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Outlines

Motivation: kinetic approximations of conservation laws allow to design
very efficient high order schemes. Apply it to multiphase flows.

Kinetic relaxation and over-relaxation

Equivalent PDE

Application to multiphase flows

Kinetic relaxation in higher dimensions
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Kinetic relaxation and over-relaxation
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Relaxation of hyperbolic systems

I Hyperbolic system with unknown u(x , t) ∈ Rm:

∂tu+ ∂x f(u) = 0.

LHS: non-linear equations /; RHS: zero ,.

I Approximation by Jin-Xin1 relaxation (λ > 0, ε → 0+)

∂tu+ ∂xz = 0, (1)

∂tz+ λ
2
∂xu = µ, (2)

where
µ =

1
ε

(f(u)− z).

LHS: linear system with constant coefficients ,; RHS: non-linear
coupling /.

1jin1995relaxation.
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Over-relaxation

Let’s do splitting. For a rigorous formulation, introduce the Dirac comb:

Ψ(t) = ∑
i∈Z

δ (t− i∆t).

Jin-Xin relaxation is replaced in practice by

∂tu+ ∂xz = 0, (3)

∂tz+ λ
2
∂xu = µ, (4)

with
µ(x , t) = θΨ(t)

(
f(u(x , t))− z(x , t−)

)
, θ ∈ [1,2].

In other words, at times t = i∆t, z has jumps in time and:

z(x , t+) = θ f(u(x , t)) + (1−θ)z(x , t−).

If the relaxation parameter θ = 1, we recover the first order splitting.
The over-relaxation corresponds to θ = 2.
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explicit, CFL-less Kinetic interpretation
We can diagonalize the linear hyperbolic operator. For this, consider the
change of variables

k+ =
u
2

+
z
2λ

, k− =
u
2
− z

2λ
.

u = k+ +k−, z = λk+−λk−.

Then
∂tk+ + λ∂xk+ = r+, ∂tk−−λ∂xk− = r−,

where
r±(x , t) = θΨ(t)

(
keq,±(u(x , t−))−k±(x , t−)

)
and the “Maxwellian” states keq,± are given by

keq,±(u) =
u
2
± f(u)

2λ
.

Most of the time, the kinetic variables k+ and k− satisfy free transport
equations at velocity ±λ , with relaxation to equilibrium at each time
step.
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Equivalent PDE
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Oscillations of the flux error

We consider the case θ = 2.

I Let us introduce the “flux error”

y := z− f(u).

I At time t = i∆t, we see that

y(x , t+) =−y(x , t−).

Therefore y oscillates around 0 at a frequency 1/∆t.

I For the analysis, it is better to consider the solution only at even (or
only at odd) times steps t = 2i∆t.
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Equivalent PDE analysis

We can prove the following result (more rigorous formulation exists2).
Theorem: if the solution of the over-relaxation scheme is considered at
even time steps, then, up to second order terms in ∆t, its equivalent
equation in (u,y) is the following hyperbolic system of conservation laws

∂tu+ ∂x f(u) = 0,
∂ty− f ′(u)∂xy = 0.

Remarks:

I u satisfies the expected conservative system at order O(∆t2).

I y satisfies a non-conservative equation.

I There is no assumption on the smallness of y at the initial time.

I The waves for u and y move in opposite directions.

2drui2019analysis.
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Numerical results
I Isothermal Euler equations

u = (ρ,ρu)T , f(u) = (ρu,ρu2 + c2
ρ).

I Smooth initial data with a bump. Supersonic flow moving rightward
(0< λ1 = u− c < λ2 = u+ c). Non-physical initial value of y 6= 0.

I Transport equations solved with an exact characteristic scheme
(Lattice-Boltzmann Method).

I We plot ρ and the first component of y at even time steps. We
clearly observe the opposite propagation of the waves.
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Application to multiphase flows
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1D flow with phase transition

I Mixture of water and air.

I Unknowns: density ρ, velocity v , pressure p, internal energy ε and
mass fraction of the inert gas ϕ.

I Pressure law:
p = p(ρ,ε,ϕ).

I Total energy: E = ρε + 1
2ρv2.

I The equations are ∂tu+ ∂x f(u) = 0 with

u = (ρ,ρv ,ρE ,ρϕ)ᵀ, f(u) = (ρv ,ρv2 +p,(ρE +p)v ,ρvϕ)ᵀ.

The pressure is obtained from a physical thermodynamical construction
that ensures the existence of a convex entropy and a convex hyperbolicity
domain.
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Numerical results

liquid (L) air (R)
ρ 554.09 1.186245
ε 1161999.729 210749.040
ϕ 10−6 1−10−6

Table: Vapor explosion Riemann problem parameters.
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Numerical results

Top left: density, top right: pressure, bottom left: temperature, bottom
right: vapor mass fraction. Comparison between the Finite Volume and
Lattice Boltzmann Method with ω = 1.9 on a mesh with 2000 cells.
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Kinetic relaxation in higher dimensions
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Kinetic model in higher dimensions3,4

I Vectorial kinetic equation

∂tk+
D

∑
i=1

Vi
∂ik =

1
τ

(keq(k)−k). (5)

k(x, t) ∈ Rn, x ∈ RD .

I The matrices Vi , 1≤ i ≤ D are diagonal and constant.

I u = Pk where P is a constant m×n matrix, m < n.

I The equilibrium distribution keq(k) is such that Pk = Pkeq(k).

I When τ → 0, approximation of ∂tu+ ∑
D
i=1 ∂i f i (u) = 0, where the

flux is given by f i (u) = PVikeq(k).

3bouchut1999construction.
4aregba2000discrete.
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CFL-less kinetic DG scheme

I On unstructured meshes, it is easy to solve the kinetic transport
equations with an implicit upwind Discontinuous Galerkin scheme.

I In practice, the scheme is explicit if the cells are visited in the good
order.
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I In this way we obtain explicit unconditionnaly stable schemes !
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CFL-less kinetic DG scheme

Example: Maxwell equations. Comparison RK3 and CFL-less scheme.
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CFL-less kinetic DG scheme

Further improvements

I High order in space and time with palindromic splitting5;

I Easy parallelization, with a task-based approach and StarPU
runtime system6;

I Applications to: compressible flows, MHD, two-phase flow, etc.7

5hairer2006geometric.
6badwaik2018task.
7COULETTE2019.
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Thanks for your attention !

Rayleigh-Taylor instability. Two immiscible fluids with gravity. CFL=10.
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