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Introduction



The Cahn-Hilliard equation

∂tn = ∇ · (b(n)∇ (−γ∆n + ψ′(n))) in Ω× (0,+∞),

with Neumann boundary conditions

∂n

∂ν
= b(n)

∂ (−γ∆n + ψ′(n))

∂ν
= 0 on ∂Ω× (0,+∞).

• Introduced by Cahn and Hilliard (1958): models the spinodal
decomposition.
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The Cahn-Hilliard equation

• Helmholtz free energy:

E [n] =

∫
Ω

[γ
2
|∇n|2 + ψ(n)

]
.

• n = n1
n1+n2

: order parameter (relative volume fraction or density).
• γ

2 |∇n|
2: represents surface tension and penalizes large gradients of

n.

• γ =
√
ε: width of the diffuse

interface.

• ψ(n): homogeneous free
energy.

• Mass balance equation:

∂tn = ∇ ·
(
b(n)∇δE

δn

)
.
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Modeling of living tissues

• Khain, Evgeniy and Sander, Leonard M., A generalized Cahn-Hilliard
equation for biological applications, Physical Review E, 77,(2008).

• Generalized Cahn-Hilliard equation + proliferation term.
• Continuum limit of a discrete model: cells move, proliferate and

interact via adhesion.

Figure 2: Taken from Ben Amar, M. and Wu, M. Re-epithelialization: advancing epithelium frontier during
wound healing, Journal of The Royal Society Interface 11, 93, (2014).
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Modeling of living tissues

• Agosti, Abramo and Cattaneo, Clara and Giverso, Chiara and Ambrosi,
Davide and Ciarletta, Pasquale, A computational framework for the
personalized clinical treatment of glioblastoma multiforme, 98, Z. Angew.
Math. Mech., (2018).

• Degenerate Cahn-Hilliard equation with single-well logarithmic
potential.

• Glioblastoma multiforme.
• Proliferation and death of cells.
• Effect of radiotherapy.
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Degenerate Cahn-Hilliard model

• Coupled second-order system of equations:{
∂tn = ∇ · (b(n)∇w) ,

w = −γ∆n + ψ′(n),

∂n

∂ν
= b(n)

∂w

∂ν
= 0.

• b(n) = n(1− n)2.

• ψ: single-well logarithmic potential.

• ψ = ψ+ + ψ−: convex-concave decomposition.
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Singular single-well potential

Figure 3: Single-well potential of Lennard-Jones type.
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Relaxation of the degenerate
Cahn-Hilliard model



RDCH model

• Relaxed-degenerate Cahn-Hilliard model ∂tnσ = ∇ ·
(
b(nσ)∇

(
ϕσ + ψ′+(nσ)

))
in Ω× (0,+∞),

−σ∆ϕσ + ϕσ = −γ∆nσ + ψ′−
(
nσ −

σ

γ
ϕσ
)

in Ω× (0,+∞).

• Zero-flux boundary conditions

∂(γnσ − σϕσ)

∂ν
= b(nσ)

∂
(
ϕσ + ψ′+(nσ)

)
∂ν

= 0 on ∂Ω× (0,+∞).

• Parabolic-elliptic system of two second-order coupled equations.
• σ = relaxation parameter.
• Perthame, Benoît and Poulain, Alexandre, Relaxation of the

Cahn–Hilliard equation with singular single-well potential and
degenerate mobility, European Journal of Applied Mathematics,
(2020).
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Outline of the analysis

1. Regularized problem.
• Non-degenerate mobility + non-singular potential.

2. Existence of solutions for the regularized problem.
3. Existence of global weak solutions for the RDCH model.

nσ ∈ L2(0,T ;H1(Ω)), ∂tnσ ∈ L2(0,T ; (H1(Ω))′
)
.

ϕσ ∈ L2(0,T ;H1(Ω)),

nσ −
σ

γ
ϕσ ∈ L2(0,T ;H2(Ω)), ∂t

(
nσ −

σ

γ
ϕσ

)
∈ L2(0,T ; (H1(Ω))′

)
.

0 ≤ nσ < 1, a.e. in ΩT .

4. Convergence to the solutions of the DCH model as σ → 0.
5. Convergence of the solutions to steady-states as t → +∞.

• Inequalities from energy and entropy estimates.
• Compactness of important quantities.
• Limit ε→ 0 and/or σ → 0.
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Numerical simulation



Numerical schemes

• Goals:
• Use simple P − 1 finite elements.
• Can be solved using standard sofwares for parabolic and elliptic

equations.
• Avoid Newton iterations and the variational inequality.
• Preserve energy decay, non-negativity of the solution and mass

conservation.

9



Existence and non-negativity of the discrete solution

Bubba, Federica and Poulain, Alexandre, A non-negativity preserving
finite element scheme for the relaxed Cahn-Hilliard equation with
single-well potential and degenerate mobility, Submitted.

1. Regularized problem.
• Smooth potential ψε,+.

2. Existence of solutions for the regularized problem using Brouwer’s
fixed-point theorem.

3. Non-negativity is proved using the upwind method.

4. Passing to the limit of the regularization parameter, we proved the
existence of discrete non-negative solutions.

5. Convergence analysis for d = 1, 2, 3 is achieved using discrete a
priori estimates.
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Numerical results



1D numerical simulation
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1D numerical simulation
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1D numerical simulation
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2D numerical simulations
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2D numerical simulations

Right figure: Aggregation of glioma cells (T=0) from rat during time
reproduced from L. Adenis et al. (2020), (CC BY-NC 3.0).
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2D numerical simulations

Right figure: Aggregation of glioma cells (T=6h) from rat during time
reproduced from L. Adenis et al. (2020), (CC BY-NC 3.0).
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2D numerical simulations

Right figure: Aggregation of glioma cells (T=12h) from rat during time
reproduced from L. Adenis et al. (2020), (CC BY-NC 3.0).
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Conclusion and further works



Conclusion and further directions

• Summary:
• Relaxation of the Cahn-Hilliard equation with degenerate mobility

and single-well logarithmic potential.
• Existence of global weak solutions and convergence to the initial

problem.
• P − 1 finite element numerical scheme: preserves the energy and

the physical bound of the solution.

• Further directions
• Multiphase Cahn-Hilliard model with degenerate mobility and

singular degenerate potential.
• Model including cancer and immune cells: immunotherapy.
• Incompressible limit in general living tissue models with surface

tension.
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Heterogeneity of tumors

Figure 4: Taken from J. Galon and D. Bruni, Approaches to treat immune hot,
altered and cold tumours with combination immunotherapies, Nature Reviews |
Drug Discovery (2019). 19



Thank you
Questions?

19



Energy estimates

• Regularization:

b1 < Bε(n) < B1, ∀n ∈ R and Bε ∈ C (R,R+),

ψ+,ε(n) ∈ C 2(R,R) ψ+,ε(n) ≥ −D1, ψ− ∈ C 2
b (R), ∀n ∈ R.

Definition (Energy)
d

dt
Eσ,ε[nσ,ε(t)] = −

∫
Ω

Bε(nσ,ε)
∣∣∇(ϕσ,ε + ψ′+,ε(nσ,ε))

∣∣2 ≤ 0.

Eσ,ε[nσ,ε(T )] +

∫ T

0

∫
Ω

Bε(nσ,ε)
∣∣∇(ϕσ,ε + ψ′+,ε(nσ,ε))

∣∣2 = Eσ,ε[n0].

with
Eσ,ε[nσ,ε] =

∫
Ω

[
ψ+,ε(nσ,ε) +

γ

2
|∇(nσ,ε −

σ

γ
ϕσ,ε)|2

+
σ

2γ
|ϕσ,ε|2 + ψ−(nσ,ε −

σ

γ
ϕσ,ε)

]
,
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Entropy estimate

Definition (Entropy)

φε : [0,∞) 7→ [0,∞)

φ′′ε (n) =
1

Bε(n)
, φε(0) = φ′ε(0) = 0,

Φε[n] =

∫
Ω

φε
(
n(x)

)
dx .

dΦε[nσ,ε(t)]

dt
=−

∫
Ω

γ

∣∣∣∣∆(nσ,ε − σ

γ
ϕσ,ε

)∣∣∣∣2 +
σ

γ
|∇ϕσ,ε|2

+ ψ′′−(nσ,ε −
σ

γ
ϕσ,ε)

∣∣∣∣∇(nσ,ε −
σ

γ
ϕσ,ε)

∣∣∣∣2 + ψ′′+,ε(nσ,ε)|∇nσ,ε|2.
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Inequalities

Lemma (Compactness of time derivative)

||∂tnσ,ε||L2(0,T ;(H1(Ω))′) ≤ C ,

||∂t
(
nσ,ε −

σ

γ
ϕσ,ε

)
||L2(0,T ;(H1(Ω))′) ≤ C .

• In the limit σ → 0, the solutions satisfy:

For all χ ∈ L2(0,T ;H2(Ω)) ∩ L∞(ΩT ) with ∇χ · ν = 0 on ∂Ω× (0,T ),{∫ T

0 < χ, ∂tn > =
∫

ΩT
J · ∇χ,∫

ΩT
J · ∇χ = −

∫
ΩT
γ∆n [b′(n)∇n · ∇χ+ b(n)∆χ] + (bψ′′)(n)∇n · ∇χ.

• This is the Degenerate Cahn-Hilliard model.
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1D parameters

• Ω = [0, 1].

• T h: uniform mesh, 1D bar elements.

• h = 0.01, ∆t = 2γ.

• Total number of elements: 100.

• γ = (0.014)2.

• σ = 1e−5.

• n? = 0.6.

• n0
h = 0.3.
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2D numerical simulations

• Ω = [0, 3]× [0, 3].

• T h: uniform mesh, triangular elements.

• h = 0.03, ∆t = 2γ.

• Total number of elements: 20000.

• γ = (0.014)2.

• σ = 1e−5.

• n? = 0.6.

• n0
h = [0.05, 0.3, 0.36].
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