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Introduction



Biological motivation

Mosquitoes are vectors of many diseases (Zicka, Denguee, chikungunya).
They are responsible of 700 000 deaths annually 1.
A strategy to avoid these epidemics is to eradicate such vectors.

The task of this presentation is to present two strategies in order to eradicate
an invasive species.

1. World Health Organization
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Bistable Dynamics and Traveling Waves solutions

Assumption : Bistable dynamics

∂tu −∆u︸ ︷︷ ︸
Diffusion

= g(u)︸︷︷︸
Growth

Natural solutions : the traveling waves solutions u(x , t) = φ(x − c0t).

∂tu −∆u = g(u) −→ −c0φ
′ − φ′′ = g(φ).

φ connects the two stable steady states :

φ(−∞) = 1 and φ(+∞) = 0.

The sense of propagation depends on sign(c0) = sign
(∫ 1

0 g(v)dv
)

Assumption : sign(c0) > 0 : naturally, the mosquitoes invades the territory
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The rolling carpet strategy

The idea is to act on a finite interval (0, L) and move this action like a rolling
carpet in the opposite sens than the natural invasion traveling wave.

Aim of the work : generate a traveling wave with a negative speed solution of
∂tu −∆u = g(u)1{x<−ct,x>L−ct} + Act(u)1{−ct<x<L−ct},

u(−∞) = 1,

u(+∞) = 0

Fig. 1. The system at time t = 0
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The rolling carpet strategy

The idea is to act on a finite interval (0, L) and move this action like a rolling
carpet in the opposite sens than the natural invasion traveling wave.

Aim of the work : generate a traveling wave with a negative speed solution of
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u(−∞) = 1,
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The rolling carpet strategy

The idea is to act on a finite interval (0, L) and move this action like a rolling
carpet in the opposite sens than the natural invasion traveling wave.

Aim of the work : generate a traveling wave with a negative speed solution of{
− cφ′L − φ′′L = g(φL)1{x<0,x>L} + Act(φL)1{0<x<L},

φL(−∞) = 1 φL(+∞) = 0

Fig. 1. The traveling wave solution φL
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The killing strategy



The strategy and the hypothesis

The dynamics

∂tu −∆u = g(u)1{x<−ct,x>L−ct} + Act(u)1{−ct<x<L−ct}

Action : To kill many individuals and eggs in the interval (−ct, L− ct)

∂tu −∆u =

{
g(u) for x < −ct, x > L + ct,

− µu for x ∈ (−ct, L− ct).

Biological application : The use of insecticide

Hypothesis : The death rate in (−ct, L− ct) is higher than everywhere else

i .e. − µu < g(u).

Free parameter : The size L
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The main result

Recalling the equation :{
− cφ′L − φ′′L = g(φL)1{x<0,x>L} − µφL1{0<x<L},

φL(−∞) = 1, φL(+∞) = 0

Theorem (Almeida-L.-Vauchelet)
For every speed c ≤ 0, there exists a critical size Λ(c) such that

1. If L < Λ(c) then the system does not admit a traveling wave solution φL

2. If L > Λ(c) then the system admits a decreasing traveling wave φL.

Assuming that g(u) = u(1− u)(u − α), then the system admits a solution for
L = Λ(c) if and only if

−2
√

g ′(α) < c ≤ 0.

Moreover, we have lim
L→Λ(c)

L>Λ(c)

u′(L) = 0.

. [Berestycki, Rodriguez Ryzhik, 2013] Special case c = 0 (no moving interval)
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Ingredient of the proof : Sub and Super-soutions

Main tool :

The equation is "autonomous by part"
↓

Allow to use the usual tools of autonomous equation

Application 1 : Construction of a super-solution

φ(x) =


1 for x < 0,

φ∗(x) for x > L
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The equation is "autonomous by part"
↓

Allow to use the usual tools of autonomous equation

Application 1 : Construction of a super-solution

φ(x) =


1 for x < 0,

c(r+e
r−(x−L) − r−e

r+(x−L))

r+ − r−
for 0 < x < L,

φ∗(x) for x > L
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Ingredient of the proof : characterization of the critical size

Application 2 : Construct a new solution with a minimal size L

Step 1 Autonomous equation for x > L ⇒

{
Uniqueness of the tails of φL,

φL is decreasing.
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Ingredient of the proof : characterization of the critical size

Application 2 : Construct a new solution with a minimal size L

Step 1 φL decreasing + uniqueness of the tails

Step 2 If φ′L(L) < 0, then consider the unique tail{
− cv ′ − v ′′ = g(v),

v(L) = φL(L), v ′(L) = φ′L(L).
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Ingredient of the proof : characterization of the critical size

Application 2 : Construct a new solution with a minimal size L

Step 1 φL decreasing + uniqueness of the tails

Step 2 Consider the unique tail v

Step 3 We let v(x) evolves for x < L until v ′(x0) = 0, v ′′(x0) < 0
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Ingredient of the proof : characterization of the critical size

Application 2 : Construct a new solution with a minimal size L

Step 1 φL decreasing + uniqueness of the tails

Step 2 Consider the unique tail v

Step 3 We let v(x) evolves for x < L until v ′(x0) = 0 Existence of x0 ?

Step 4 We connect v|]x0,+∞[ with the solution of the system

⇒ Lead to the solution with the minimal size Λ(c)

Answer : Yes ⇔ |c| < 2
√

g ′(α)
(Rely on the existence of Fisher-KPP traveling wave connexting α to 0)
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Numerical results

Fig. 2. Numerical computations of the functions Λ(c)

Fig. 3. Numerical solution for c = 1, L = Λ(1) (orange) and L = Λ(1) − 10−4 (blue)
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Numerical results

Fig. 2. Numerical computations of the functions Λ(c)

Fig. 3. Numerical solution for c = 1, L = Λ(1) (orange) and L = Λ(1) − 10−4 (blue)
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The sterile males strategy



The strategy and the hypothesis

Action : To release sterile males mS in (−ct, L− ct)

Remark : The dynamics must include the dynamics of the sterile males

Hypothesis : # { Fertile Females } ∼ # { Fertile Males }

New dynamics - Fertile Females f + Sterile males mS{
∂t f − ∂xx f = g(f ,mS),

∂tmS − ∂xxmS = M1{−ct<x<L−ct} − µMmS

with • g(f , 0) bi-stable,
• (ms 7→ g(f ,ms)) decreasing,
• g(f ,ms) −→

m→+∞
−µF f ,

• g(0,ms) = 0.

Free parameter : The size L & the released quantity M
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The main result

Aim : Obtain a traveling wave solution φL,M
− cφ′L,M − φ′′L,M = g(φL,M ,mS),

− cm′S −m′′S = M1{0<x<L} − µMmS

φL,M(−∞) = 1, φL,M(∞) = 0.

Theorem (Almeida-L.-Vauchelet)
For every speed c ≤ 0 and size L > 0, there exists a critical number of
mosquitoes Π(c, L) such that

1. If M < Π(c, L) then the system does not admit a solution φL,M .

2. If M > Π(c, L) then the system admits a traveling wave φL,M .

Moreover, we have

lim
L→0

Π(c, L) = +∞, lim inf
L→+∞

Π(c, L) > 0 and lim
c→−∞

Π(c, L) = +∞.

. [Almeida, Estrada, Vauchelet, 2021] Special case c = 0 (no moving interval) for (E, F, M)
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Ingredient of the proof

New difficulty : The system is fully non-autonomous

Full Characterization of mS : mS(x) = ML
∫
R

sinc( Lξ
2 )e2iπξx+iπL

2[4π2ξ2+2iπcξ+µS ]
dξ.

Corollary
mS −→

M→+∞
+∞ uniformly locally.

Consequence : If M >> 1 then

g(f ,m) ≤

{
g(f , 0) for x < 0, x > L∗,

− µf for 0 < x < L∗.

→ Allow to use the killing strategy Theorem to obtain a super-solution

Remark 1 : The sub-solution is more tricky to obtain
Remark 2 : We did not succeed in characterizing the critical number Π
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Numerical result

We perform numerical simulations of

∂t f − ∂xx f = g(f ,mS),

for c = −0.05, M = 20000 and two sizes of L.

Fig. 4. L = 17.4 Fig. 5. L = 17.49
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Perspectives



Perspectives

1. To obtain a characterization of Π(c, L)

2. To minimize the number of needed mosquitoes : N (c) = L× Π(c, L)

3. To consider other types of released (less mosquitoes are needed near L than 0) :

Released Number N Solution

Π(c, L)× L

11Π(c, L)× L

12
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Thank you for your attention


	Introduction
	The killing strategy
	The sterile males strategy
	Perspectives

