How to use asymptotics to derive a low-dimensional and mathematically well posed model of falling film flows.

Christian Ruyer-Quil1, Khawla Msheik1,2

1LOCIE, University Savoie Mont Blanc
2ICJ, University Claude Bernard (Lyon 1)

June 22, 2021
Thin Films Between Physical Basis and Phenomena

Thin liquid film

Modeling

Solution

Physical Forces

Inertia

viscosity

surface tension

June 22, 2021
Scaling For Thin Liquid Films

\[\begin{align*}
\nabla \cdot \mathbf{u} &= 0, \\
\rho (\partial_t \mathbf{u} + \mathbf{u} \cdot \nabla \mathbf{u}) &= -\nabla p + \rho \mathbf{g} \mathbf{e} + \mu \Delta \mathbf{u} \quad \text{Inertia} \quad \text{Pressure} \quad \text{Viscosity}
\end{align*} \]

\[\text{In Long wave limit: } \epsilon \text{ very small } \implies \text{Drag-gravity Regime} \]

\[\text{What if } \epsilon \text{ is not too small } \implies \text{What physical effect to count on, and what to ignore? } \implies \text{Drag-Inertia Regime} \]

\[\epsilon Fr^2 \text{Inertia} = \epsilon (\text{Pressure} + \text{Surface Tension}) + \frac{Fr^2}{Re} (\text{Viscosity} + \text{Gravity}) \]

\[\text{Ansatz: } Re = O(1) \]

\[\{ \text{Reynold nb : Re, Froude nb : Fr, smallness parameter : } \epsilon \} \]

+ \text{B.C: Surface Tension}
Weighted Residual Method [1]

- Start by choosing the velocity profile
 1. At first order using Gauge condition

 \[u = 3Ug_0 \text{ where } \int_0^h u = hU \]

- Exact profile by adding the correction

 \[u = 3Ug_0 + \epsilon \tilde{u} \iff \int_0^h \tilde{u} = 0 \]

How to figure out \(\tilde{u} \) and other variables??

- Use Weighted residual method
 1. From Mom EQ \(\partial_{zz} u = 3U \partial_{zz} g_0 + \epsilon \partial_{zz} \tilde{u} \)
 2. Choose \(G \) such that by integration by parts

 \[
 \int_0^h \partial_{zz} \tilde{u} \times G = B.C + \int_0^h \tilde{u} \partial_{zz} G = C \int_0^h \tilde{u} = 0
 \]

- \(\tilde{u} \) eliminates from big orders of Mom EQ \(\rightarrow \) Solve obtained system for \(h \) and \(U \)

"C. Ruyer-Quil, P. Manneville,
Improved modeling of flows down inclined planes, 2000"
Pros of WRM
- Very good numerical results compared to Navier Stokes system results
- Better representation of Drag-inertia regimes where ϵ not very small

Cons
- No energy equation
- Lose hyperbolicity

S. Chakraborty, P.-K. Nguyen, C. Ruyer-Quil and V. Bontozoglou,
Extreme solitary waves on falling liquid films, 2014
Propositions inspired by [1]

\[\epsilon \text{Inertia terms} = \text{Gravity} + \text{Viscosity} + \epsilon^2 \text{Dispersive terms} \]

- Viscosity terms give good eigenvalues \(\rightarrow \) Preserve them
- Change Inertia terms using Long wave expansion so that we
 1. Preserve the good representation Drag-inertia regime by WRM
 2. Obtain dissipative energy
 3. Obtain Linear stability

"[1] G. L. Richard, C. Ruyer-Quil and J. P. Vila,
A three-equation model for thin films down an inclined plane, 2016
First Approach

- **Comparison:**
 Inertia terms from depth-integrating, i.e Shallow Water Model:

 \[
 \partial_t (hU) + \partial_x \left(\int_0^h u^2 \right) \quad \text{where} \quad \int_0^h u^2 = \int_0^h (U + u - U)^2 = hU^2 + O(\epsilon)
 \]

- **Idea:**
 Better approximation of \(\int_0^h (u - U)^2 \) \(\Rightarrow \) Claim there exists \(\psi_1 \)

 \[
 \int_0^h (u - U)^2 = \frac{h^3}{5} (U - 6 \frac{s_1}{h})^2 + O(\epsilon^2) \quad \ldots \text{4 Eq Model by WRM}
 \]

 \[
 = \frac{h^3}{5} \psi_1^2 + O(\epsilon^2)
 \]

- **Velocity profile**

 \[
 \psi_1 = U - 6 \frac{s_1}{h} \quad \Rightarrow \quad u = F(U, \psi_1)
 \]

- **Procedure:**
 Derive 3 equations on \(h, U, \Psi_1 \) using the residues

 \[
 R_1 = \langle \tilde{u}, 1 \rangle = \int_0^h \tilde{u} \, dz = 0 \]

 \[
 R_2 = \langle \tilde{u}, g_0 \rangle = \int_0^h \tilde{u}g_0 \, dz = 0.
 \]
Transforming Inertia Terms: preserving consistency

- By WRM, we solve above equations for $\partial_t U$ and $\partial_t \psi_1$

\[
\begin{align*}
I_U & \sim \frac{1}{\epsilon \text{Re}} \left(\frac{14}{15} (\lambda h - 3U/h) + \frac{21}{5} (\psi_1 - U/h) \right) - \frac{14}{15} \left(\frac{\cos \theta}{F r^2} h \partial_x h - \frac{\kappa}{F r^2} h \partial_x^3 h \right) \\
I_{\psi_1} & \sim \frac{1}{\epsilon \text{Re}} \left(\frac{1}{3} (\lambda - 3U/h^2) + \frac{21}{h} (\frac{U}{h} - \psi_1) \right) - \frac{1}{3} \left(\frac{\cos \theta}{F r^2} \partial_x h - \frac{\kappa}{F r^2} \partial_x^3 h \right)
\end{align*}
\]

- Using definition of ψ_1 and asymptotic expansions we prove

\[
I_U \sim \partial_t (hU) + \partial_x (hU^2 + \frac{h^3 \psi_1^2}{5}) + O(\epsilon^2) \\
I_{\psi_1} \sim \partial_t (h\psi_1) + \partial_x (hU \psi_1) - \frac{1}{7} \frac{\partial_x (h^4 \psi_1^3)}{h^2 \psi_1} + O(\epsilon)
\]
Resulting System

\[\partial_t h + \partial_x (hU) = 0, \]

\[\partial_t (hU) + \partial_x (hU^2 + \frac{1}{5} h^3 \psi_1^2) = \frac{1}{\epsilon Re} \left(\frac{14}{15} \left(\lambda h - \frac{3U}{h} \right) + \frac{21}{5} \left(\psi_1 - \frac{U}{h} \right) \right) \]

\[- \frac{14}{15} \left(\frac{\cos \theta}{Fr^2} h \partial_x h - \frac{\kappa}{Fr^2} h \partial^3_x h \right) + \frac{\epsilon}{Re} D_1, \]

\[\partial_t (h \psi_1) + \partial_x (hU \psi_1) - \frac{1}{7} \frac{\partial_x (h^4 \psi_1^3)}{h^2 \psi_1} = \frac{1}{\epsilon Re} \left(\frac{1}{3} \left(\lambda - \frac{3U}{h^2} \right) + \frac{21}{h} \left(\frac{U}{h} - \psi_1 \right) \right) \]

\[- \frac{1}{3} \left(\frac{\cos \theta}{Fr^2} \partial_x h - \frac{\kappa}{Fr^2} \partial^3_x h \right) + \frac{\epsilon}{Re} D_2, \]

(2)

- Term in violet approximation of \(\int_0^h (u - U)^3 \)
- **Pros:** Dissipative energy
Numerical results of the Solitary wave test using AUTO

Figure 1: the height and velocity speed showing certain stability for sufficiently high Reynold number
Figure 2: profiles of h and ψ_1 for Re=20, Ka=3400
• One step further: Claim there exists ψ_1, ψ_2 and ψ_3

$$\int_0^h (u - U)^2 = \frac{h^3}{5} (U - 6 \frac{s_1 + s_2}{h})^2 + 4h^3 (\frac{s_1}{2} - \frac{3}{2} s_2)^2 + \frac{225}{13h} s_2^2 + O(\epsilon^2)$$

$$= \frac{h^3}{5} \psi_1^2 + 4h^3 \psi_2^2 + \frac{225}{13} h^3 \psi_3^2 + O(\epsilon^2)$$

• Velocity profile

$$u = F(U, \psi_1, \psi_2)$$

• Procedure: Derive 4 equations on h, U, $\Psi_{1,2}$, ($\Psi_3 = F(h, U, \Psi_1, \Psi_2)$) using

$$R_1 = <\tilde{u}, 1> = \int_0^h \tilde{u} \, dz = 0$$
$$R_2 = <\tilde{u}, g_0> = \int_0^h \tilde{u} g_0 \, dz = 0$$

$$R_3 = <\tilde{u}, g_1> = \int_0^h \tilde{u} g_1 \, dz = 0.$$
Goal: Reformulating inertia terms→Dissipative Energy+linear stability

- First Eq: Easy

\[\partial_t (hU) + \partial_x (hU^2 + \frac{h^3 \psi_1^2}{5} + 4h^3 \psi_2^2) + O(\epsilon^2). \]

- Second Eq:

1. First approach as with \(\psi_1 \) with the term \(-\frac{1}{7} \partial_x (h^3 \psi_1^4)\):
 failed to obtain the secondary fixed point

2. Second approach:
 1. Preserve transport part for the sake of energy
 2. Express different gradients that get canceled in mechanical energy equation

\[I_{\psi_1} = \partial_t (h \psi_1) + \partial_x (hU \psi_1) + \frac{20}{h^2 \psi_1} \left(\partial_x (A1 h^3 U \psi_1^2 + B1 h^4 \psi_1^3 + C1 h^4 \psi_1^2 \psi_2) \right. \]
\[\left. - DDh^4 \psi_2 \psi_1 \partial_x \psi_1 - EEh^3 \psi_2 \psi_1^2 \partial_x h - FFh^3 \psi_2 \psi_1 \partial_x U - G Gh^2 \psi_2 \psi_1 U \partial_x h \right) \]
\[+ O(\epsilon) \]

\[I_{\psi_2} = \partial_t (h \psi_2) + \partial_x (hU \psi_2) + \frac{1}{h^2 \psi_2} \left(\partial_x (A2 h^3 U \psi_2^2 + B2 h^4 \psi_1 \psi_2^2 + C2 h^4 \psi_3^3) \right. \]
\[\left. - DDh^4 \psi_2 \psi_1 \partial_x \psi_1 - EEh^3 \psi_2 \psi_1^2 \partial_x h - FFh^3 \psi_2 \psi_1 \partial_x U - G Gh^2 \psi_2 \psi_1 U \partial_x h \right) \]
\[+ O(\epsilon) \]
End of presentation

Thank You!