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Kinetic relaxation and over-relaxation



Relaxation of hyperbolic systems

» Hyperbolic system with unknown u(x,t) € R™:
dru+ dxf(u) =0.

LHS: non-linear equations @; RHS: zero ©.

» Approximation by Jin-Xin! relaxation (1 >0, € — 0%)

dru+0dyz =0,
atz+l2axu =U,

where
1

= (F(w)—2).

LHS: linear system with constant coefficients ©; RHS: non-linear

coupling ®.

1jin1995relaxation.



Over-relaxation

Let's do splitting. For a rigorous formulation, introduce the Dirac comb:

W(t)=Y 6(t—iAr).
i€z
Jin-Xin relaxation is replaced in practice by
diu+0dz =0, (3)
Oz +A%ou=p, (4)
with
w(x,t) =0W(t) (f(u(x,t))—z(x,t7)), 6€[1,2].

In other words, at times t = jAt, z has jumps in time and:
z(x,t1) = 0f(u(x,t)) + (1 —0)z(x,t7).

If the relaxation parameter 8 = 1, we recover the first order splitting.
The over-relaxation corresponds to 6 = 2.



explicit, CFL-less Kinetic interpretation

We can diagonalize the linear hyperbolic operator. For this, consider the
change of variables

u z u V4

+ _ = = - _ _
K=ot K =3

u=kt+k7, z=AkT -1k .

Then
Oek T+ Akt =rt, kT —Adk =1,

where
ri(x, t) = 0V (t) (k“""?i(u(x7 t7))— ki(x, t’))

and the “Maxwellian” states ké%* are given by

u  f(u)
kedt(u) = = + 2.
W=3%%7
Most of the time, the kinetic variables k™ and k™ satisfy free transport
equations at velocity +A, with relaxation to equilibrium at each time

step.



Equivalent PDE



Oscillations of the flux error

We consider the case 0 = 2.

» Let us introduce the “flux error”
y :=z—f(u).
> At time t = [At, we see that
y(x t7) = —y(x,t7).

Therefore y oscillates around 0 at a frequency 1/At.

» For the analysis, it is better to consider the solution only at even (or
only at odd) times steps t = 2jAt.



Equivalent PDE analysis

We can prove the following result (more rigorous formulation exists?).
Theorem: if the solution of the over-relaxation scheme is considered at
even time steps, then, up to second order terms in At, its equivalent
equation in (u,y) is the following hyperbolic system of conservation laws

dru+ 9y f(u) =0,
dey —f'(u)dyy = 0.
Remarks:
> u satisfies the expected conservative system at order O(At?).
> y satisfies a non-conservative equation.
» There is no assumption on the smallness of y at the initial time.

» The waves for u and y move in opposite directions.

2drui2019analysis.



Numerical results
» Isothermal Euler equations
u=(p,pu)", f(u)=(pu,pu®+c3p).
» Smooth initial data with a bump. Supersonic flow moving rightward
(0 <A1 =u—c <Ay =u+c). Non-physical initial value of y # 0.

» Transport equations solved with an exact characteristic scheme
(Lattice-Boltzmann Method).

» We plot p and the first component of y at even time steps. We
clearly observe the opposite propagation of the waves.
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Application to multiphase flows



1D flow with phase transition

» Mixture of water and air.

» Unknowns: density p, velocity v, pressure p, internal energy € and
mass fraction of the inert gas ¢.

» Pressure law:

p=p(p;€ @)
> Total energy: E=pe+ %pv2.
» The equations are deu + dxf(u) = 0 with

u=(p,pv,pE,pp)T, f(u)=(pv,pv’+p,(PE+p)v,pve)T.

The pressure is obtained from a physical thermodynamical construction
that ensures the existence of a convex entropy and a convex hyperbolicity
domain.



Numerical results

|| liquid (L) [ air(R) |
p 554.09 1.186245
€ | 1161999.729 | 210749.040
® 10°° 1-10°

Table: Vapor explosion Riemann problem parameters.



Numerical results
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Top left: density, top right: pressure, bottom left: temperature, bottom
right: vapor mass fraction. Comparison between the Finite Volume and
Lattice Boltzmann Method with @ = 1.9 on a mesh with 2000 cells.



Kinetic relaxation in higher dimensions



Kinetic model in higher dimensions3*

» Vectorial kinetic equation
8tk+iviaik:1(keq(k)—k). (5)
i-1 T
k(x,t) € R", x € RP.
The matrices V/, 1 < i < D are diagonal and constant.
u = Pk where P is a constant m x n matrix, m < n.
The equilibrium distribution k®9(k) is such that Pk = Pk®9(k).

When 7 — 0, approximation of d:u —|—ZP:1 8;f’(u) =0, where the
flux is given by f'(u) = PV'k®(k).

vV v vy

3bouchut1999construction.
“aregha2000discrete.



CFL-less kinetic DG scheme

» On unstructured meshes, it is easy to solve the kinetic transport
equations with an implicit upwind Discontinuous Galerkin scheme.

» In practice, the scheme is explicit if the cells are visited in the good
order.

» In this way we obtain explicit unconditionnaly stable schemes !



CFL-less kinetic DG scheme

Example: Maxwell equations. Comparison RK3 and CFL-less scheme.

Onde plane de fréquence v = 0.5

Méthode CFL iter. At [lu —u®"|| 2 CPU (s) ordre o
D3Q4 96.69 53  1.86-10"2 4.10- 1074 10.67 —
D3Q4 48.37 106 9.31-10"% 1.09-107% 19.2 1.92
D3Q4 24.17 212 4.66-1073 3.14-1075 38.86 1.79
D3Q4 12.09 424  2.33-107° 1.31-107° 80.43 1.26
D3Q4 6.04 848 1.16-1072 1.01-107° 148.7 0.37
RK3 1.04 4,935 2.00-107% 9.47-107° 601.53 —
RK3 0.52 9,870 1.00-10"% 9.47 - 107" 1,192.39 —

Temps moyen par itération :

- D3Q4 ~ 0.17s
- RK3 ~ 0.12s

Parameétres :
- Maillages : torus.in_cube.msh
- Nb. elem. : 18,731
- Nb. inc. 1 4,495,440
- h : 0.000193
- t : 1

- CPU : Intel(R) Core(TM) i7-5820K CPU @ 3.30GHz (12 cores)



CFL-less kinetic DG scheme

Further improvements
» High order in space and time with palindromic splitting®;

» Easy parallelization, with a task-based approach and StarPU
runtime system®;

» Applications to: compressible flows, MHD, two-phase flow, etc.”

5hairer2006geometric.
5badwaik2018task.
"COULETTE20109.



Thanks for your attention !

Rayleigh-Taylor instability. Two immiscible fluids with gravity. CFL=10.
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