Kinetic schemes for compressible flows with phase transition Philippe Helluy

University of Strasbourg, Inria Tonus

SMAI 2021

Outlines

Motivation: kinetic approximations of conservation laws allow to design very efficient high order schemes. Apply it to multiphase flows.

Kinetic relaxation and over-relaxation

Equivalent PDE

Application to multiphase flows

Kinetic relaxation in higher dimensions

Kinetic relaxation and over-relaxation

Relaxation of hyperbolic systems

• Hyperbolic system with unknown $u(x, t) \in \mathbb{R}^m$:

$$\partial_t \mathbf{u} + \partial_x \mathbf{f}(\mathbf{u}) = 0.$$

LHS: non-linear equations ©; RHS: zero ©.

▶ Approximation by Jin-Xin¹ relaxation ($\lambda > 0$, $\varepsilon \to 0^+$)

$$\partial_t \mathbf{u} + \partial_x \mathbf{z} = \mathbf{0}, \tag{1}$$
$$\partial_t \mathbf{z} + \lambda^2 \partial_x \mathbf{u} = \boldsymbol{\mu}, \tag{2}$$

where

$$\mu = \frac{1}{\varepsilon}(f(u) - z).$$

LHS: linear system with constant coefficients ©; RHS: non-linear coupling ©.

¹jin1995relaxation.

Over-relaxation

Let's do splitting. For a rigorous formulation, introduce the Dirac comb:

$$\Psi(t) = \sum_{i\in\mathbb{Z}} \delta(t-i\Delta t).$$

Jin-Xin relaxation is replaced in practice by

$$\partial_t \mathbf{u} + \partial_x \mathbf{z} = 0,$$
 (3)
 $\partial_t \mathbf{z} + \lambda^2 \partial_x \mathbf{u} = \mu,$ (4)

with

$$\mu(x,t) = \theta \Psi(t) \left(f(u(x,t)) - z(x,t^{-}) \right), \quad \theta \in [1,2].$$

In other words, at times $t = i\Delta t$, z has jumps in time and:

$$\mathsf{z}(x,t^+) = \theta \mathsf{f}(\mathsf{u}(x,t)) + (1-\theta)\mathsf{z}(x,t^-).$$

If the relaxation parameter $\theta = 1$, we recover the first order splitting. The **over-relaxation** corresponds to $\theta = 2$.

explicit, CFL-less Kinetic interpretation

We can diagonalize the linear hyperbolic operator. For this, consider the change of variables

$$\begin{aligned} \mathbf{k}^+ &= \frac{\mathbf{u}}{2} + \frac{\mathbf{z}}{2\lambda}, \quad \mathbf{k}^- &= \frac{\mathbf{u}}{2} - \frac{\mathbf{z}}{2\lambda}. \\ \mathbf{u} &= \mathbf{k}^+ + \mathbf{k}^-, \quad \mathbf{z} &= \lambda \mathbf{k}^+ - \lambda \mathbf{k}^-. \end{aligned}$$

Then

$$\partial_t \mathbf{k}^+ + \lambda \partial_x \mathbf{k}^+ = \mathbf{r}^+, \quad \partial_t \mathbf{k}^- - \lambda \partial_x \mathbf{k}^- = \mathbf{r}^-,$$

where

$$\mathsf{r}^{\pm}(x,t) = \theta \Psi(t) \left(\mathsf{k}^{\mathsf{eq},\pm}(\mathsf{u}(x,t^{-})) - \mathsf{k}^{\pm}(x,t^{-}) \right)$$

and the "Maxwellian" states $k^{eq,\pm}$ are given by

$$\mathsf{k}^{eq,\pm}(\mathsf{u}) = \frac{\mathsf{u}}{2} \pm \frac{\mathsf{f}(\mathsf{u})}{2\lambda}.$$

Most of the time, the kinetic variables k⁺ and k⁻ satisfy free transport equations at velocity $\pm \lambda$, with relaxation to equilibrium at each time step.

Equivalent PDE

Oscillations of the flux error

We consider the case $\theta = 2$.

Let us introduce the "flux error"

$$y := z - f(u).$$

• At time $t = i\Delta t$, we see that

$$y(x,t^{+}) = -y(x,t^{-}).$$

Therefore y oscillates around 0 at a frequency $1/\Delta t$.

For the analysis, it is better to consider the solution only at even (or only at odd) times steps t = 2i∆t.

Equivalent PDE analysis

We can prove the following result (more rigorous formulation exists²). **Theorem**: if the solution of the over-relaxation scheme is considered at even time steps, then, up to second order terms in Δt , its equivalent equation in (u,y) is the following hyperbolic system of conservation laws

 $\partial_t \mathbf{u} + \partial_x \mathbf{f}(\mathbf{u}) = 0,$ $\partial_t \mathbf{y} - \mathbf{f}'(\mathbf{u})\partial_x \mathbf{y} = 0.$

Remarks:

- u satisfies the expected conservative system at order $O(\Delta t^2)$.
- y satisfies a non-conservative equation.
- There is no assumption on the smallness of y at the initial time.
- ► The waves for u and y move in opposite directions.

²drui2019analysis.

$$\mathbf{u} = (\rho, \rho u)^T$$
, $\mathbf{f}(\mathbf{u}) = (\rho u, \rho u^2 + c^2 \rho)$.

- Smooth initial data with a bump. Supersonic flow moving rightward (0 < λ₁ = u − c < λ₂ = u + c). Non-physical initial value of y ≠ 0.
- Transport equations solved with an exact characteristic scheme (Lattice-Boltzmann Method).
- We plot p and the first component of y at even time steps. We clearly observe the opposite propagation of the waves.

$$\mathbf{u} = (\rho, \rho u)^T$$
, $\mathbf{f}(\mathbf{u}) = (\rho u, \rho u^2 + c^2 \rho)$.

- Smooth initial data with a bump. Supersonic flow moving rightward (0 < λ₁ = u − c < λ₂ = u + c). Non-physical initial value of y ≠ 0.
- Transport equations solved with an exact characteristic scheme (Lattice-Boltzmann Method).
- We plot p and the first component of y at even time steps. We clearly observe the opposite propagation of the waves.

$$\mathbf{u} = (\rho, \rho u)^T$$
, $\mathbf{f}(\mathbf{u}) = (\rho u, \rho u^2 + c^2 \rho)$.

- Smooth initial data with a bump. Supersonic flow moving rightward (0 < λ₁ = u − c < λ₂ = u + c). Non-physical initial value of y ≠ 0.
- Transport equations solved with an exact characteristic scheme (Lattice-Boltzmann Method).
- We plot p and the first component of y at even time steps. We clearly observe the opposite propagation of the waves.

$$\mathbf{u} = (\rho, \rho u)^T$$
, $\mathbf{f}(\mathbf{u}) = (\rho u, \rho u^2 + c^2 \rho)$.

- Smooth initial data with a bump. Supersonic flow moving rightward (0 < λ₁ = u − c < λ₂ = u + c). Non-physical initial value of y ≠ 0.
- Transport equations solved with an exact characteristic scheme (Lattice-Boltzmann Method).
- We plot p and the first component of y at even time steps. We clearly observe the opposite propagation of the waves.

$$\mathbf{u} = (\rho, \rho u)^T$$
, $\mathbf{f}(\mathbf{u}) = (\rho u, \rho u^2 + c^2 \rho)$.

- Smooth initial data with a bump. Supersonic flow moving rightward (0 < λ₁ = u − c < λ₂ = u + c). Non-physical initial value of y ≠ 0.
- Transport equations solved with an exact characteristic scheme (Lattice-Boltzmann Method).
- We plot p and the first component of y at even time steps. We clearly observe the opposite propagation of the waves.

$$\mathbf{u} = (\rho, \rho u)^T$$
, $\mathbf{f}(\mathbf{u}) = (\rho u, \rho u^2 + c^2 \rho)$.

- Smooth initial data with a bump. Supersonic flow moving rightward (0 < λ₁ = u − c < λ₂ = u + c). Non-physical initial value of y ≠ 0.
- Transport equations solved with an exact characteristic scheme (Lattice-Boltzmann Method).
- We plot p and the first component of y at even time steps. We clearly observe the opposite propagation of the waves.

$$\mathbf{u} = (\rho, \rho u)^T$$
, $\mathbf{f}(\mathbf{u}) = (\rho u, \rho u^2 + c^2 \rho)$.

- Smooth initial data with a bump. Supersonic flow moving rightward (0 < λ₁ = u − c < λ₂ = u + c). Non-physical initial value of y ≠ 0.
- Transport equations solved with an exact characteristic scheme (Lattice-Boltzmann Method).
- We plot p and the first component of y at even time steps. We clearly observe the opposite propagation of the waves.

$$\mathbf{u} = (\rho, \rho u)^T$$
, $\mathbf{f}(\mathbf{u}) = (\rho u, \rho u^2 + c^2 \rho)$.

- Smooth initial data with a bump. Supersonic flow moving rightward (0 < λ₁ = u − c < λ₂ = u + c). Non-physical initial value of y ≠ 0.
- Transport equations solved with an exact characteristic scheme (Lattice-Boltzmann Method).
- We plot p and the first component of y at even time steps. We clearly observe the opposite propagation of the waves.

$$\mathbf{u} = (\rho, \rho u)^T$$
, $\mathbf{f}(\mathbf{u}) = (\rho u, \rho u^2 + c^2 \rho)$.

- Smooth initial data with a bump. Supersonic flow moving rightward (0 < λ₁ = u − c < λ₂ = u + c). Non-physical initial value of y ≠ 0.
- Transport equations solved with an exact characteristic scheme (Lattice-Boltzmann Method).
- We plot p and the first component of y at even time steps. We clearly observe the opposite propagation of the waves.

Application to multiphase flows

1D flow with phase transition

Mixture of water and air.

Unknowns: density ρ, velocity ν, pressure p, internal energy ε and mass fraction of the inert gas φ.

Pressure law:

$$\rho = \rho(\rho, \varepsilon, \varphi).$$

- Total energy: $E = \rho \varepsilon + \frac{1}{2} \rho v^2$.
- The equations are $\partial_t u + \partial_x f(u) = 0$ with

$$\mathbf{u} = (\rho, \rho v, \rho E, \rho \varphi)^{\mathsf{T}}, \quad \mathbf{f}(\mathbf{u}) = (\rho v, \rho v^2 + \rho, (\rho E + \rho)v, \rho v \varphi)^{\mathsf{T}}.$$

The pressure is obtained from a physical thermodynamical construction that ensures the existence of a convex entropy and a convex hyperbolicity domain.

	liquid (L)	air (R)
ρ	554.09	1.186245
ε	1161999.729	210749.040
φ	10 ⁻⁶	$1 - 10^{-6}$

Table: Vapor explosion Riemann problem parameters.

Top left: density, top right: pressure, bottom left: temperature, bottom right: vapor mass fraction. Comparison between the Finite Volume and Lattice Boltzmann Method with $\omega = 1.9$ on a mesh with 2000 cells.

Kinetic relaxation in higher dimensions

Kinetic model in higher dimensions^{3,4}

Vectorial kinetic equation

$$\partial_t \mathsf{k} + \sum_{i=1}^D \mathsf{V}^i \partial_i \mathsf{k} = \frac{1}{\tau} (\mathsf{k}^{eq}(\mathsf{k}) - \mathsf{k}).$$
⁽⁵⁾

 $k(x,t) \in \mathbb{R}^n$, $x \in \mathbb{R}^D$.

- The matrices V^i , $1 \le i \le D$ are **diagonal** and **constant**.
- u = Pk where P is a constant $m \times n$ matrix, m < n.
- The equilibrium distribution $k^{eq}(k)$ is such that $Pk = Pk^{eq}(k)$.
- ▶ When $\tau \to 0$, approximation of $\partial_t \mathbf{u} + \sum_{i=1}^D \partial_i f^i(\mathbf{u}) = 0$, where the flux is given by $f^i(\mathbf{u}) = \mathsf{PV}^i \mathsf{k}^{eq}(\mathsf{k})$.

³bouchut1999construction.

⁴aregba2000discrete.

CFL-less kinetic DG scheme

- On unstructured meshes, it is easy to solve the kinetic transport equations with an implicit upwind Discontinuous Galerkin scheme.
- In practice, the scheme is **explicit** if the cells are visited in the good order.

▶ In this way we obtain explicit unconditionnaly stable schemes !

CFL-less kinetic DG scheme

Example: Maxwell equations. Comparison RK3 and CFL-less scheme.

Méthode	CFL	iter.	Δt	$ \mathbf{u}-\mathbf{u}^{ex} _{L^2}$	$CPU\ (s)$	ord re σ
D3Q4	96.69	53	$1.86 \cdot 10^{-2}$	$4.10\cdot 10^{-4}$	10.67	_
D3Q4	48.37	106	$9.31 \cdot 10^{-3}$	$1.09 \cdot 10^{-4}$	19.2	1.92
D3Q4	24.17	212	$4.66 \cdot 10^{-3}$	$3.14 \cdot 10^{-5}$	38.86	1.79
D3Q4	12.09	424	$2.33 \cdot 10^{-3}$	$1.31 \cdot 10^{-5}$	80.43	1.26
D3Q4	6.04	848	$1.16 \cdot 10^{-3}$	$1.01 \cdot 10^{-5}$	148.7	0.37
RK3	1.04	4,935	$2.00 \cdot 10^{-4}$	$9.47 \cdot 10^{-6}$	601.53	_
RK3	0.52	9,870	$1.00 \cdot 10^{-4}$	$9.47 \cdot 10^{-6}$	1,192.39	_

Onde plane de fréquence $\nu = 0.5$

Temps moyen par itération :

-	D3Q4	\simeq	0.17s
---	------	----------	-------

- RK3 \simeq 0.12s

Paramètres :

- Maillages : torus_in_cube.msh
- Nb. elem. : 18,731
- Nb. inc. : 4,495,440
- h : 0.000193
- t : 1
- CPU : Intel(R) Core(TM) i7-5820K CPU @ 3.30GHz (12 cores)

Further improvements

- ▶ High order in space and time with palindromic splitting⁵;
- Easy parallelization, with a task-based approach and StarPU runtime system⁶;
- Applications to: compressible flows, MHD, two-phase flow, etc.⁷

⁵hairer2006geometric. ⁶badwaik2018task. ⁷COULETTE2019.

