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Helmholtz & integral eqns.

Background

> v =u(x)e ™" soln. to vz = c>Av = u soln. to Au + k*u = 0 (Helmholtz)
» 3D Helmholtz may be replaced by 2D integral eqns., e.g.,

- elklw—yl
G(a,y) [ 2] @)dr@) = f(@), Glwy) =~ —
- on a7 | — y|

Challenges

» When x approaches y, the integral is near-singular, and singular when =y

> Solutions at large wavenumbers k are highly oscillatory (N o k?)

) =
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Nystrom vs. boundary elements

Integral equation

» Seek the numerical solution by replacing the f with a weighted sum

sz (@5,y,)0(y,) = f(@;), 1<j<n

» High-order but restricted in terms of geometry

Boundary element methods (Betcke, Hackbusch, Sauter, Schwab, etc.)

» Based on a finite-element formulation of the integral equation

// (z, y)v(y)d (y)u(a)dl (x /f T(x), VYue H(T)

» Flexible with respect to geometry but often low-order
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Singular/near-singular [’s in BEMs (1/3)

/ / (z, y)u(z)dD (z)v(y)dT (y / f(@)u(x)dl (z), Yue H(T)

» Compute weakly singular/near-singular integrals of the form

I(wo) = / (@) ho()
T

| — xo|

» 7T is a curved triangular element defined by degree F : T — T of degree p

> x, € R is a point on/close to T, i is a basis function of the same degree p
p
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Singular/near-singular [’s in BEMs (2/3)

» Consider the following integral that is singular at the origin

I f(z1,22)

2 2
le|<1 A/ T] + T3

da:l d$2

Singularity cancellation (Duffy, Hackbusch, Johnston, Sauter, Telles, etc.)

» Change of variables such that the Jacobian cancels the singularity

1 27 q 1 27
I = / / Mrdrd@ = / / f(rcos@,rsin0)drdd
o Jo 0 o Jo

Singularity subtraction (Aliabadi, Guiggiani, Hall, Jarvenp3i, etc.)

» Terms having the same asymptotic behavior at the singularity are subtracted

I:/ f(IZ?'l,IIZ2) _ f(0,0) d$1d$2+/ f(070) dIldQ?Q
i<t | V23 +23 /23 + o} lol<1 /23 + 25
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Singular/near-singular [’s in BEMs (3/3)

Continuation approach (Cormack, Rosen, Vijayakumar)
> Suppose f is homogeneous, ie., f(Ax) = AT f(x), then

1 f(z1,x2)

I = — e
9+2 Jigo1 /23 + 23
A more complicated example

» Consider the following integral that is near-singular at the origin

I(h) = Mdmldmg
ei<1 /@] + a3 + B2

» Continuation approach still works and yields

27 “+ oo
du
I(h :hq+2/ cos 0, sin 6 / ———df
) @ # ) no udt3/14u?

» How do we utilize the continuation approach on curved elements?

» Existing method is expensive and has poor accuracy near the boundary

27
dzydas = q%? /0 F(cos8,5in6)do
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Method — Presentation

T
T

dS(z), F:Tw—T
|l — xo

» Step 1 — Mapping back to the reference element

_ v(2) N =
I(wo)_[T\|F(§:)—mo|dS(w)’ F:T—T

> Step 2 — Locating the singularity/near-singularity via £ = argmin|F(&) — xo|?

» Step 3 — Taylor expanding/subtracting

()

I(mo):/?T_l(:ﬁ,h)dS(:f})—F/?{m—T_1(§3,h)}dS(:f:)

» Step 4 — Integrating the Taylor term with continuation + exact 1D integration

3 V1T (@0) (@ — 20)2 + h2 — h

I-1(h) = v(Zo) Zsi /BA [J(£0)(& — Z0)|?

i=1 T;

ds(&)
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Method — Step 2

‘ Goal > Locating the singularity/near-singularity via &9 = argmin|F (%) — xo|?

Cost function

> To compute &g, we minimize E(&) = |F(&) — xo|* with, e.g., for p = 2
6
F(&) =Y ;(#)a; €T
=il

Numerical optimization

> Get close to a minimum with gradient descent: 5™ = &9 — nVE(&0)
> Improve the accuracy with Newton's method: 52 = £ — nH (£0) 'V E(&)

as as

as
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Method — Step 3

‘ Goal » Taylor expanding/subtracting I = fT,1 +f {vR’1 —T,1}

First-order Taylor series

> Write FI(2) —xo = F(&) — F(&0) + F(&0) —xo (‘onT"+ “LtoT")
» First-order Taylor series in 6% = | — &o|

F(2) — 20 = J(&0)(& — &0) + F(&0) — zo + O(62%) (“on J”+ “L to J")

> From the Taylor expansion of R? = |F(&) — xo|?, we obtain that of vR™!

1
2

vR™! = u(@o) [ (20)(@ — &0)[* + h*]”

Higher-order expansions

» More Taylor terms—smoother 2D integrand for faster 2D quadrature, e.g.,

+0(62°) =T 1 + 0(62°)

To(&, h ——U(l) hvo y a-—&c1 o3y =
- J
[Josaf + 2]k 2 [ osaf? + h2)E
Ty (&,h) =...
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Method — Step 4

‘ Goal » Calculating fT,1 with continuation + exact 1D integration

Continuation apporach on triangles

> Parametrize each vertex, e.g., 71(t) = (t,0)” with 0 <t < 1
\/lJ )(ri(t) —20)* + k% —h
I_1(h) = i (8)|dt
() = / e )

—2n

» Near-singular for small s;'s, slow p convergence (p /& 1)—exact integration

@ 03 = (07 1)
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Numerical experiments (1/2)
‘ Goal » Computing fT |& — 0|~ for xo = F(0.99,0.01) +107*2 (p = 2)
Setup as as

as = (0.7,0.6,0.5)
as —) ag

Taylor 1st-order
Taylor 2nd-order
e Taylor 3rd-order

Relative error

10! 10? 10°
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Numerical experiments (2/2)

‘ Goal » Solving 3D spherical scattering Helmholtz Au+u =0 (p = 1, 2)

» Single-layer potential formulation of the integral equation
» Relative error in the SER vs. number of elements—exact solution is known

» Implemented in C++, soon available as part of castor (&~ 2,000 ++)
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Summary

» Novel method for computing weakly singular/near-singular integrals
» Based on Taylor subtraction and the continuation approach

» Exact calculation of 1D integrals completely removes the near-singular issue

» Applicable to quadrilateral elements with some tweaks
» Extension to strongly and hyper singular integrals

» Maxwell's equations, elasticity problems, etc.

ECOLE
POLYTECHNIQUE

13/13



