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Modelling the scanning process
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STAKES AT A MACROSCOPIC SCALE

- thermo-mechanics: thermal expansion, residual stresses, solidification of a layer

- kinematics: minimal execution time
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Steady model

The whole source is switched on at once

Dirac function of the path I':

Temperature equation:
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Optimization algorithm

Gradient computation: shape differentiation theory (Differentiate and then discretize)

(Ia +0)(T)

' regular curve with chosen orientation,
o5 tangent t, normal n, curvature x and
endpoints A and B.
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(Ia +0)(T)
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Shape derivative of J(I') = f f(s)ds: DJ(T)(O) = J(Onf + kf)0 -nds+ f(B)O(B) -t(B) — f(A)6(4) - (A)
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Gradient descent:
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Numerical representation: front-tracking

Fixed physical mesh — Path described by a broken line defined by nodal points

/ Crucial points:
o - Control the broken line definition
7 - Information mapping from the broken line to the physical mesh and vice versa
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Optimization algorithm

1. Initialization of the path I'°

2. Heat equation resolution and computation of the objective function, constraints

3. Computation of the gradient

4. Fork < Nygax:
a) Update the path I'* to a new path I'**1 using the gradients with a descent step
b) Re-discretize the path T'**1 to maintain its coherence
c) Heat equation resolution and computation of the objective function, constraints

d) If the merit function is improved:
lteration accepted

e) Else:
lteration rejected: descent step decreased



le'ferent initializations — Aluminum (A = 130Wm™1K~ 1)

ontour Initialization 1 Initialization 2 Initialization 3

>R
SPED
TS




Different initializations — Aluminum (A = 130Wm~1K~1)

2 lines contour Initialization 1 Initialization 2  Initialization 3 - -

- 0 870 1137 1403 1670
hy - ~N
' ~

24



Different initializations — Aluminum (1 = 130Wm~1K~1)

2 lines contour Initialization 1 Initialization 2  Initialization 3 - _
0 870 1137 1403 1670

- Results really dependent on the initialization

- Correct adaptation to the shape if allowed by
the conductivity => shape thickness

25



Different initializations — Titanium (1 = 15Wm™'K~1)
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Different initializations — Titanium (A = 15Wm_1K_1)
Initialization 2 Initialization 3 - ' ] s

0 1900 2400 2900 3400

- Low conductivity complicates the optimization
- Results really dependent on the initialization

- Correct adaptation to the shape if allowed by
the conductivity => shape thickness
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Overview

* Modelling assumptions

e Scanning path optimization

 Modifying the path topology
e Physical approach: coupling scanning path and power optimization

* Topology approach: topological optimization of the scanning path
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Relaxation :
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Steady model — relaxation-penalization method
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Steady model — relaxation-penalization method
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Steady model — total variation penalization
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a)

Controlling the power jumps =) Denoising problem(

Augmented Lagrangian method :

. Uc 2 Up 2 1
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and numerical methods for sparse recovery, 9 (2010), p. 227.
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Steady model — total variation penalization

Algorithm 1 Initialize (I'°, CO). an.d 13, 11(34*.’\2

2 Compute the objective function
3 Compute the gradient with respect to the path VpLarm(I'°. ¢°. 1? IRI. /\2)
4 Compute the gradient with respect to the power variable V¢ L (I, ¢°, 19 B, /\2)
5 while the stopping criterion is not reached do
6
;
8
9

Compute the update steps spt and s/
Compute "+ =" — seVrfo(T™, ¢", 1y, b, AZ)
Corapute (™1 = (™ — PV fo (T, ™, 12, 1, A2)
Path projection I'""*! = P, (I')
10 Application of the proximal related to ¢: ("t = Peefo,] (prox_g_z, Loy TV ( 5,1))
11 Compute the new objective function
12 if the new objective function is smaller than before (up to a tolerance) then
13 Iteration accepted
14 Update of the Lagrange multipliers and recompute the objective function
15 Compute the shape and power derivatives
16 Increase the step coefficients (line search)
17 end
18 else
19 Reject the iteration
20 Decrease the coefficients: line only for a line iteration, power only for a power iteration
and both if both
21 end
22 end

A. Barbero and S. Sra, Fast newton-type methods for total variation regularization, in Proceedings of the 28th International Conferenceon
Machine Learning (ICML-11), Citeseer, 2011, pp. 313-320.
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Steady model — total variation penalization
v ' .'

Path and power optimization Path and power optimization
Relaxed problem Relaxed-penalized problem
w

Path only optimization
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Path and power optimization
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e Scanning path optimization
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Steady model — topological optimization of the path -

Removing part of the path

I s / cfro .
€ Atz‘

o Txo "o T,
(a) Path T’ (b) Perturbed path I'S (2 (c) Path Cg
connected components)
e\ _ 1
J(TE,) =J(@) — (1 = Pp(xo))e + o(€) 1 - Pp(xo) > 0= p(xo) <

Adjoint function p
—VVP) + Bp = 2(lc + 1C) ([vp = Y] = [y = Ymain] = [y = Ymoue] ) x€D
Aany — 0’ x € dD

(a) L. Rakotondrainibe, Join topology optimisation of part and support for metal additive manufacturing, PhD thesis, Ecole Polytechnique, 2020.



Steady model — topological optimization of the path

Adding part of the path

A By a
TEQ\'M xlgh
x Tx
T l..xe-l 1 1
(a) Path I’ (b) Perturbed path I'y, | (2 (c) Path &7,
connected components)

e\ _ 1
J(TE) =J@) = (1 = Pp(xy))e + o(€) 1—Pp(x)) <0 = p(xy) >—

P

Adjoint function p
—VVP) + Bp = 2(lc + 1C) ([vp = Y] = [y = Ymain] = [y = Ymoue] ) x€D
Adyy =0, x € D

(a) L. Rakotondrainibe, Join topology optimisation of part and support for metal additive manufacturing, PhD thesis, Ecole Polytechnique, 2020.



Steady model — Results - aluminum
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Steady model — Results- titanium
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Steady model — Results - titanium
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Steady model — Results- titanium

Initialization Topology optimization ~ Topology optimization
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Conclusions

Power based strategy

“Physical” representation of the path connected
components :

- Continuous consideration of the number of
connected components

- Number of connected components limited by
an optimization constraint

Reasonable computational costs

Topology optimization

“Artificial” representation of the path connected
components :

- Discrete consideration of the number of
connected components

- Number of connected components limited by
the algorithm settings

High computational costs



Conclusions and perspectives
Adding the path topology to the optimization

- Confirms the importance of allowing topology modifications

- Remains a complex feature to control

Perspectives

- Improve the topology optimization

- Adapt the constraint to reality: advantage the phase constraint, define “steady state”
constraints modelling transient quantities (kinematics) to take benefit from the very easy
resolution process and shape optimization theory

- Optimize in the transient (general) model

- Add the resolution of a mechanical problem (full resolution or inherent strain method)

- 3D considerations

- Concurrent optimization of the scanning path and of the shape of the part to build
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