Uniform global asymptotic synchronization of a network of Kuramoto oscillators via hybrid coupling

S. Mariano¹, R. Bertollo⁴, E. Panteley², R. Postoyan¹, L. Zaccarian^{3,4}

¹Université de Lorraine, CNRS, CRAN ²CNRS, L2S ³Université de Toulouse, CNRS, LAAS ⁴Department of Industrial Engineering, University of Trento

This work is supported by ANR HANDY grant

	Introduction	Hybrid model	Fundamental properties		Conclusions
••••• ••••• ••••• •••• •••• •••• •••	● 000	00000000	000	00000	00

Kuramoto model to describe synchronization phenomena

To model a network of interconnected oscillators:

- in chemistry as for flame dynamics [Forrester, Sci. Rep. 2015]
- in biology and neurosciences [Cumin & Unsworth, Physica D. 2007]

• etc.

Introduction	Hybrid model	Fundamental properties	Numerical examples	Conclusions
0000	00000000	000	00000	00

Problematic behaviour in historical Kuramoto

- **Fully connected** network of *n* oscillators
- Phase dynamics

$$\dot{ heta}_i = \omega + \gamma \sum_{j \in \mathcal{V}} \sin(heta_j - heta_i),$$

- Various synchronization results [Strogatz, Physica D. 2000], [Dörfler & Bullo, SIAM 2011]
- Non-uniform synchronization

Introduction 00●0	Hybrid model 00000000	Fundamental properties	Numerical examples 00000	Conclusions

Contributions

- Tree-like network of n oscillators
- Exploiting **hybrid tools** to modify the historical Kuramoto model
- Synchronization via hybrid coupling
- Uniformly globally asymptotically stable synchronization set

- Absence of undesired non-uniform behavior with large synchronization errors
- Same behavior as the historical Kuramoto with small synchronization errors

	Hybrid model	Fundamental properties	Numerical examples	Conclusions
0000				

- 2 Hybrid model
- **3** Fundamental properties
- 4 Numerical examples

Hybrid model	Fundamental properties	Numerical examples	Conclusions
00000000			

1 Introduction

2 Hybrid model

3 Fundamental properties

4 Numerical examples

5 Conclusions

Introduction 0000	Hybrid model ○●○○○○○○○	Fundamental properties	Numerical examples	Conclusions 00

Historical Kuramoto model

- Fully connected network of *n* oscillators, undirected graph $\mathcal{G} = (\mathcal{V}, \mathcal{E}_u)$
- Phase dynamics

$$\dot{ heta}_i = \omega + \gamma \sum_{j \in \mathcal{V}} \sin(heta_j - heta_i)$$

- $\theta_i \in \mathbb{R}$ i-th oscillator phase, $i \in \mathcal{V}$
- Natural frequency $\omega \in \mathbb{R}$
- Gain $\gamma \in \mathbb{R}_{>0}$ associated to intensity of coupling action

Introduction 0000	Hybrid model ००●००००००	Fundamental properties	Numerical examples	Conclusions 00

Hybrid Kuramoto: continuous dynamics

- **Tree-like** network of *n* oscillators, undirected graph $\mathcal{G}_u = (\mathcal{V}, \mathcal{E}_u)$
- Phase dynamics for each $i \in \mathcal{V}$

$$\dot{\theta}_i = \omega + \gamma \sum_{j \in \mathcal{V}_i} \sigma(\theta_j - \theta_i + 2k_{ij}\pi), \qquad (\theta, k) \in C$$

- $\theta_i \in [-\pi \delta, \pi + \delta], \ \delta \in (0, \pi)$ regularisation parameter
- $k_{ij} = -k_{ji} \in \{-1, 0, 1\}$ unwinding variable, $(i, j) \in \mathcal{E}_u$

$$\dot{k}_{ij}=0,$$
 $(heta,k)\in C$

Function σ to overcome the limits of the standard coupling

Recall
$$\dot{\theta}_{i} = \omega + \gamma \sum_{j \in \mathcal{V}_{i}} \sigma(\theta_{j} - \theta_{i} + 2k_{ij}\pi), \quad (\theta, k) \in C$$

Property 1
• σ defined on
 $[-\pi - \delta, \pi + \delta]$
• σ is odd
• $\sigma(s)s > 0, \forall s \in [-\pi - \delta, \pi + \delta] \setminus \{0\}$ and
 $\sigma(0) = 0$

Introduction 0000	Hybrid model oooo●oooo	Fundamental properties	Numerical examples	Conclusions 00

Hybrid Kuramoto: continuous dynamics

- Tree-like network of *n* oscillators, undirected graph $\mathcal{G}_u = (\mathcal{V}, \mathcal{E}_u)$
- Phase dynamics for each $i \in \mathcal{V}$

$$\dot{\theta}_i = \omega + \gamma \sum_{j \in \mathcal{V}_i} \sigma(\theta_j - \theta_i + 2k_{ij}\pi), \qquad (\theta, k) \in C$$

- $\theta_i \in [-\pi \delta, \pi + \delta], \ \delta \in (0, \pi)$ regularization parameter
- $k_{ij} = -k_{ji} \in \{-1, 0, 1\}$ unwinding variable, $(i, j) \in \mathcal{E}_u$

 $\dot{k}_{ij}=0,$ $(\theta,k)\in C$

0000 00000000 000 00000 00	Hybrid model	Fundamental properties	Conclusions
	000000000		

Flowing is only allowed in the domain of σ

Recall
$$\dot{\theta}_i = \omega + \gamma \sum_{j \in \mathcal{V}_i} \sigma(\theta_j - \theta_i + 2k_{ij}\pi), \quad (\theta, k) \in C$$

- σ defined on $[-\pi \delta, \pi + \delta] \Rightarrow$ flow needs to happen only if $|\theta_j \theta_i + 2k_{ij}\pi| \le \pi + \delta$, $(i, j) \in \mathcal{E}_u$
- Allow jumping from the closed complement: $D_{ij} := \{(\theta, k) \in X : |\theta_j - \theta_i + 2k_{ij}\pi| \ge \pi + \delta\}$ $\theta_i^+ = \theta_i,$ $\theta_j^+ = \theta_j,$ $k_{ij}^+ \in \underset{h \in \{-1,0,1\}}{\operatorname{argmin}} |\theta_j - \theta_i + 2h\pi|,$ $(\theta, k) \in D_{ij}$

Other states remain unchanged (distributed update law)

Lemma

For any $(i,j) \in \mathcal{E}_u$ and $(\theta, k) \in D_{ij}$, (θ^+, k^+) above implies $(\theta^+, k^+) \in X$ and $|\theta_j^+ - \theta_i^+ + 2k_{ij}^+\pi| < \pi + \delta$

	Hybrid model	Fundamental properties		Conclusions
0000	000000000	000	00000	00

Jump dynamics to unwind phases

Other states remain unchanged (distributed update law)

Lemma

For each $i \in \mathcal{V}$ and $x \in D_i$, (θ^+, k^+) above satisfies implies $(\theta^+, k^+) \in X$, $|\theta_i^+| < \pi + \delta$ and $\theta_j^+ - \theta_i^+ + 2k_{ij}^+\pi = \theta_j - \theta_i + 2k_{ij}\pi$ for each $j \in \mathcal{V}_i$

Introduction	Hybrid model	Fundamental properties	Numerical examples	Conclusions
0000	00000000	•••	00000	

Introduction

2 Hybrid model

3 Fundamental properties

4 Numerical examples

5 Conclusions

Introduction	Hybrid model	Fundamental properties	Numerical examples	Conclusions
0000	00000000	○●○		00

Hybrid Kuramoto model - UGAS and *t*-completeness

Set ${\mathcal A}$ as the synchronization set

$$\mathcal{A} := \{(\theta, k) : \theta_i = \theta_j + 2k_{ij}\pi, (i, j) \in \mathcal{E}_u\}$$

Tree-like network \Rightarrow all phases are equal modulo 2π

Theorem 1

Under Property 1 and with a tree graph, for any $\gamma > 0$

All maximal solutions φ are t-complete, i.e. any maximal solution φ is such that

 $\sup_t \operatorname{dom} \phi = \sup\{\mathfrak{t} \in \mathbb{R}_{\geq 0} : \exists \mathfrak{j} \in \mathbb{Z}_{\geq 0} | (\mathfrak{t}, \mathfrak{j}) \in \operatorname{dom} \phi\} = +\infty$

 The set A is UGAS, equivalently there exists β ∈ KL such that |φ(t,j)|_A ≤ β(|φ(0,0)|_A,t+j) for all (t,j) ∈ dom φ and where |x|_A be the distance of x ∈ ℝⁿ to the closed set A ⊂ ℝⁿ

Hybrid model	Fundamental properties	Numerical examples	Conclusions
	000		

Proof is based on a weak Lyapunov function

Weak Lyapunov function

$$V(heta,k) := \sum_{(i,j)\in\mathcal{E}} \int_0^{ heta_j - heta_i + 2k_{ij}\pi} \sigma(ext{sat}_{\pi+\delta}(s)) ds, \qquad orall x \in X$$

- There exist $\alpha_1, \alpha_2, \alpha_3 \in \mathcal{K}_\infty$ independent of $\gamma > 0$ such that
 - (S) $\alpha_1(|(\theta, k)|_{\mathcal{A}}) \leq V(\theta, k) \leq \alpha_2(|(\theta, k)|_{\mathcal{A}}), \quad \forall (\theta, k) \in X$

(F)
$$\langle \nabla V(\theta, k), f(\theta, k) \rangle \leq -\frac{1}{2} \gamma \alpha_3(V(\theta, k)), \quad \forall (\theta, k) \in C$$

- $(\mathsf{J}) \hspace{1cm} \mathsf{V}(g) \mathsf{V}(heta,k) \leq 0, \hspace{1cm} orall g \in \mathsf{G}(heta,k), \hspace{1cm} orall (heta,k) \in D$
- UGAS of *A* from [Thm. 1, Seuret et al., TAC 2018] (invariance principle) due to the absence of complete discrete solutions

Introduction	Hybrid model	Fundamental properties	Numerical examples	Conclusions
0000	00000000		•0000	00

Introduction

- 2 Hybrid model
- **3** Fundamental properties

4 Numerical examples

5 Conclusions

Introduction 0000	Hybrid model 00000000	Fundamental properties	Numerical examples ○●○○○	Conclusions

Simulations for different selections of σ and γ

- n = 20 agents, $\omega = 0.5$, $\delta = \frac{\pi}{36}$ and $\gamma \in \{0.15, 0.6, 3\}$
- Same γ for all the edges
- σ : sinusoidal, ramp, modified sinusoidal and saturation-like
- Initial conditions close to phase opposition

Sinusoid failing Property 1 vs σ 's satisfying Property 1

Example of phase lock in case of fully connected graph

The graph is not a tree: Theorem 1 does not apply

Introduction 0000	Hybrid model 00000000	Fundamental properties	Numerical examples	Conclusions ●0

1 Introduction

- 2 Hybrid model
- **3** Fundamental properties

4 Numerical examples

Introduction 0000	Hybrid model 00000000	Fundamental properties	Numerical examples	Conclusions

Conclusion and perspectives

Summary:

- A hybrid model of Kuramoto oscillators connected via hybrid coupling
- Uniform stability and attractivity properties of the synchronization set are guaranteed
- Synchronization reached via a leaderless, distributed approach

Future developments:

- Non-identical oscillators with time-varying natural frequencies
- Different topologies and hybrid coupling dynamics

Preliminary work [Bertollo et al., IFAC 2020] Journal paper under preparation