Simulation of an Homogeneous Relaxation Model for a three-phase mixture

Jean Bussac

LMJL, Université de Nantes

Congrès SMAI - 24 juin 2021

Introduction

- Homogeneous relaxation model (HRM) for a three-phase flow with two miscible phases
 - \rightsquigarrow Introducing the model
 - \rightsquigarrow Numerical study of the convective part
 - $\rightsquigarrow~$ Beginning of a numerical study of two source terms

Motivations : modeling of a water-vapor-gas flow which can appear during pressurized water reactor accident

 Figure – Loss of coolant accidents with primarly failures in pressurized water reactor (IRSN)

1 Homogeneous relaxation model

2 Numerical study of the convective part

- Schemes
- Results

- A first comparison
- Γ_2 study for a two-phase flow model

Thermodynamical description

- Three phases who share the same velocity u : liquid water (I), vapor (v) and inert gas (g)
- \rightsquigarrow Vapor and gas are totally miscible. Introducing mass fractions y_k , volume fractions α_k and energy fractions z_k , the intensive constraints are :

- Intensive description of a state : specific volume τ , internal energy e, gaseous mass fraction y_g and $Y = (y_L, \alpha_l, z_l, z_g)$ other fractions submitted to thermodynamics
- y_g is a constant since the gas is inert
- For a given state (τ, e, Y, y_g) , there must exist an unique Y_{eq} corresponding to the thermodynamic equilibrium, which only depends of (τ, e, y_g) and that maximises the entropy $\sigma = \sum_{k=l,g,v} y_k s_k$

Homogeneous relaxation model and its properties [O. Hurisse, L. Quibel, 2019] [H. Mathis, 2019]

• HRM = Euler equations + advection on fractions, thermodynamics effects modeled by source terms Γ :

$$\begin{cases} \partial_t Y + u \partial_x Y = \Gamma \\ \partial_t y_g + u \partial_x y_g = 0 \\ \partial_t \rho + \partial_x \rho u = 0 \\ \partial_t \rho u + \partial_x (\rho u^2 + P) = 0 \\ \partial_t \rho E + \partial_x (\rho E + P) u = 0 \end{cases}$$

- $-\rho\sigma$ is a Lax entropy
- Hyperbolic system as long as the three phases are present
- \rightsquigarrow System closed by given pressure laws and intensive constraints
- \rightsquigarrow Source terms must satisfy the entropy growth according to the second law of thermodynamics
 - Rankine-Hugoniot relations to build solutions of Riemann problems :
 - Pressure and velocity conserved through contacts, not fractions
 - Relations through shocks :

 $\begin{cases} [Y] = 0\\ J = -\frac{[P]}{[u]}\\ J^2 = -\frac{[P]}{[\tau]}\\ [e] + [\tau] \frac{P_L + P_R}{2} = 0 \end{cases}$

1 Homogeneous relaxation model

Numerical study of the convective partSchemes

• Results

- A first comparison
- Γ_2 study for a two-phase flow model

Study framework

- Fractional step method :
 - → Convective part solved with Finite Volume method : VFRoe-ncv [T. Buffard, T. Gallouët, J.-M. Hérard, 2000] Relaxation scheme [C.Chalons, J.-F. Coulombel, 2008]
 - \rightsquigarrow ODE on source terms to take thermodynamics into account : $\dot{Y} = \Gamma(Y)$
- Equations of state :
 - \rightsquigarrow 3 stiffened gas mixture (3 SG)
 - \sim 2 SG + 1 NASG-CK law for liquid water (2 SG + 1 NASG-CK) [L. Quibel, 2020]
- Riemann problems structure : contact + shock

Objectives

Comparing VFRoe-ncv and relaxation schemes on atmospheric and high pressure Riemann problems.

1 Homogeneous relaxation model

2 Numerical study of the convective part

- Schemes
- Results

- A first comparison
- Γ_2 study for a two-phase flow model

Convergence results

FIGURE - Finite volume schemes convergence curves for a 3 stiffened gas mixture.

- \sim Convergence rate of $\frac{1}{2}$
- ~ Very similar results between VFRoe-ncv and the relaxation scheme
- Same type of results for a 2 SG + 1 NASG-CK mixture, but more implicite equations to solve, due to the implicit change of variables in the NASG-CK EOS.
- \rightsquigarrow Need to improve the robustness of some algorithms for VFRoe-ncv

VFRoe-ncv vs. relaxation scheme

 F_{IGURE} – Comparison of CPU time for each scheme.

 \sim Relaxation scheme is much faster than VFRoe-ncv, since this last one does variable changes, and so implicit resolutions, at each cell. Consequently, the gap is wider for the more complex EOS mixture 2 SG + 1 NASG-CK.

Convective part conclusion

VFRoe-ncv and the relaxation scheme have similar errors, but the last one is faster and VFRoe-ncv has some lack of robustness.

1 Homogeneous relaxation model

2 Numerical study of the convective part

- Schemes
- Results

- A first comparison
- Γ_2 study for a two-phase flow model

A first comparison

All of the following study is done for a 3 SG mixture. For relaxation time scales $\lambda>0,$ we consider :

Type (1) : $\Gamma_1 = \lambda(Y_{eq} - Y)$

- Very used model in homogeneous literature [O. Hurisse, 2014, 2017], [L. Quibel 2019]
- Advantages :
- → Exact ODE solved for fixed time scales
- → Simple trajectories
 - Drawbacks :
- → Computation of Y_{eq} that can be very hard depending of the choice of EOS [P. Helluy, L. Quibel 2019]
- → Time scales constraints : they must be identical

Type (2) : $\Gamma_2 = \lambda Y (1 - Y) \nabla_Y \sigma$

 Recently introduced in homogeneous models [H. Mathis 2019], comes from full non-equilibrium models literature

• Advantages :

- \rightsquigarrow No need to compute $Y_{\rm eq}$
- → Time scales can be <u>different</u> depending on fractions
 - Drawbacks :
- Need a strong ODE solving method (implicit Euler scheme with Broyden algorithm)
- → Far more complex trajectories, no longer monotonous

Coupling with the convective part

- We only consider common time scales according to fractions
- Convective part is solved by the relaxation scheme
- $\bullet \ \Gamma_2$'s ODE solved by an implicit Euler method

 $\label{eq:Figure} Figure - Atmospheric pressure Riemann problem modification by adding source terms for different time scales. Red dotted lines represents constant states equilibria.$

 \rightsquigarrow Monotonous evolution towards equilibrium for Γ_1 , non monotonous for Γ_2

 \rightsquigarrow Limited choice of λ : algorithm fails due to non-admissible states around the contact

1 Homogeneous relaxation model

2 Numerical study of the convective part

- Schemes
- Results

A study of two source termsA first comparison

• Γ_2 study for a two-phase flow model

Γ_2 study for a two-phase flow

- In order to simplify the analysis, we study these source terms for a two-phase flow. Thus, the ODE system is reduced to dimension 3 $(Y = (y_l, \alpha_l, z_l))$ that allows us to visualize data in space
- → A first numerical study of trajectories brings us to consider $Y(1-Y)\nabla_Y \sigma$ instead of $\nabla_Y \sigma$: solving is easier since $\forall t > 0, \ Y(t) \in]0; 1[^3$
- $\rightsquigarrow \ \Gamma' \text{s domain is a convex subset of the} \\ \text{open cube, bounded by two planes that} \\ \text{come from entropies definitions}$
 - Important features :
 - → Uniqueness of the inner equilibrium (up to now, lack of a concavity argument)
 - \rightsquigarrow An equilibrium on the cube's border is necessary $0_{\mathbb{R}^3}$ or $1_{\mathbb{R}^3}.$

FIGURE – Γ 's definition domain for a given $\tau, e)$ in space (y, α, z) .

Conclusions

Conclusions

- Two-parts numerical study
 - → HRM convective part : efficient FV scheme
 - \rightsquigarrow Source terms contribution : $\Gamma_1 \, \text{'s}$ limits could be avoided thanks to Γ_2

Forecast

- → At-equilibrium Riemann problems
- \rightsquigarrow Validation test cases
- \rightsquigarrow Analysis of the two-phase source terms Γ_2

Thank you for your attention!