝒚
𝑘(𝒙, 𝒚)𝑑𝑦 ,
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Application to Livers Surfaces

Source (CBCT) Target (CT) Registration with local, normalized, 
partial matching

Partial Matching

Registration with classic varifolds 
data attachment
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Application to Vascular Trees

Targets (new subjects) Registrations with local, normalized, 
partial matching

Applications
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Source : set of arteries manually 
selected that could be matched to 
target.

Registration with classic varifolds 
data attachment



Antonsanti, Glaunès, Benseghir, Jugnon, Kaltenmark

Partial Matching in the Space of Varifolds

Take-home message
LDDMM and Partial Matching ? Possible !
Adapted to different shapes just like varifolds and cie.

To go further …
We can also include the target into the source…
More generic framework ? [Bronstein 2009] 
Improve the normalization.

28Contact : pierrelouis.antonsanti@ge.com



Toward real world applications

Partial Matching
𝜔𝑆

S

𝜔𝑇

"𝜔𝑇 − 𝜔𝑆"

T

Registration with classic varifolds data attachment, with the best 
regularization setting observed.


