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A multi-scale diffusion problem

Q c R9 a bounded polygon.
A Q — R¥*9 pbounded and uniformly elliptic.
Source term f € L2(Q).

Search u¢ € H}(Q) solution to the BVP

O {—div(Afvm) =f inQ,
u¢ =0, ondQ,
The parameter € represents one or multiple small Conduction /flow in
scales (« diam(Q2)) in the model. heterogeneous media,
composite materials,
For example, A° might be a rescaling of some (peri- porous media

odic) matrix, i.e., A%(x) = A(per)(X/€).



Finite element approximation

The PDE (1) admits an equivalent variational formulation:
Find u¢ € H}(2) such that
Vve HI (), a(uf,v)=F(v),

where

a“(u, v)=/Q(vv)TA€vu, F(V)Z/va.

Galerkin approximation on Vi C H}(9):

_ M H=0125

Find u,e_, € Vy such that 12 — i
Vve Vy, a“(uy,v)=F(v), 3;:
So
We use the ’; FE method on a mesh Ty: =06
Vy = span{qSE-Pl}. 04
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The FEM & multi-scale problems

) 1 if |[x/e] is even
Consider the example A¢(x) = and f(x) = Cx3
10 if [x/e] is odd

for a mesh of size H = 2e.

1.5F ~ .
_ N —— [P, solution
e=0.01 —— Exact solution
=~ | | H=002
),

10}
=
~
‘\R/ 0.5F
5 O

0'8.0 0.2 0.4 0.6 0.8 1.0

X

The IP; FEM fails to even capture the macroscopic properties of the
solution because the micro-structure is not adequately dealt with — the
mesh is too coarse.



FEM on a coarse mesh: MsFEM

On a mesh Ty of size H < ¢, the FEM becomes prohibitively expensive.

The multi-scale finite element method (Hou and Wu 1997; Efendiev and
Hou 2009) consists of

o Offline stage — multi-scale basis functions ¢¢ adapted to A%

) —div(A°V¢) = 0, in K,
¢S = ¢, on OK

i

for each mesh element K € Ty.

e Online stage — solve the Galerkin approximation
Find uf; € Vj;  such that Vve Vy, a“(ugy,v)=F(v),
where
(3) Vi = span{¢$}.

The number of degrees of freedom in the online stage is the same as for
a IP; method on a coarse mesh.



Advection-dominated problems

Now consider, for some b € RY the BVP

{—div(AEVu5)+b-Vu€ =f, inQ

4
“) u¢ =0, on0Q,

When |b] is large with respect to A¢, boundary layers appear in u€. If
v |blH
Pe 2 min A¢ ’
even for A° = const. = 5e~3, the P; FEM fails (b= (1,0)", f = 1):

IP; solution, Pe = 0.5 (H = 0.01) [Py solution, Pe =5(H = 0.1)




Variational formulation

The PDE (4) again admits an equivalent variational formulation:

Find u¢ € H}(Q2) such that
Vve HI (), a(uf,v)=F(v),

where, from now on, we use

a“(u, v):/Q(Vv)TAGVufvb-Tu, F(v):/ﬂfv.



Stabilization

Several stabilization approaches for non-multi-scale problems have been
proposed:

e SUPG: Streamline-Upwind/Petrov-Galerkin method (Brooks and
Hughes 1982);

e Other strongly consistent and/or Petrov-Galerkin methods (Mizukami
and Hughes 1985; Hughes, Franca, and Hulbert 1985);

e Adding bubble functions (Baiocchi and Brezzi 1993).
For the stabilization of multi-scale problems, we can also consider

e Advection-adapted basis functions (Park and Hou 2004);

We also mention LOD-type stabilization (Li, Peterseim, and Schedensack
2017).



MsFEM-SUPG (Le Bris, Legoll, and Madiot 2017)

The standard SUPG stabilization can be applied to the MsFEM

of (2)-(3):
Find uf, € Vj such that Vv e V. a5 " (ufy, v) = Fu(v),
where
a5 (0, v) = a(u, v) Z / (b-Vu)(b-Vv),
KeTu
and

FH Z/ /Kb V.
=TH

The choice of the stabilization parameter 7 is delicate and often inspired
by a simple 1-dimensional case (John and Knobloch 2007).
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MsFEM-SUPG vyields a reasonably accurate solution, but only Outside

27%)

the Last Mesh Element (of course). (A°(x) = 2 + cos (2mx/¢), ¢



Advection the basis functions

In the spirit of the MsFEM, one can alternatively build basis functions
¢ that solve the PDE (4) locally, including the advection (Park and
Hou 2004; Le Bris, Legoll, and Madiot 2017):

qf’ad" _ P on 9K for each K € Th.

1

{—div(A€quf’ad") +b-Ve* N =0, inK,

We call this the adv-MsFEM.

&, adv ( X)
(=]
[=)}

ob;
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adv-MsFEM illustration

le—2
Pe =16.0 ;/?VI;EM
81 | £=0.03125 ;
u®(x)
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The adv-MsFEM is stable, but the influence of the advection b on ¢°*

seems too strong when Pe is large. (A°(x) = 2 + cos (27x/¢), € = 27°) 1



Bubbles

The interpolation error e for adv-MsFEM
e=u— Z ue(x,-)gbf’adv

satisfies (in 1D)
{div(AfVe) +b-Ve=f,inK,

for each K € Th.
e =0, on 9K,
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Bubbles

The interpolation error e for adv-MsFEM
e=u— Z uﬁ(x,-)gbf’adv

satisfies (in 1D)
{div(AfVe) +b-Ve=f,inK,

for each K € Th.
e =0, on 9K,

To decrease this error, introduce bubble functions ¢;’ad"’B (Biezemans,
PhD thesis, in preparation): for each K € Ty,
~div(A° V2 P) + b V2P =1, in K,
{ g/);’adv"B =0, on OK.
We set V28 = span{p°?, ¢°"BY. Then the adv-MsFEM-B reads:

Find uj, « V2" st v e VP 1 af(uf, v) = F(v).
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adv-MsFEM and adv-MsFEM-B

le—2
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adv-MsFEM and adv-MsFEM-B
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Remark: Petrov-Galerkin variants of these methods can be used

(exactness at the nodes of the mesh in 1D).

13



On the bubbles in adv-MsFEM-B

Let uf, be the adv-MsFEM-B solution. The coefficients Sk in

Nnodes
€,adv ¢,adv,B
Uf—/:E Oéid’,' JFE 6K¢K y
i=1 KeTu

are explicit:
€,adv,B
_ Sk fok

1
5K—ﬁ H[?JKzf/ﬁ
fKQSK’adB Kl Jk
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A less intrusive variant

— A new variant: we look for uj; as

Nnodes

1
E ;¢ + E <|K|/f> @B e R
i=1 KeTh K

We test against the ¢ basis functions to find the «;.

e This yields a less intrusive method. We call it MsFEM-nonI-B here.

e When f is constant on each K, this is equivalent to a method with
adjoint residual-free bubbles (Franca and Russo 2000). This method
is exact in 1D.

e Bubble functions come at minimal additional cost in the online
computations;

15



Comparison (1D tests)

We only measure errors outside the last mesh element (OLME).

€ €112 € €N/ 12
(Relative H1 error)2 = e 7uH“L2(OLME)+H(u il ”LZ(OLME)
- €2 € 2 .
Mo 125 ) 1 T2
100 o~

S0 i

Relative H'! error OLME
s

10—3 L

Pe=1

107 107

107

Advection coefficient b

10*

Test case: A°(x) =2+ cos (2nx/€), e =275, H =27 f(x) = sin (37x)°. 16
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Conclusion and outlook

e The MsFEM can be stabilized by standard non-multi-scale techniques
to deal with the advection-dominated regime. This yields good results

outside the last mesh element.

e Stabilization can also be achieved by adapting the basis functions
(adv-MsFEM). Bubble functions can be added for improved accuracy.

e The best results are obtained with a novel framework for bubble
functions, which is also less intrusive with minimal extra online cost.

Coming up soon: comparison of the methods for 2D problems.
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FEM vs MsFEM

Example of slide 3, H = 10e.

L5t N —— [Py solution
A —— Exact solution

= —— MSFEM solution
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Comparison of the derivatives

et MsFEM-SUPG:
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Additional material - adv-MsFEM and Petrov-Galerkin

€,adv
i

For the adv-MsFEM, let us also consider test functions 1) solving the

adjoint problem locally:
(5) {—div(AGVz/Jf’adV) —b- VYN =0, inK,

PP = 91 on OK for each K € Tjy.
Then we can define the following Petrov-Galerkin approximation to (4):

(6)  Find uf, € V§ s.t. for each 00+ a®(ufy, °%) = F(1p2°Y).
This adv-MsFEM-PG variant

is in dimension 1 exact at

the nodes of the mesh, hence

must be stable.

The adv-MsFEM has the

same stiffness matrix and is

thus also stable.
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Additional material - adv-MsFEM and Petrov-Galerkin

€,adv

For the adv-MsFEM, let us also consider test functions ; solving the
adjoint problem locally:
le=2
(5) Pe =16.0 — ;‘:VI;EM
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Errors on the entire domain

Test case: A°(x) =2+ cos (2nx/€), e =278, H=27° f(x) = sin (37x)°.
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