Identification de régulateurs systémiques de 'horloge
périphérique circadienne par apprentissage de modeles
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@ This master clock entrains the peripheral clocks in the cells via physiological signals
@ The peripheral clock induces oscillations in key intracellular processes
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The circadian timing system
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* Different diet / meal hours
* Work / Jetlag
* ...

@ A master clock acting as an autonomous = 24h-oscillator synchronised by external cues

@ This master clock entrains the peripheral clocks in the cells via physiological signals

@ The peripheral clock induces oscillations in key intracellular processes



Clock-induced oscillations in intracellular processes are individual

Repercussions e.g. cancer chronotherapy at the individual level

— Precision medicine, but with what data?
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Infer the links between measurable variables and the peripheral clock



Clock-induced oscillations in intracellular processes are individual

Repercussions e.g. cancer chronotherapy at the individual level

— Precision medicine, but with what data?

Focus on mice: data available both at the
systemic and cellular level




Mouse class systemic regulators data
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Mouse class gene expression data

Gene expression (nmol/L)
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A new model of the cellular circadian clock
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A new model of the cellular circadian clock
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A new model of the cellular circadian clock
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Incorporating systemic regulators action on gene expression

Hypothesis: Multiplicative control of systemic regulators z on gene transcription

dxvivo |
dt = f(Z)VmaXTranSC(M, ‘)/) — awio




Incorporating systemic regulators action on gene expression

Hypothesis: Multiplicative control of systemic regulators z on gene transcription

dxvivo |
dt = f(Z)VmaXTranSC(M, ‘)/) — awio
dxvivo N axviyg
dt
L=t e
/@ Transc(M, y)

Data for x = Bmall, Per2 and Rev-Erba
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Systemic regulators identification as a regression problem

| | > Mouse class dataz x

Axviw(ti)
At
Transc(M, y)

+ ax’o(t;)

e f(z(t)) = =y(t)

17 Residuals

Learn f using the samples {(z(ti),y(ti)) ,i={1,..,N —1}}

Explicit form | T_ Systemic Regulators

(unknown)

Learning f usually boils down to solve

N-1 . 2
argmin D (y(fi) _f(z(ti)))
fes i=1

For this study, .7 will be the space of linear functions.



Computing residuals y: acquisition of clock parameters and protein levels
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Clock model fit on in vitro hepatocytes data
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Multiple &,y and M(t) = multiple residual trajectories y(t) for each gene / mouse class.
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Linear regression
For each residual y, a linear model Z Bjz; is fitted
j

@ The active regulators of the fitted model should be the same classwise.

e Different weights  for a regulator from one class to another are allowed
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Linear regression
For each residual y, a linear model Z Bjz; is fitted
j

@ The active regulators of the fitted model should be the same classwise.
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Need to account for the delay introduced by moving in different compartments

= Integral regulators Z;(t) = [ z;(s)ds are added: z < (z,Z)

T 0

Aregulator z; and its integral Z; are never found together in a model for all j
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Linear regression
For each residual y, a linear model E Bjz; is fitted
j

@ The active regulators of the fitted model should be the same classwise.

e Different weights  for a regulator from one class to another are allowed
Need to account for the delay introduced by moving in different compartments

= Integral regulators Z;(t) = [ z;(s)ds are added: z < (z,Z)

T 0

Aregulator z; and its integral Z; are never found together in a model for all j

0.8 Food Intake (Class 1) 0.7 Food Intake (Class 2)
+ 0.4 fMelatonin +0.2 f Melatonin



Total error as a function of the number of involved regulators
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Total error as a function of the number of involved regulators

Control on gene transcription
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2-term models ranking
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Classwise weights analysis for best 2-term models
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Conclusion & Perspectives

Under all hypotheses:
@ Food Intake / T°c main actors for transcription control: consistent with literature

@ Linear control of studied systemic regulators on gene mRNA degradation unlikely
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@ Handle large number of variables within the sparse multi-task regression framework



Conclusion & Perspectives

Under all hypotheses:
@ Food Intake / T°c main actors for transcription control: consistent with literature

@ Linear control of studied systemic regulators on gene mRNA degradation unlikely

Model learning approach:
@ Integration of data at systemic and cellular level

@ Knowledge encompassed in model, mechanistic predictions on unknown parts

@ Handle large number of variables within the sparse multi-task regression framework

What's next:
@ Integration of best regulator models back in the ODEs

@ Validation on human data



Want to know more? Paper to appear in Bioinformatics (ECCB21 Proceedings)
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