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The continuous problem

We want to give numerical approximate solutions of the strip problem

L(O)u = Oru + 27:1 Ajdju=f for (t,x) €0, T] x R~ x10,1] := Qr,

Boujx,—0 = 80 on [0, T] x RI™1 = 9oQ 7,
Biujy=1= &1 on [0, T] x R := a1 Qr,
Uje—o = Ug on R~ x]0,1[:=T.

(1)
Where L(0) is constantly hyperbolic with respect to the direction t. The
Aj € My n(R) so that (1) is a system of PDE. det Ag # 0, A; = AjT.

Classical framework of wave propagation phenomena, waves, Maxwell,
linearisation of Euler...

The generic boundary matrices By € M,xn(R), B € M(y_,)xn(RR) encode the
good number of boundary conditions.



Motivations

o Transparent/absorbent boundary conditions for the implementation of

the Cauchy problem.

4

Rd

@ The corner problem is too difficult. Not a lot of progress since [Osher '73].
We keep the difficulty of two boundary conditions but simpler geometry.



|
Well-posedness of the continuous problem

Definition (Well-posedness)

For all sources f € L2(Q7), go € L3(0027), &1 € L2(8:1Q7), up = 0 there exists a
unique solution u € L2(Q7) of (1) with traces in L2(9Q7) satisfying : 370 > 0
such that Vv > 7y we have

VHUHfg(QT) + ||U|xd:0||%g(aonr) + ||U\xd:1||fz,(alm) (2)
1 2 2 2
N ;”fHL%Y(QT) + llgollzz (apnr) + HngLg(alQT)-
Orifu #0, VT >0
9727T||U(Ta')||%2(r)+7||u||%g,(§zr) + \|U|Xd:0||%g(aoQT) + ||U|Xd:1|\%g(alnr) (3)
1
S ;Hf”%g(szr) + ||g0||ig(aom) + ||g1||%g(alnT) + [luoll 2y

where

Il = lle™ - [l
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Well-posedness of the continuous problem, result 1

Remarks :
o Straightforward generalization of the concept of well-posedness in the
half-space [Kreiss '70].

@ Because possibly 7o > 0, possible exponential growth with t ruled by e™*,

In the half-space 79 = 0 sharp well-posedness=lower exponential growth
in time.

Aim : Characterize the boundary matrices By, B such that the problem is
sharply (or not) well-posed.

Proposition

If By (resp. By) is such that the problem in the half-space {x; > 0} (resp.

{xq4 < 1} is sharply well-posed then the strip problem (1) is well-posed with
Yo > 0.

Proof : Localisation one interior problem + 2 boundary problems. Triangle
inequality.



Well-posedness of the continuous problem, result 2

Previous result clearly not sharp. Does the growth really appear ?

Theorem (B. '20)

Under structural assumptions, the strip problem (1) is sharply well-posed " if and
only if’ some matrices reading under the form | — T are uniformly invertible.

T depend explicitly on the A;, By, B;.

T is a trace operator that to a trace uj,,—q associates the trace obtained
after the free evolution to the right and then reflected back to the left.

Exponential growth ruled by €7 can effectively appear because of trapped
rays [B. '20].

For the continuous problem the solutions with exponential growth in
time are characterized.

However condition difficult to check effectively.



|
Discrete approximation

Approximation by finite difference schemes of

Oru+ Adyu=F for (t,x) € [0, T] x ]0, 1],
Boujx—o = &0 on [0, T],
Biup=1 = g1 on [0, T],
Ujt—o = Up on ]0,1].

For the half-line characterization of stable schemes [GKS '72].

d > 1 widely open question even for x4 > 0 [Michelson '83]

Interval : little results in the literature [GKS '72] and [Trefethen '85] but for
particular schemes and particular boundary conditions.

@ Aim : characterize the stability for the most generic class of
scheme/boundary conditions possible.



The associated scheme | : the interior

Consider (x;j) j € [0, K] a regular subdivision of [0, 1] and the approximation
scheme in the interior

UMt 4+ QU = AtF* for n> 0, j € [1, K], ()
UJQ:uJQ, forjel—4,K+r],

where for (T;U); := Uj;1 the right shift operator

= ) ATE A € Mpyyn(R).

p=—1

One step in time , (£ + r) in space (6 on the "left” , r on the "right”).
o Lax-Friedrichs A=t = —1(/ + )\A) =0, Al = —1(I — MA)
o Lax-Wendroff A=1 = 22(1 — MA), A° = —/ + X242, Al = —24(] + \A)



The associated scheme |l : the boundary conditions

Need artificial boundary conditions to determine the U, ,
JEM—-CO0JU[K+1,K+r].

Let
UMt + BosUp = G¢fY n>0, j € [1-4£,0], (5)
UMt Bl UR = GIY n>0,j € [K+ 1K +1],

where with (T,U), := UL

0 by 0 0
,._E:E:muou _E:E: T T O TH
BO7J = BO,j TnTJ and BLJ = Bl,j TnTJ .
o=—1pu=0 o=—1pu=—b;

bg steps for the left boundary, b; for the right.

e WY



[llustration

(=3, r=2and by = 1.

na




A main difference between the continuous and the discrete setting is that the
continuous boundary conditions prescribe p (or N — p) components of the
trace(s). Whereas the discrete scheme prescribes the N components.

Need extra boundary conditions which are not given by the physics of the
continuous problem. Arbitrary choices.



|
Definition of the stability

Definition (Strong stability)
Let v > o the scheme (4)-(5) is said to be strongly stable if for all source terms
° u = 0 strong/sharp (7 = 0) stability

K+ K+
CEDID BT DD SUSLTIED O DSl
n>1j=1—2 n>1,1£ n>1j=K—¢
K+
SIS S e Y Y G Y 3 e
n>1 j=1 n>1j=1-¢ n>1j=K+1

° u # 0 semigroup stability. Same estimate with sup, e=27" ZK+r |U"|2
the LHS and /4", |u?[2 in the RHS

Just discrete versions of the energy estimates in the continuous setting.



|
Discrete problem in a nutshell

We consider the finite difference scheme approximation in the half-line [0, oo

UPtt 4+ QUI = AtFMT n>0, > 1,
Ut + BiUp =GP n>0,j € [1-¢,0], ©)
o =0, jel—t oo

We perform a discrete Laplace transform by setting for z € C\ {0}, U = z"V,.
So (6) becomes (at the formal level):

Vi+1Qvi=F Jellol,
V+1iBvi=G je[l-¢0],

and can be rewritten in terms of the augmented vector % := (Vjj,—1, ..., Vj_)
under the purely resolvent form

{"f =M(2)% +.7 je[1,0], @

B(z)%i =9, jelt-¢.0],



where
,(A,)(z)*lA,_l(z) (Ar)(z)*lAe(z)

/ 0 0 0
M= 0 L0 0 € Mt (e+nn(C),

0 0o I 0
with 1

Vz € C\{0}, Vpu € [~ r], Au(2) = G0l —~ A"

Proposition

For all z € C, such that |z| > 1, the eigenvalues \(z) of M(z) satisfy
@ |A(z)|] < 1. We denote by E*(z) the associated generalized eigenspace.
o |A\(z)| > 1. We denote by E“(z) the associated generalized eigenspace.
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Sharp stability result in the half-line

Theorem ("[GKS '73]")

The scheme in the half-line is sharply stable if and only the so-called GKS
condition holds that is

Vz € C, s.t. |z| > 1, we have E°(z) NkerB = {0}.
If the segment problem satisfies the GKS condition on each side that is

Vz € C, s.t. |z| > 1, we have E°(z) NkerBo(z) = {0} = E“(z) N ker B4(z),

then the segment problem is stable with vy > 0.

e N Y



The question of sharp stability

Problem : Compared to the half-line scheme the segment scheme may admit a
solution with non-trivial growth compared to time.

"Does a bad choice of the extra boundary conditions can give a non trivially
growing approximation while the solution of the continuous problem does not and
vice versa?"'

Need to characterize the non-trivially growing approximations schemes

e N Y



Characterization of sharp stability

Theorem (B. Preprint)

Under structural assumptions, there exists a matrix T(z) such that :

o If the finite difference approximation scheme is sharply stable then | — T(z) is
invertible.

e If | — T(z) is uniformly invertible then the finite difference approximation
scheme is sharply stable.

We have for free the same result as in the half-line [Coulombel-Gloria '10]

Theorem (B. Preprint)

Under the same structural assumption if the finite difference approximation
scheme is sharply stable then it is also semigroup stable.

e N T T



Some remarks on the result

@ The matrix T is just a discretized version of T. Same continuous to
discrete extension condition than UKL condition for the half-line.

@ We recover the best possible stability result (semigroup) with no more
restriction than in the half-line geometry [Coulombel-Gloria '10].

@ The proof relies on the adaptation to the discrete setting of some ideas
introduced to deal with the corner problem [Osher '73].



Thank you for your attention.



