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A multi-scale diffusion problem

Ω ⊂ Rd a bounded polygon.

Aε : Ω→ Rd×d bounded and uniformly elliptic.

Source term f ∈ L2(Ω).

Search uε ∈ H1
0 (Ω) solution to the BVP

(1)

{
−div(Aε∇uε) = f , in Ω,

uε = 0, on ∂Ω,

The parameter ε represents one or multiple small

scales (� diam(Ω)) in the model.

For example, Aε might be a rescaling of some (peri-

odic) matrix, i.e., Aε(x) = A(per)(x/ε).

Conduction/flow in

heterogeneous media,

composite materials,

porous media
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Finite element approximation

The PDE (1) admits an equivalent variational formulation:

Find uε ∈ H1
0 (Ω) such that

∀ v ∈ H1
0 (Ω), aε(uε, v) = F (v),

where

aε(u, v) =

∫
Ω

(∇v)>Aε∇u, F (v) =

∫
Ω

fv .

Galerkin approximation on VH ⊂ H1
0 (Ω):

Find uεH ∈ VH such that

∀ v ∈ VH , aε(uεH , v) = F (v),

We use the P1 FE method on a mesh TH :

VH = span{φP1

i }.
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The FEM & multi-scale problems

Consider the example Aε(x) =

{
1 if bx/εc is even

10 if bx/εc is odd
and f (x) = Cx3

for a mesh of size H = 2ε.
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The P1 FEM fails to even capture the macroscopic properties of the

solution because the micro-structure is not adequately dealt with – the

mesh is too coarse.
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FEM on a coarse mesh: MsFEM

On a mesh TH of size H < ε, the FEM becomes prohibitively expensive.

The multi-scale finite element method (Hou and Wu 1997; Efendiev and

Hou 2009) consists of

• Offline stage – multi-scale basis functions φεi adapted to Aε:

(2)

{
−div(Aε∇φεi ) = 0, in K ,

φεi = φP1

i , on ∂K
for each mesh element K ∈ TH .

• Online stage – solve the Galerkin approximation

Find uεH ∈ V ε
H such that ∀ v ∈ V ε

H , aε(uεH , v) = F (v),

where

(3) V ε
H = span{φεi }.

The number of degrees of freedom in the online stage is the same as for

a P1 method on a coarse mesh.
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Advection-dominated problems

Now consider, for some b ∈ Rd the BVP

(4)

{
−div(Aε∇uε)+b · ∇uε = f , in Ω,

uε = 0, on ∂Ω,

When |b| is large with respect to Aε, boundary layers appear in uε. If

|b|H
2 minAε

> 1,

even for Aε = const. = 5e−3, the P1 FEM fails (b = (1, 0)>, f = 1):

P1 solution, Pe = 0.5 (H = 0.01)
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Variational formulation

The PDE (4) again admits an equivalent variational formulation:

Find uε ∈ H1
0 (Ω) such that

∀ v ∈ H1
0 (Ω), aε(uε, v) = F (v),

where, from now on, we use

aε(u, v) =

∫
Ω

(∇v)>Aε∇u + vb · ∇u, F (v) =

∫
Ω

fv .
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Stabilization

Several stabilization approaches for non-multi-scale problems have been

proposed:

• SUPG: Streamline-Upwind/Petrov-Galerkin method (Brooks and

Hughes 1982);

• Other strongly consistent and/or Petrov-Galerkin methods (Mizukami

and Hughes 1985; Hughes, Franca, and Hulbert 1985);

• Adding bubble functions (Baiocchi and Brezzi 1993).

For the stabilization of multi-scale problems, we can also consider

• Advection-adapted basis functions (Park and Hou 2004);

We also mention LOD-type stabilization (Li, Peterseim, and Schedensack

2017).
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MsFEM-SUPG (Le Bris, Legoll, and Madiot 2017)

The standard SUPG stabilization can be applied to the MsFEM

of (2)-(3):

Find uεH ∈ V ε
H such that ∀ v ∈ V ε

H : aε,SUPGH (uεH , v) = FH(v),

where

aε,SUPGH (u, v) = aε(u, v) +
∑
K∈TH

∫
K

τK (b · ∇u)(b · ∇v),

and

FH(v) = F (v) +
∑
K∈TH

∫
K

f τK b · ∇v .

The choice of the stabilization parameter τK is delicate and often inspired

by a simple 1-dimensional case (John and Knobloch 2007).
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MsFEM-SUPG illustration

0.0 0.2 0.4 0.6 0.8 1.0
x

0

1

2

3

4

5

6

7
u

(x
), 

u H
(x

)
1e 3

Pe = 8.0 
  = 0.03125

MsFEM
MsFEM-SUPG
u (x)

MsFEM-SUPG yields a reasonably accurate solution, but only Outside

the Last Mesh Element (of course). (Aε(x) = 2 + cos (2πx/ε), ε = 2−5)

OLME
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Advection built into the basis functions

In the spirit of the MsFEM, one can alternatively build basis functions

φε,adv
i that solve the PDE (4) locally, including the advection (Park and

Hou 2004; Le Bris, Legoll, and Madiot 2017):{
−div(Aε∇φε,adv

i ) + b · ∇φε,adv
i = 0, in K ,

φε,adv
i = φP1

i , on ∂K ,
for each K ∈ TH .

We call this the adv-MsFEM.
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adv-MsFEM illustration
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The adv-MsFEM is stable, but the influence of the advection b on φε,adv
i

seems too strong when Pe is large. (Aε(x) = 2 + cos (2πx/ε), ε = 2−5) 11



Bubbles

The interpolation error e for adv-MsFEM

e = uε −
∑
i

uε(xi )φ
ε,adv
i

satisfies (in 1D){
−div(Aε∇e) + b · ∇e = f , in K ,

e = 0, on ∂K ,
for each K ∈ TH .

To decrease this error, introduce bubble functions φε,adv,B
K (Biezemans,

PhD thesis, in preparation): for each K ∈ TH ,{
−div(Aε∇φε,adv,B

K ) + b · ∇φε,adv,B
K = 1, in K ,

φε,adv,B
K = 0, on ∂K .

We set V ε,adv,B
H = span{φε,adv

i , φε,adv,B
K }. Then the adv-MsFEM-B reads:

Find uεH ∈ V ε,adv,B
H s.t ∀ v ∈ V ε,adv,B

H : aε(uεH , v) = F (v).
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adv-MsFEM and adv-MsFEM-B
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Remark: Petrov-Galerkin variants of these methods can be used

(exactness at the nodes of the mesh in 1D).
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adv-MsFEM and adv-MsFEM-B
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On the bubbles in adv-MsFEM-B

Let uεH be the adv-MsFEM-B solution. The coefficients βK in

uεH =

Nnodes∑
i=1

αiφ
ε,adv
i +

∑
K∈TH

βKφ
ε,adv,B
K ,

are explicit:

βK =

∫
K
f φε,adv,B

K∫
K
φε,adv,B
K

−→ βK ≈
1

|K |

∫
K

f .
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A less intrusive variant

→ A new variant: we look for uεH as

Nnodes∑
i=1

αiφ
ε,adv
i +

∑
K∈TH

(
1

|K |

∫
K

f

)
φε,adv,B
K , αi ∈ R.

We test against the φP1

i basis functions to find the αi .

• This yields a less intrusive method. We call it MsFEM-nonI-B here.

• When f is constant on each K , this is equivalent to a method with

adjoint residual-free bubbles (Franca and Russo 2000). This method

is exact in 1D.

• Bubble functions come at minimal additional cost in the online

computations;
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Comparison (1D tests)

We only measure errors outside the last mesh element (OLME).

(Relative H1 error)2 =
‖uε−uεH‖

2
L2(OLME)

+‖(uε−uεH )′‖2
L2(OLME)

‖uε‖2
L2([0,1])

+‖(uε)′‖2
L2([0,1])

.

101 102 103 104

Advection coefficient b

10 3

10 2

10 1

100

Re
lat

iv
e H

1  e
rro

r O
LM

E

Pe=1

P1																											

Test case: Aε(x) = 2 + cos (2πx/ε), ε = 2−8, H = 2−6, f (x) = sin (3πx)2. 16
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Conclusion and outlook

• The MsFEM can be stabilized by standard non-multi-scale techniques

to deal with the advection-dominated regime. This yields good results

outside the last mesh element.

• Stabilization can also be achieved by adapting the basis functions

(adv-MsFEM). Bubble functions can be added for improved accuracy.

• The best results are obtained with a novel framework for bubble

functions, which is also less intrusive with minimal extra online cost.

Coming up soon: comparison of the methods for 2D problems.
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FEM vs MsFEM

Example of slide 3, H = 10ε.
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Comparison of the derivatives
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Additional material - adv-MsFEM and Petrov-Galerkin

For the adv-MsFEM, let us also consider test functions ψε,adv
i solving the

adjoint problem locally:

(5)

{
−div(Aε∇ψε,adv

i )− b · ∇ψε,adv
i = 0, in K ,

ψε,adv
i = φP1

i , on ∂K for each K ∈ TH .

Then we can define the following Petrov-Galerkin approximation to (4):

(6) Find uεH ∈ V ε
H s.t. for each ψε,adv

i : aε(uεH , ψ
ε,adv
i ) = F (ψε,adv

i ).

This adv-MsFEM-PG variant

is in dimension 1 exact at

the nodes of the mesh, hence

must be stable.

The adv-MsFEM has the

same stiffness matrix and is

thus also stable.

0.5 1.0 1.5 2.0 2.5 3.0
x

0.0

0.2

0.4

0.6

0.8

1.0

,a
dv

i
(x

)

0.5 1.0 1.5 2.0 2.5 3.0
x

0.0

0.2

0.4

0.6

0.8

1.0

,a
dv

i
(x

)0.0 0.2 0.4 0.6 0.8 1.0
x

0

2

4

6

8

u
(x

), 
u H

(x
)

1e 2

Pe = 16.0 
  = 0.03125

adv-
MsFEM
u (x)

0.0 0.2 0.4 0.6 0.8 1.0
x

0

2

4

6

8

u
(x

), 
u H

(x
)

1e 2

Pe = 16.0 
  = 0.03125

adv-
MsFEM
-PG
u (x)



Additional material - adv-MsFEM and Petrov-Galerkin

For the adv-MsFEM, let us also consider test functions ψε,adv
i solving the

adjoint problem locally:

(5)

{
−div(Aε∇ψε,adv

i )− b · ∇ψε,adv
i = 0, in K ,

ψε,adv
i = φP1

i , on ∂K for each K ∈ TH .

Then we can define the following Petrov-Galerkin approximation to (4):

(6) Find uεH ∈ V ε
H s.t. for each ψε,adv

i : aε(uεH , ψ
ε,adv
i ) = F (ψε,adv

i ).

This adv-MsFEM-PG variant

is in dimension 1 exact at

the nodes of the mesh, hence

must be stable.

The adv-MsFEM has the

same stiffness matrix and is

thus also stable.
0.5 1.0 1.5 2.0 2.5 3.0

x

0.0

0.2

0.4

0.6

0.8

1.0

,a
dv

i
(x

)

0.5 1.0 1.5 2.0 2.5 3.0
x

0.0

0.2

0.4

0.6

0.8

1.0

,a
dv

i
(x

)0.0 0.2 0.4 0.6 0.8 1.0
x

0

2

4

6

8

u
(x

), 
u H

(x
)

1e 2

Pe = 16.0 
  = 0.03125

adv-
MsFEM
u (x)

0.0 0.2 0.4 0.6 0.8 1.0
x

0

2

4

6

8

u
(x

), 
u H

(x
)

1e 2

Pe = 16.0 
  = 0.03125

adv-
MsFEM
-PG
u (x)



Additional material - adv-MsFEM and Petrov-Galerkin

For the adv-MsFEM, let us also consider test functions ψε,adv
i solving the

adjoint problem locally:

(5)

{
−div(Aε∇ψε,adv

i )− b · ∇ψε,adv
i = 0, in K ,

ψε,adv
i = φP1

i , on ∂K for each K ∈ TH .

Then we can define the following Petrov-Galerkin approximation to (4):

(6) Find uεH ∈ V ε
H s.t. for each ψε,adv

i : aε(uεH , ψ
ε,adv
i ) = F (ψε,adv

i ).

This adv-MsFEM-PG variant

is in dimension 1 exact at

the nodes of the mesh, hence

must be stable.

The adv-MsFEM has the

same stiffness matrix and is

thus also stable.

0.5 1.0 1.5 2.0 2.5 3.0
x

0.0

0.2

0.4

0.6

0.8

1.0

,a
dv

i
(x

)

0.5 1.0 1.5 2.0 2.5 3.0
x

0.0

0.2

0.4

0.6

0.8

1.0

,a
dv

i
(x

)

0.0 0.2 0.4 0.6 0.8 1.0
x

0

2

4

6

8

u
(x

), 
u H

(x
)

1e 2

Pe = 16.0 
  = 0.03125

adv-
MsFEM
u (x)

0.0 0.2 0.4 0.6 0.8 1.0
x

0

2

4

6

8

u
(x

), 
u H

(x
)

1e 2

Pe = 16.0 
  = 0.03125

adv-
MsFEM
-PG
u (x)



Additional material - adv-MsFEM and Petrov-Galerkin

For the adv-MsFEM, let us also consider test functions ψε,adv
i solving the

adjoint problem locally:

(5)

{
−div(Aε∇ψε,adv

i )− b · ∇ψε,adv
i = 0, in K ,

ψε,adv
i = φP1

i , on ∂K for each K ∈ TH .

Then we can define the following Petrov-Galerkin approximation to (4):

(6) Find uεH ∈ V ε
H s.t. for each ψε,adv

i : aε(uεH , ψ
ε,adv
i ) = F (ψε,adv

i ).

This adv-MsFEM-PG variant

is in dimension 1 exact at

the nodes of the mesh, hence

must be stable.

The adv-MsFEM has the

same stiffness matrix and is

thus also stable.

0.5 1.0 1.5 2.0 2.5 3.0
x

0.0

0.2

0.4

0.6

0.8

1.0

,a
dv

i
(x

)

0.5 1.0 1.5 2.0 2.5 3.0
x

0.0

0.2

0.4

0.6

0.8

1.0

,a
dv

i
(x

)0.0 0.2 0.4 0.6 0.8 1.0
x

0

2

4

6

8

u
(x

), 
u H

(x
)

1e 2

Pe = 16.0 
  = 0.03125

adv-
MsFEM
u (x)

0.0 0.2 0.4 0.6 0.8 1.0
x

0

2

4

6

8

u
(x

), 
u H

(x
)

1e 2

Pe = 16.0 
  = 0.03125

adv-
MsFEM
-PG
u (x)



Additional material - adv-MsFEM and Petrov-Galerkin

For the adv-MsFEM, let us also consider test functions ψε,adv
i solving the

adjoint problem locally:

(5)

{
−div(Aε∇ψε,adv

i )− b · ∇ψε,adv
i = 0, in K ,

ψε,adv
i = φP1

i , on ∂K for each K ∈ TH .

Then we can define the following Petrov-Galerkin approximation to (4):

(6) Find uεH ∈ V ε
H s.t. for each ψε,adv

i : aε(uεH , ψ
ε,adv
i ) = F (ψε,adv

i ).

This adv-MsFEM-PG variant

is in dimension 1 exact at

the nodes of the mesh, hence

must be stable.

The adv-MsFEM has the

same stiffness matrix and is

thus also stable.
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Errors on the entire domain

Test case: Aε(x) = 2 + cos (2πx/ε), ε = 2−8, H = 2−6, f (x) = sin (3πx)2.
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