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Nonlinear Fokker-Planck equation with singular interaction

o We study on [0, T) x RY

{ Oru(t,x) = Au(t,x) = V- (u(t,x) (K *x u(t, x))),
u(0, x) = uo(x),

(NLFP)
K - locally integrable kernel, with singular behaviour at 0,
attractive or repulsive.

@ Our main interest : stochastic particle approximation of
(NLFP).

e Why?
» Macroscopic to microscopic description (and back!);
» Numerical schemes...



Classical approach: mean-field interactions

@ (NLFP) is seen as the FP equation for the non-linear process

dX; = V2dW; + K * u(X;)dt, (NLSDE)
[,(Xt) = Ut.

Associate to it the stochastic particle system in mean-field
interaction:

N
. . 1 . .
ax;N = v2dwiN + N STRXN = Xxi). (PS)
j=1

(see for eg. the notes of Sznitman)
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(see for eg. the notes of Sznitman)
@ Main challenges: K irregular — wellposedness of (PS), (NLSDE)
and the propagation of chaos (" converges to £(X)) ?
@ Probabilistic approach to non-linear FP equations with irregular
interactions such as:
» Boltzmann, Burgers, Navier-Stokes, Keller-Segel equations, ...
studied by many authors:
» Bossy, Calderoni, Cattiaux, Fournier, Hauray, Jabir, Jabin,
Jourdain, Méléard, Osada, Pulvirenti, Talay, ...



Another viewpoint: moderate interaction
Motivated by singular attractive kernels for which
e existence of (PS) is unknown,
@ existence ok, but convergence unknown

we study moderately interacting particles
dXiN = V2dwiN 4 F (K 5 (VN ,J,QV)(x;'”V)) dt,

where:
o VN(x) = N¥V(N%x),a € (0,1); V - regular density;
@ F - smooth cut-off chosen depending on the initial condition.
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Motivated by singular attractive kernels for which
e existence of (PS) is unknown,
@ existence ok, but convergence unknown

we study moderately interacting particles
dXiN = V2dwiN 4 F (K 5 (VN ,L{V)(Xt"ﬁ’v)) dt,

where:
o VN(x) = N¥V(N%x),a € (0,1); V - regular density;
@ F - smooth cut-off chosen depending on the initial condition.

@ Some historic references : Oelschlager ('85), Méléard-Roelly
('87)
— A semigroup approach was recently developed by Flandoli, Olivera

and their collaborators to get uniform (non-quantitative) convergence of
VN % N towards a mild solution to:

FKPP, 2d Navier-Stokes equations, PDE-ODE system related to
aggregation phenomena, parabolic-elliptic Keller-Segel model.



Our main objectives

What are the minimal assumptions on the kernel K and what is a
suitable functional framework for (NLFP) so the following holds?

o Convergence of {uY = & LV, X’ n, t € [0, T]} to the
solution (NLFP) when N — oo:

» which range of a7
» what is the rate of convergence ?

o Well-posedness of (NLSDE).

e Propagation of chaos towards (NLSDE) (without the cut-off
and the mollifier)



What kind of kernels can we treat?

A typical example in dimension d > 2 is the family of Riesz
kernels:

Ks(x) = £V V4(x)

where

- if d—1
Vs(x) := X I s€ (0, ) , x€RC
log|x| ifs=0

Examples:

e Coulomb interactions: Ks, with s =d —2 (d > 3);
L

o 2d Navier-Stokes equation (vorticity): K(x) = 5
e Parabolic-elliptic Keller-Segel model: K(x) = W
(attractive...);

@ Some attractive-repulsive kernels.



Precise assumptions on K and «

(A%):
1. K € LP(By), for some p € [1, +o0];
2. K € L9(Bf), for some q € [1,40o0];

3. There exists r > max(p’, q’), ¢ € (0,1] and C > 0 such
that for any f € L' N L"(RY), one has

NC(K * f) < C”fHleLr(Rd).
Here N is the Holder seminorm of parameter ¢ € (0, 1].
(Ha):  The parameters a and r satisfy

O<ax<




Convergence of the mollified empirical measure

First, we get local well-posedness of the PDE and we denote by
Tmax its maximal existence time.



Convergence of the mollified empirical measure

First, we get local well-posedness of the PDE and we denote by
Tmax its maximal existence time.

Theorem 1

Let T < Tpax and assume (A¥) and (H,). Under suitable
conditions on the initial conditions (in part. ugp € L' N L"(RY)),
the sequence {ul = VN x N, t € [0, T]}nen converges, as

N — oo, towards the unique mild solution u on [0, T] of the
(NLFP), in the following sense: for any € > 0 and any m > 1,
there exists a constant C > 0 such that for all N € N*,

Ag, N
sup [[e*%(up —UO)HleLr(Rd)
s€[0,T]

<
Lm(@)

N
H [u™ = ull T,LINLr(RY)
Lm(Q)
+CN—ete,

where

o= min <ag, % (1_a(d+d(1—f)v0)>).



Some consequences and remarks

@ Same rate for the genuine empirical measure of (PS)

sup |t — uelo < CN7eF,
te[0,T] Lm(Q)
where || - ||o denotes the Kantorovich-Rubinstein metric

@ The rate in the previous results holds almost surely.

@ Cannot expect here a v/ N rate of convergence because of the
short range interactions. : "best possible” N~¢.



Applications

e Coulomb-type kernels (like Biot-Savart kernel in d = 2, the
Riesz kernel with s = d — 2),
> the convergence happens for any o < ﬁ
(d=2—a= (%)*)
1

» the best possible rate of convergence is o = (m)_ which

+
is obtained for the choice o = (ﬁ) ,r=+o00, (=1.
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+
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o Keller-Segel parabolic elliptic model (d = 2 : global
solution x < 8m, blow up in finite time otherwise).

» we get the above rate for any value of ;
P the result holds even if the PDE explodes in finite time
(x > 8n).

@ The Riesz kernels with s > d — 2 do not satisfy Assumption
(AK) - 3. However, by imposing more regularity on the initial
conditions and smaller values of «, we get a rate of
convergence for singular Riesz kernels with s € (d —2,d — 1).



About the proof

@ Derive the SPDE satisfied by the mollified empirical measure

u™ in its mild form

t
uf' (x) = e ug' () —/0 V- el VN (x = )F (K # ul'())) ds
1 ‘ —s i i
fNZ/O e(t=Ag VN (x — XINY . g,
@ For g > 1 establish that

q
N
U

sup sup E “ L'(Rd)} < 00

NeN* t€[0,T]

o Decompose ||ul — us|[;1~.r in several terms and control these
terms thanks to our hypothesis.



Main issue : control the moments of

N
1 t . .
(t—s)A Niyi i
su E e VVH(X: —-)dW, r
tSEI)' | N £ /0 ( ) 11t (R9)

@ not a martingale, fix the time in the heat operator and it
becomes one
e to control its L' N L"(R¥) norm in space, use stochastic
integration techniques in infinite-dimensional spaces (van
Nerveen et al, '07)
@ you need the Garsia-Rodemich-Rumsey's lemma to put the
sup inside (you loose a bit of the speed of convergence)
Note that this is where the main limitation on «, Assumption
(Hy), arises.



The non-linear process and the propagation of chaos

Proposition 1

Let T < Tmax. Assume that ug is a probability density function
belonging to L"(RY) and that the kernel K satisfies (Hxk ). Then,
the martingale problem related to (NLSDE) is well-posed.
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The non-linear process and the propagation of chaos

Proposition 1

Let T < Tmax. Assume that ug is a probability density function
belonging to L"(RY) and that the kernel K satisfies (Hxk ). Then,
the martingale problem related to (NLSDE) is well-posed.

From here one can go on to prove the empirical measure pN on
C([0, T]; RY)) converges in law towards the unique weak solution
of (NLSDE).

Example: 2-d Keller-Segel parabolic-elliptic equation — we obtain
the (local) existence of the (NLSDE) for all the values of the
sensitivity parameter x and the propagation of chaos towards it.



Some next steps

1. Numerical applications : use our result to quantify the
convergence of a scheme coming from the moderately
interacting particles.

2. Remove the cut-off in the definition of the moderately
interacting particles.

3. Treat non-Markovian particle systems : like the ones coming
from parabolic-parabolic Keller Segel model.



