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Nonlinear Fokker-Planck equation with singular interaction

We study on [0,T )× Rd{
∂tu(t, x) = ∆u(t, x)−∇ ·

(
u(t, x) (K ∗x u(t, x))

)
,

u(0, x) = u0(x),

(NLFP)
K - locally integrable kernel, with singular behaviour at 0,
attractive or repulsive.

Our main interest : stochastic particle approximation of
(NLFP).

Why?
I Macroscopic to microscopic description (and back!);
I Numerical schemes...



Classical approach: mean-field interactions
(NLFP) is seen as the FP equation for the non-linear process{

dXt =
√

2dWt + K ∗ ut(Xt)dt,

L(Xt) = ut .
(NLSDE)

Associate to it the stochastic particle system in mean-field
interaction:

dX i ,N
t =

√
2dW i ,N

t +
1

N

N∑
j=1

K (X i ,N
t − X j ,N

t ). (PS)

(see for eg. the notes of Sznitman)

Main challenges: K irregular → wellposedness of (PS), (NLSDE)
and the propagation of chaos (µN converges to L(X )) ?

Probabilistic approach to non-linear FP equations with irregular
interactions such as:
I Boltzmann, Burgers, Navier-Stokes, Keller-Segel equations, ...

studied by many authors:
I Bossy, Calderoni, Cattiaux, Fournier, Hauray, Jabir, Jabin,

Jourdain, Méléard, Osada, Pulvirenti, Talay, ...
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Another viewpoint: moderate interaction
Motivated by singular attractive kernels for which

existence of (PS) is unknown,

existence ok, but convergence unknown

we study moderately interacting particles

dX i ,N
t =

√
2dW i ,N

t + F
(
K ∗ (VN ∗ µNt )(X i ,N

t )
)
dt,

where:

VN(x) = NdαV (Nαx), α ∈ (0, 1); V - regular density;

F - smooth cut-off chosen depending on the initial condition.

Some historic references : Oelschläger (’85), Méléard-Roelly
(’87)

→ A semigroup approach was recently developed by Flandoli, Olivera
and their collaborators to get uniform (non-quantitative) convergence of
V N ∗ µN towards a mild solution to:

FKPP, 2d Navier-Stokes equations, PDE-ODE system related to

aggregation phenomena, parabolic-elliptic Keller-Segel model.
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Our main objectives

What are the minimal assumptions on the kernel K and what is a
suitable functional framework for (NLFP) so the following holds?

Convergence of {µNt = 1
N

∑N
i=1 δX i,N

t
, t ∈ [0,T ]} to the

solution (NLFP) when N →∞:
I which range of α?
I what is the rate of convergence ?

Well-posedness of (NLSDE).

Propagation of chaos towards (NLSDE) (without the cut-off
and the mollifier)



What kind of kernels can we treat?

A typical example in dimension d ≥ 2 is the family of Riesz
kernels:

Ks(x) = ±∇Vs(x)

where

Vs(x) :=

{
|x |−s if s ∈ (0, d − 1)

− log |x | if s = 0
, x ∈ Rd .

Examples:

Coulomb interactions: Ks , with s = d − 2 (d ≥ 3);

2d Navier-Stokes equation (vorticity): K (x) = x⊥

|x |2 ;

Parabolic-elliptic Keller-Segel model: K (x) = −χ x
|x |d

(attractive...);

Some attractive-repulsive kernels.



Precise assumptions on K and α

(AK ):

1. K ∈ Lp(B1), for some p ∈ [1,+∞];

2. K ∈ Lq(Bc1), for some q ∈ [1,+∞];

3. There exists r ≥ max(p′,q ′), ζ ∈ (0, 1] and C > 0 such
that for any f ∈ L1 ∩ Lr (Rd), one has

Nζ(K ∗ f ) ≤ C‖f ‖L1∩Lr (Rd ).

Here Nζ is the Hölder seminorm of parameter ζ ∈ (0, 1].

(Hα): The parameters α and r satisfy

0 < α <
1

d + 2d( 1
2 −

1
r ) ∨ 0

.



Convergence of the mollified empirical measure
First, we get local well-posedness of the PDE and we denote by
Tmax its maximal existence time.

Theorem 1
Let T < Tmax and assume (Ak) and (Hα). Under suitable
conditions on the initial conditions (in part. u0 ∈ L1 ∩ Lr(Rd )),
the sequence {uNt = VN ∗ µNt , t ∈ [0,T ]}N∈N converges, as
N →∞, towards the unique mild solution u on [0,T ] of the
(NLFP), in the following sense: for any ε > 0 and any m ≥ 1,
there exists a constant C > 0 such that for all N ∈ N∗,∥∥∥‖uN − u‖T ,L1∩Lr (Rd )

∥∥∥
Lm(Ω)

≤

∥∥∥∥∥ sup
s∈[0,T ]

‖es∆(uN0 − u0)‖L1∩Lr (Rd )

∥∥∥∥∥
Lm(Ω)

+CN−%+ε,

where

% = min

(
αζ,

1

2

(
1− α(d + d(1− 2

r
) ∨ 0)

))
.
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Some consequences and remarks

Same rate for the genuine empirical measure of (PS)∥∥∥∥ sup
t∈[0,T ]

‖µNt − ut‖0

∥∥∥∥
Lm(Ω)

≤ C N−%+ε,

where ‖ · ‖0 denotes the Kantorovich-Rubinstein metric

The rate in the previous results holds almost surely.

Cannot expect here a
√
N rate of convergence because of the

short range interactions. : ”best possible” N−α.



Applications

Coulomb-type kernels (like Biot-Savart kernel in d = 2, the
Riesz kernel with s = d − 2),
I the convergence happens for any α < 1

2(d−1)

(d = 2→ α = ( 1
2 )−.);

I the best possible rate of convergence is % =
(

1
2(d+1)

)−
which

is obtained for the choice α =
(

1
2(d+1)

)+

, r = +∞, ζ = 1.

Keller-Segel parabolic elliptic model (d = 2 : global
solution χ < 8π, blow up in finite time otherwise).
I we get the above rate for any value of χ;
I the result holds even if the PDE explodes in finite time

(χ > 8π).

The Riesz kernels with s > d − 2 do not satisfy Assumption
(AK ) - 3. However, by imposing more regularity on the initial
conditions and smaller values of α, we get a rate of
convergence for singular Riesz kernels with s ∈ (d − 2, d − 1).



Applications

Coulomb-type kernels (like Biot-Savart kernel in d = 2, the
Riesz kernel with s = d − 2),
I the convergence happens for any α < 1

2(d−1)

(d = 2→ α = ( 1
2 )−.);

I the best possible rate of convergence is % =
(

1
2(d+1)

)−
which

is obtained for the choice α =
(

1
2(d+1)

)+

, r = +∞, ζ = 1.

Keller-Segel parabolic elliptic model (d = 2 : global
solution χ < 8π, blow up in finite time otherwise).
I we get the above rate for any value of χ;
I the result holds even if the PDE explodes in finite time

(χ > 8π).

The Riesz kernels with s > d − 2 do not satisfy Assumption
(AK ) - 3. However, by imposing more regularity on the initial
conditions and smaller values of α, we get a rate of
convergence for singular Riesz kernels with s ∈ (d − 2, d − 1).



Applications

Coulomb-type kernels (like Biot-Savart kernel in d = 2, the
Riesz kernel with s = d − 2),
I the convergence happens for any α < 1

2(d−1)

(d = 2→ α = ( 1
2 )−.);

I the best possible rate of convergence is % =
(

1
2(d+1)

)−
which

is obtained for the choice α =
(

1
2(d+1)

)+

, r = +∞, ζ = 1.

Keller-Segel parabolic elliptic model (d = 2 : global
solution χ < 8π, blow up in finite time otherwise).
I we get the above rate for any value of χ;
I the result holds even if the PDE explodes in finite time

(χ > 8π).

The Riesz kernels with s > d − 2 do not satisfy Assumption
(AK ) - 3. However, by imposing more regularity on the initial
conditions and smaller values of α, we get a rate of
convergence for singular Riesz kernels with s ∈ (d − 2, d − 1).



About the proof

Derive the SPDE satisfied by the mollified empirical measure
uN in its mild form

uNt (x) = et∆uN0 (x)−
∫ t

0

∇ · e(t−s)∆〈µN
s ,V

N(x − ·)F
(
K ∗ uNs (·)

)
〉 ds

− 1

N

N∑
i=1

∫ t

0

e(t−s)∆∇V N(x − X i,N
s ) · dW i

s ,

For q ≥ 1 establish that

sup
N∈N∗

sup
t∈[0,T ]

E
[∥∥∥uNt ∥∥∥q

Lr (Rd )

]
<∞.

Decompose ‖uNt − ut‖L1∩Lr in several terms and control these
terms thanks to our hypothesis.



Main issue : control the moments of

sup
t≤T
‖ 1

N

N∑
i=1

∫ t

0
e(t−s)4∇VN(X i

s − ·)dW i
s ‖L1∩Lr (Rd )

not a martingale, fix the time in the heat operator and it
becomes one

to control its L1 ∩ Lr (Rd) norm in space, use stochastic
integration techniques in infinite-dimensional spaces (van
Nerveen et al, ’07)

you need the Garsia-Rodemich-Rumsey’s lemma to put the
sup inside (you loose a bit of the speed of convergence)

Note that this is where the main limitation on α, Assumption
(Hα), arises.



The non-linear process and the propagation of chaos

Proposition 1

Let T < Tmax . Assume that u0 is a probability density function
belonging to Lr (Rd) and that the kernel K satisfies (HK ). Then,
the martingale problem related to (NLSDE) is well-posed.

From here one can go on to prove the empirical measure µN. on
C([0,T ];Rd)) converges in law towards the unique weak solution
of (NLSDE).

Example: 2-d Keller-Segel parabolic-elliptic equation → we obtain
the (local) existence of the (NLSDE) for all the values of the
sensitivity parameter χ and the propagation of chaos towards it.
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Some next steps

1. Numerical applications : use our result to quantify the
convergence of a scheme coming from the moderately
interacting particles.

2. Remove the cut-off in the definition of the moderately
interacting particles.

3. Treat non-Markovian particle systems : like the ones coming
from parabolic-parabolic Keller Segel model.


