Stability of finite difference schemes approximations for hyperbolic boundary value problem in an interval.

Antoine BENOIT

Université du Littoral Côte d'Opale

Congrès SMAI, La grande Motte, 29/05/2021.

The continuous problem

We want to give numerical approximate solutions of the strip problem

$$\begin{cases} \mathcal{L}(\partial)u := \partial_{t}u + \sum_{j=1}^{d} A_{j}\partial_{j}u = f & \text{for } (t, x) \in [0, T] \times \mathbb{R}^{d-1} \times]0, 1[:= \Omega_{T}, \\ B_{0}u_{|x_{d}=0} = g_{0} & \text{on } [0, T] \times \mathbb{R}^{d-1} := \partial_{0}\Omega_{T}, \\ B_{1}u_{|x_{d}=1} = g_{1} & \text{on } [0, T] \times \mathbb{R}^{d-1} := \partial_{1}\Omega_{T}, \\ u_{|t=0} = u_{0} & \text{on } \mathbb{R}^{d-1} \times]0, 1[:= \Gamma. \end{cases}$$
(1)

Where $L(\partial)$ is **constantly hyperbolic** with respect to the direction *t*. The $A_j \in \mathbf{M}_{N \times N}(\mathbb{R})$ so that (1) is a **system** of PDE. det $A_d \neq 0$, $A_j = A_j^T$.

Classical framework of **wave propagation phenomena**, *waves, Maxwell, linearisation of Euler...*

The generic boundary matrices $B_0 \in \mathbf{M}_{p \times N}(\mathbb{R})$, $B_1 \in \mathbf{M}_{(N-p) \times N}(\mathbb{R})$ encode the good number of boundary conditions.

Motivations

• **Transparent/absorbent boundary conditions** for the implementation of the Cauchy problem.

• The corner problem is too difficult. Not a lot of progress since [Osher '73]. We keep the difficulty of two boundary conditions but simpler geometry.

イロト イヨト イヨト イヨト

Well-posedness of the continuous problem

Definition (Well-posedness)

For all sources $f \in L^2_{\gamma}(\Omega_T)$, $g_0 \in L^2_{\gamma}(\partial_0 \Omega_T)$, $g_1 \in L^2_{\gamma}(\partial_1 \Omega_T)$, $u_0 \equiv 0$ there exists **a unique** solution $u \in L^2_{\gamma}(\Omega_T)$ of (1) with traces in $L^2_{\gamma}(\partial \Omega_T)$ satisfying : $\exists \gamma_0 \ge 0$ such that $\forall \gamma > \gamma_0$ we have

$$\gamma \|u\|_{L^{2}_{\gamma}(\Omega_{\tau})}^{2} + \|u_{|x_{d}=0}\|_{L^{2}_{\gamma}(\partial_{0}\Omega_{\tau})}^{2} + \|u_{|x_{d}=1}\|_{L^{2}_{\gamma}(\partial_{1}\Omega_{\tau})}^{2}$$

$$\lesssim \frac{1}{\gamma} \|f\|_{L^{2}_{\gamma}(\Omega_{\tau})}^{2} + \|g_{0}\|_{L^{2}_{\gamma}(\partial_{0}\Omega_{\tau})}^{2} + \|g_{1}\|_{L^{2}_{\gamma}(\partial_{1}\Omega_{\tau})}^{2}.$$

$$(2)$$

Or if $u_0 \not\equiv 0$, $\forall T > 0$

$$e^{-2\gamma T} \|u(T,\cdot)\|_{L^{2}(\Gamma)}^{2} + \gamma \|u\|_{L^{2}_{\gamma}(\Omega_{T})}^{2} + \|u_{|x_{d}=0}\|_{L^{2}_{\gamma}(\partial_{0}\Omega_{T})}^{2} + \|u_{|x_{d}=1}\|_{L^{2}_{\gamma}(\partial_{1}\Omega_{T})}^{2}$$
(3)
$$\lesssim \frac{1}{\gamma} \|f\|_{L^{2}_{\gamma}(\Omega_{T})}^{2} + \|g_{0}\|_{L^{2}_{\gamma}(\partial_{0}\Omega_{T})}^{2} + \|g_{1}\|_{L^{2}_{\gamma}(\partial_{1}\Omega_{T})}^{2} + \|u_{0}\|_{L^{2}(\Gamma)}^{2}.$$

where

$$\|\cdot\|_{L^{2}_{\gamma}}:=\|e^{-\gamma t}\cdot\|_{L^{2}},$$

Well-posedness of the continuous problem, result 1

Remarks :

- **Straightforward** generalization of the concept of well-posedness in the half-space [Kreiss '70].
- Because possibly $\gamma_0 > 0$, possible **exponential growth** with t ruled by $e^{\gamma_0 t}$. In the half-space $\gamma_0 = 0$ sharp well-posedness=lower exponential growth in time.

Aim : Characterize the boundary matrices B_0 , B_1 such that the problem is sharply (or not) well-posed.

Proposition

If B_0 (resp. B_1) is such that the problem in the half-space $\{x_d > 0\}$ (resp. $\{x_d < 1\}$ is sharply well-posed then the strip problem (1) is well-posed with $\gamma_0 > 0$.

<u>Proof</u> : Localisation one interior problem + 2 boundary problems. Triangle inequality.

Well-posedness of the continuous problem, result 2

Previous result clearly not sharp. Does the growth really appear ?

Theorem (B. '20)

Under structural assumptions, the strip problem (1) is sharply well-posed "if and only if" some matrices reading under the form I - T are uniformly invertible.

- **T** depend explicitly on the A_j , B_0 , B_1 .
- **T** is a **trace operator** that to a trace $u_{|x_d=0}$ associates the trace obtained after the **free evolution to the right and then reflected back to the left**.
- Exponential growth ruled by $e^{\gamma_0 t}$ can effectively appear because of trapped rays [B. '20].
- For the continuous problem the solutions with exponential growth in time are characterized.
- However condition difficult to check effectively.

Discrete approximation

Approximation by finite difference schemes of

$$\begin{cases} \partial_t u + A \partial_x u = f & \text{ for } (t, x) \in [0, T] \times]0, 1[, \\ B_0 u_{|x=0} = g_0 & \text{ on } [0, T], \\ B_1 u_{|x=1} = g_1 & \text{ on } [0, T], \\ u_{|t=0} = u_0 & \text{ on }]0, 1[. \end{cases}$$

- For the half-line characterization of stable schemes [GKS '72].
- d > 1 widely open question even for $x_d > 0$ [Michelson '83]
- Interval : little results in the literature [GKS '72] and [Trefethen '85] but for particular schemes and particular boundary conditions.
- <u>Aim</u> : characterize the stability for the most generic class of scheme/boundary conditions possible.

< ロ > < 同 > < 回 > < 回 > < 回 > <

The associated scheme I : the interior

Consider $(x_j) \ j \in [0, K]$ a **regular subdivision** of [0, 1] and the approximation scheme in the interior

$$\begin{cases} U_{j}^{n+1} + QU_{j}^{n} = \Delta t F_{j}^{n+1} & \text{ for } n \ge 0, \ j \in [\![1,K]\!], \\ U_{j}^{0} = u_{j}^{0}, & \text{ for } j \in [\![1-\ell,K+r]\!], \end{cases}$$
(4)

where for $(\mathbf{T}_{j}U)_{j} := U_{j+1}$ the right shift operator

$$Q := \sum_{\mu = -\ell}^{\ell} \mathcal{A}^{\mu} \mathbf{T}_{j}^{\mu}, \,\, \mathcal{A}^{\mu} \in \mathbf{M}_{N imes N}(\mathbb{R}).$$

One step in time, $(\ell + r)$ in **space** (ℓ on the "left", r on the "right").

- Lax-Friedrichs $A^{-1} = -\frac{1}{2}(I + \lambda A), A^0 = 0, A^1 = -\frac{1}{2}(I \lambda A)$
- Lax-Wendroff $A^{-1} = \frac{\lambda A}{2}(I \lambda A)$, $A^0 = -I + \lambda^2 A^2$, $A^1 = -\frac{\lambda A}{2}(I + \lambda A)$

June 21, 2021

8 / 19

The associated scheme II : the boundary conditions

Need **artificial** boundary conditions to determine the U_j , $j \in [\![1 - \ell, 0]\!] \cup [\![K + 1, K + r]\!].$

Let

$$\begin{cases} U_j^{n+1} + B_{0,j} U_1^n = G_{0,j}^{n+1} & n \ge 0, \ j \in [\![1-\ell,0]\!], \\ U_j^{n+1} + B_{1,j}^j U_K^n = G_{1,j}^{n+1} & n \ge 0, \ j \in [\![K+1,K+r]\!], \end{cases}$$

where with $(\mathbf{T}_n U)_n := U^{n+1}$:

$$B_{0,j} := \sum_{\sigma = -1}^{0} \sum_{\mu = 0}^{b_0} B_{0,j}^{\sigma,\mu} \mathbf{T}_n^{\sigma} \mathbf{T}_j^{\mu} \text{ and } B_{1,j} := \sum_{\sigma = -1}^{0} \sum_{\mu = -b_1}^{0} B_{1,j}^{\sigma,\mu} \mathbf{T}_n^{\sigma} \mathbf{T}_j^{\mu}.$$

 b_0 steps for the left boundary, b_1 for the right.

イロト イヨト イヨト イヨト

(5)

Illustration

< □ → < □ → < 言 → < 言 → < 言 → 言 の Q (~ June 21, 2021 10 / 19 A main difference between the continuous and the discrete setting is that the continuous boundary conditions prescribe p (or N - p) components of the trace(s). Whereas the discrete scheme prescribes the N components.

Need **extra boundary conditions** which are not given by the physics of the continuous problem. **Arbitrary choices**.

イロト イポト イヨト イヨト

Definition of the stability

Definition (Strong stability)

Let $\gamma > \gamma_0$ the scheme (4)-(5) is said to be strongly stable if for all source terms

• $u_j^0 \equiv 0$ strong/sharp ($\gamma_0 = 0$) stability

$$\frac{\gamma}{\gamma+1} \sum_{n\geq 1} \sum_{j=1-\ell}^{K+r} |e^{-\gamma n} U_j^n|^2 + \sum_{n\geq 1} \sum_{j=1-\ell}^r |e^{-\gamma n} U_j^n|^2 + \sum_{n\geq 1} \sum_{j=K-\ell}^{K+r} |e^{-\gamma n} U_j^n|^2 \\ \lesssim \frac{\gamma+1}{\gamma} \sum_{n\geq 1} \sum_{j=1}^K |e^{-\gamma n} F_j^n|^2 + \sum_{n\geq 1} \sum_{j=1-\ell}^0 |e^{-\gamma n} G_{0,j}^n|^2 + \sum_{n\geq 1} \sum_{j=K+1}^{K+r} |e^{-\gamma n} G_{1,j}^n|^2.$$

• $u_j^0 \neq 0$ semigroup stability. Same estimate with $\sup_n e^{-2\gamma n} \sum_{j=1-\ell}^{K+r} |U_j^n|^2$ in the LHS and $\sum_{j=1-\ell}^{K+r} |u_j^0|^2$ in the RHS

Just discrete versions of the energy estimates in the continuous setting.

イロト イロト イヨト イヨト

Discrete problem in a nutshell

We consider the finite difference scheme approximation in the half-line $[0,\infty[$

$$\begin{cases} U_{j}^{n+1} + QU_{j}^{n} = \Delta t F_{j}^{n+1} & n \ge 0, \ j \ge 1, \\ U_{j}^{n+1} + B_{j} U_{1}^{n} = G_{j}^{n+1} & n \ge 0, \ j \in [\![1 - \ell, 0]\!], \\ U_{j}^{0} = 0, & j \in [\![1 - \ell, \infty[\![$$

We perform a discrete Laplace transform by setting for $z \in \mathbb{C} \setminus \{0\}$, $U_j^n = z^n V_j$. So (6) becomes (at the formal level):

$$\begin{cases} V_j + \frac{1}{z} Q V_j = \widetilde{F}_j & j \in \llbracket 1, \infty \rrbracket, \\ V + \frac{1}{z} B_j V_1 = \widetilde{G}_j & j \in \llbracket 1 - \ell, 0 \rrbracket, \end{cases}$$

and can be rewritten in terms of the augmented vector $\mathscr{V}_j := (V_{j+r-1}, ..., V_{j-\ell})$ under **the purely resolvent** form

$$\begin{cases} \mathscr{V}_{j+1} = \mathbb{M}(z) \mathscr{V}_j + \mathscr{F}_j & j \in \llbracket 1, \infty \rrbracket, \\ \mathbb{B}(z) \mathscr{V}_1 = \mathscr{G}_j & j \in \llbracket 1 - \ell, 0 \rrbracket, \end{cases}$$
(7)

June 21, 2021

13 / 19

where

$$\mathbb{M}(z) := \begin{bmatrix} -(\mathbb{A}_r)(z)^{-1}\mathbb{A}_{r-1}(z) & \cdots & \cdots & (\mathbb{A}_r)(z)^{-1}\mathbb{A}_{\ell}(z) \\ I & 0 & 0 & 0 \\ 0 & \ddots & 0 & 0 \\ 0 & 0 & I & 0 \end{bmatrix} \in \mathbf{M}_{(\ell+r)N \times (\ell+r)N}(\mathbb{C}),$$

with

$$orall z \in \mathbb{C} \setminus \{0\}, \ orall \mu \in \llbracket -\ell, r
rbracket, \ \mathbb{A}_{\mu}(z) := \delta_{\mu,0} I - rac{1}{z} \ \mathcal{A}^{\mu}.$$

Proposition

For all $z \in \mathbb{C}$, such that |z| > 1, the eigenvalues $\lambda(z)$ of $\mathbb{M}(z)$ satisfy

- $|\lambda(z)| < 1$. We denote by $\mathbb{E}^{s}(z)$ the associated generalized eigenspace.
- $|\lambda(z)| > 1$. We denote by $\mathbb{E}^{u}(z)$ the associated generalized eigenspace.

イロト イヨト イヨト イヨト

Sharp stability result in the half-line

Theorem ("[GKS '73]")

The scheme in the half-line is sharply stable if and only the so-called GKS condition holds that is

 $\forall z \in \mathbb{C}, \text{ s.t. } |z| \ge 1, \text{ we have } \mathbb{E}^{s}(z) \cap \ker \mathbb{B} = \{0\}.$

If the segment problem satisfies the GKS condition on each side that is

 $\forall z \in \mathbb{C}, \ s.t. \ |z| \ge 1, \ we \ have \ \mathbb{E}^{s}(z) \cap \ker \mathbb{B}_{0}(z) = \{0\} = \mathbb{E}^{u}(z) \cap \ker \mathbb{B}_{1}(z),$

then the segment problem is **stable** with $\gamma_0 > 0$.

イロト 不得下 イヨト イヨト

<u>Problem</u> : Compared to the half-line scheme the segment scheme may admit a solution with non-trivial growth compared to time.

"Does a bad choice of the extra boundary conditions can give a non trivially growing approximation while the solution of the continuous problem does not and vice versa?"

Need to characterize the non-trivially growing approximations schemes

イロト イポト イヨト イヨト

Characterization of sharp stability

Theorem (B. Preprint)

Under structural assumptions, there exists a matrix $\mathbb{T}(z)$ such that :

- If the finite difference approximation scheme is sharply stable then I − T(z) is invertible.
- If $I \mathbb{T}(z)$ is uniformly invertible then the finite difference approximation scheme is sharply stable.

We have for free the same result as in the half-line [Coulombel-Gloria '10]

Theorem (B. Preprint)

Under the same structural assumption if the finite difference approximation scheme is sharply stable then it is also semigroup stable.

イロト イヨト イヨト イヨト

Some remarks on the result

- The matrix T is just a discretized version of T. Same continuous to discrete extension condition than UKL condition for the half-line.
- We recover the best possible stability result (semigroup) with no more restriction than in the half-line geometry [Coulombel-Gloria '10].
- The proof relies on the adaptation to the discrete setting of some ideas introduced to deal with the **corner problem** [Osher '73].

イロト イポト イヨト イヨト

Thank you for your attention.

イロト イヨト イヨト イヨ

June 21, 2021

19 / 19