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Helmholtz & integral eqns.

Background

I v = u(x)e−iωt soln. to vtt = c2∆v ⇒ u soln. to ∆u+ k2u = 0 (Helmholtz)
I 3D Helmholtz may be replaced by 2D integral eqns., e.g.,∫

Γ
G(x,y)

[
∂u

∂n

]
(y)dΓ(y) = f(x), G(x,y) = 1

4π
eik|x−y|

|x− y|

Challenges

I When x approaches y, the integral is near-singular, and singular when x = y

I Solutions at large wavenumbers k are highly oscillatory (N ∝ k2)
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Nyström vs. boundary elements

Integral equation ∫
Γ
G(x,y)v(y)dΓ(y) = f(x), x ∈ Γ

Nyström methods (Alpert, Barnett, Bruno, Greengard, Rokhlin, etc.)

I Seek the numerical solution by replacing the
∫

with a weighted sum

n∑
i=1

wiG(xj ,yi)v(yi) = f(xj), 1 ≤ j ≤ n

I High-order but restricted in terms of geometry

Boundary element methods (Betcke, Hackbusch, Sauter, Schwab, etc.)

I Based on a finite-element formulation of the integral equation∫
Γ

∫
Γ
G(x,y)v(y)dΓ(y)u(x)dΓ(x) =

∫
Γ
f(x)u(x)dΓ(x), ∀u ∈ Hs(Γ)

I Flexible with respect to geometry but often low-order
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Singular/near-singular ∫ ’s in BEMs (1/3)

Boundary element methods∫
Γ

∫
Γ
G(x,y)u(x)dΓ(x)v(y)dΓ(y) =

∫
Γ
f(x)u(x)dΓ(x), ∀u ∈ Hs(Γ)

Setup

I Compute weakly singular/near-singular integrals of the form

I(x0) =
∫
T

û(F−1(x))
|x− x0|

dS(x)

I T is a curved triangular element defined by degree F : T̂ 7→ T of degree p
I x0 ∈ R3 is a point on/close to T , û is a basis function of the same degree p

T̂ F T
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Singular/near-singular ∫ ’s in BEMs (2/3)

A simple example

I Consider the following integral that is singular at the origin

I =
∫
|x|≤1

f(x1, x2)√
x2

1 + x2
2

dx1dx2

Singularity cancellation (Duffy, Hackbusch, Johnston, Sauter, Telles, etc.)

I Change of variables such that the Jacobian cancels the singularity

I =
∫ 1

0

∫ 2π

0

f(r cos θ, r sin θ)
r

rdrdθ =
∫ 1

0

∫ 2π

0
f(r cos θ, r sin θ)drdθ

Singularity subtraction (Aliabadi, Guiggiani, Hall, Järvenpää, etc.)

I Terms having the same asymptotic behavior at the singularity are subtracted

I =
∫
|x|≤1

{
f(x1, x2)√
x2

1 + x2
2

− f(0, 0)√
x2

1 + x2
2

}
dx1dx2 +

∫
|x|≤1

f(0, 0)√
x2

1 + x2
2

dx1dx2
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Singular/near-singular ∫ ’s in BEMs (3/3)

Continuation approach (Cormack, Rosen, Vijayakumar)

I Suppose f is homogeneous, i.e., f(λx) = λq+1f(x), then

I = 1
q + 2

∫
|x|=1

f(x1, x2)√
x2

1 + x2
2

dx1dx2 = 1
q + 2

∫ 2π

0
f(cos θ, sin θ)dθ

A more complicated example

I Consider the following integral that is near-singular at the origin

I(h) =
∫
|x|≤1

f(x1, x2)√
x2

1 + x2
2 + h2

dx1dx2

I Continuation approach still works and yields

I(h) = hq+2
∫ 2π

0
f(cos θ, sin θ)

∫ +∞

h

du

uq+3
√

1 + u2
dθ

I How do we utilize the continuation approach on curved elements?
I Existing method is expensive and has poor accuracy near the boundary
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Method – Presentation

Problem
I(x0) =

∫
T

û(F−1(x))
|x− x0|

dS(x), F : T̂ 7→ T

Method
I Step 1 – Mapping back to the reference element

I(x0) =
∫
T̂

v(x̂)
|F (x̂)− x0|

dS(x̂), F : T̂ 7→ T

I Step 2 – Locating the singularity/near-singularity via x̂0 = argmin|F (x̂)−x0|2

I Step 3 – Taylor expanding/subtracting

I(x0) =
∫
T̂

T−1(x̂, h)dS(x̂) +
∫
T̂

{
v(x̂)

|F (x̂)− x0|
− T−1(x̂, h)

}
dS(x̂)

I Step 4 – Integrating the Taylor term with continuation + exact 1D integration

I−1(h) = v(x̂0)
3∑
i=1

si

∫
∂T̂i

√
|J(x̂0)(x̂− x̂0)|2 + h2 − h
|J(x̂0)(x̂− x̂0)|2 ds(x̂)
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Method – Step 2
Goal I Locating the singularity/near-singularity via x̂0 = argmin|F (x̂)− x0|2

Cost function

I To compute x̂0, we minimize E(x̂) = |F (x̂)− x0|2 with, e.g., for p = 2

F (x̂) =
6∑
j=1

ûj(x̂)aj ∈ T

Numerical optimization

I Get close to a minimum with gradient descent: x̂new
0 = x̂0 − η∇E(x̂0)

I Improve the accuracy with Newton’s method: x̂new
0 = x̂0 − ηH(x̂0)−1∇E(x̂0)

â1 â2

â3

â4

â5â6
T̂ F

a1 a2

a3

a4

a5
a6

T

8/13



Method – Step 3
Goal I Taylor expanding/subtracting I =

∫
T−1 +

∫ {
vR−1 − T−1

}
First-order Taylor series

I Write F (x̂)− x0 = F (x̂)− F (x̂0) + F (x̂0)− x0 (“on T ” + “⊥ to T ”)
I First-order Taylor series in δx̂ = |x̂− x̂0|

F (x̂)− x0 = J(x̂0)(x̂− x̂0) + F (x̂0)− x0 +O(δx̂2) (“on J” + “⊥ to J”)

I From the Taylor expansion of R2 = |F (x̂)− x0|2, we obtain that of vR−1

vR−1 = v(x̂0)
[
|J(x̂0)(x̂− x̂0)|2 + h2]− 1

2 +O(δx̂0) = T−1 +O(δx̂0)

Higher-order expansions

I More Taylor terms—smoother 2D integrand for faster 2D quadrature, e.g.,

T0(x̂, h) = v′0

[|J0δx̂|2 + h2]
1
2
− hv0

2

3∑
j=1

aj
δx̂3−j

1 δx̂j−1
2

[|J0δx̂|2 + h2]
3
2
− . . .

T1(x̂, h) = . . .
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Method – Step 4
Goal I Calculating

∫
T−1 with continuation + exact 1D integration

Continuation apporach on triangles

I Parametrize each vertex, e.g., r1(t) = (t, 0)T with 0 ≤ t ≤ 1

I−1(h) = v(x̂0)
3∑
i=1

si

∫ 1

0

√
|J(x̂0)(ri(t)− x̂0)|2 + h2 − h
|J(x̂0)(ri(t)− x̂0)|2 |r′i(t)|dt

I Near-singular for small si’s, slow ρ−2n convergence (ρ ≈ 1)—exact integration

x̂0

s1

s2
s3

â1 = (0, 0) â2 = (1, 0)

â3 = (0, 1)

r1(t)

r2(t)r3(t)
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Numerical experiments (1/2)
Goal I Computing

∫
T |x− x0|−1 for x0 = F (0.99, 0.01) + 10−4z (p = 2)

Setup

â1 â2

â3

â4

â5â6
T̂ x̂0

F

a1 a2

a3

a4

a5 = (0.7, 0.6, 0.5)
a6

T
x0
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Numerical experiments (2/2)
Goal I Solving 3D spherical scattering Helmholtz ∆u+ u = 0 (p = 1, 2)

Setup

I Single-layer potential formulation of the integral equation
I Relative error in the SER vs. number of elements—exact solution is known
I Implemented in C++, soon available as part of castor (≈ 2,000 ++)
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Summary

Method

I Novel method for computing weakly singular/near-singular integrals
I Based on Taylor subtraction and the continuation approach
I Exact calculation of 1D integrals completely removes the near-singular issue

Future

I Applicable to quadrilateral elements with some tweaks
I Extension to strongly and hyper singular integrals
I Maxwell’s equations, elasticity problems, etc.
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