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Introduction

Magnetohydrodynamics (MHD) is the academic discipline which studies the
dynamics of electrically conducting fluids. Examples of such fluids include
plasmas, liquid metals, and salt water. The word magnetohydrodynamics (MHD)
is derived from magneto meaning magnetic field, and hydro meaning liquid, and
dynamics meaning movement.
The field of MHD was initiated by Hannes Alfvén, for which he received the Nobel
Prize in Physics in 1970.
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Introduction

The set of equations which describe MHD are a combination of the Navier-Stokes
equations of fluid dynamics and Maxwell’s equations of electromagnetism. The
equations are non-linearly coupled via Ohm’s law and the Lorentz force.

4 / 23



The mathematical problem

(S)



−ν∆u + (u · ∇) u − 1
ρµ

(B · ∇) B +
1

2ρµ
∇
(
|B|2

)
+

1
ρ
∇π = f in Ω,

−λ∆B + (u · ∇) B − (B · ∇) u = k in Ω,

div u = 0, div B = 0 in Ω,

u = 0, B · n = 0, curlB × n = 0 on Γ,∫
Σj

B · n = 0, 1 6 j 6 J.
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MHD problem

We suppose that Ω is a bounded open set of R3 of class C1,1 and possibly non
simply connected with a boundary Γ.
We denote

Γ =
I⋃

i=0

Γi

where Γi are the connected components of Γ.
We suppose that there exists J connected open surfaces Σj , called ’cuts’,
contained in Ω, the boundary of each Σj is contained in Γ and

Σi ∩ Σj = ∅, i 6= j .

Ω◦ = Ω \
J⋃

j=1
Σj is simply-connected.
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Domain

For I = 3 and J = 1.

Domain Ω

7 / 23



Properties of the functional spaces

We define the following Banach spaces, for 1 < p <∞:

Hp(curl,Ω) = {v ∈ Lp(Ω); curl v ∈ Lp(Ω)} ,

Hp(div,Ω) = {v ∈ Lp(Ω); div v ∈ Lp(Ω)} ,

X p(Ω) = H p(curl,Ω) ∩H p(div,Ω)
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Properties of the functional spaces

and their subspaces:

Hp
0 (curl, Ω) = {v ∈ Hp(curl, Ω); v × n = 0 on Γ} ,

Hp
0(div, Ω) = {v ∈ Hp(div, Ω); v · n = 0 on Γ} .

X p
N(Ω) = {v ∈ X p(Ω); v × n = 0 on Γ} ,

X p
T (Ω) = {v ∈ X p(Ω); v · n = 0 on Γ} .
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Properties of the functional spaces

K p
N(Ω) = { v ∈ X p

N(Ω), div v = 0, curl v = 0 in Ω } .

K p
T (Ω) = { v ∈ X p

T (Ω), div v = 0, curl v = 0 in Ω } .

10 / 23



Properties of the functional spaces

Theorem 1

The spaces X p
N (Ω) and X p

T (Ω) are continuously imbedded in W 1,p(Ω).
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Properties of the functional spaces

More generally, setting for m positive integer

X m,p(Ω) = {v ∈Lp(Ω); div v ∈W m−1,p(Ω),

curl v ∈W m−1,p(Ω), v · n ∈W m− 1
p ,p(Γ)},

and

Y m,p(Ω) = {v ∈Lp(Ω); div v ∈W m−1,p(Ω),

curl v ∈W m−1,p(Ω), v × n ∈W m− 1
p ,p(Γ)},
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Properties of the functional spaces

Corollary 2 (Friedriech’s inequalities: Amrouche-Seloula M3AS-2013)

Let m ∈ N∗ and Ω of class Cm,1.
i) The space Xm,p(Ω) is continuously imbedded in Wm,p(Ω) and we have the
following estimate: for any v in Wm,p(Ω),

‖v‖Wm,p(Ω) ≤ C
(
‖v‖Lp(Ω) + ‖curl v‖Wm−1,p(Ω) + ‖div v‖W m−1,p(Ω)

+‖v · n‖
W

m− 1
p
,p

(Γ)

)
. (1)

ii) The space Ym,p(Ω) is continuously imbedded in Wm,p(Ω) and we have the
following estimate: for any function v in Wm,p(Ω),

‖v‖Wm,p(Ω) ≤ C
(
‖v‖Lp(Ω) + ‖curl v‖Wm−1,p(Ω) + ‖div v‖W m−1,p(Ω) +

+‖v× n‖
Wm− 1

p
,p

(Γ)

)
. (2)
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Properties of the functional spaces

Theorem 3 (Equivalence of norms)

i) On the space X p
N(Ω), the seminorm

w 7−→ ‖curl w‖Lp(Ω) + ‖div w‖Lp(Ω) +
I∑

i=1

|〈w · n, 1〉Γi |, (3)

is a norm equivalent to the full norm ‖ · ‖W 1,p(Ω).
ii) On the space X p

T (Ω), the seminorm

w 7−→ ‖curl w‖Lp(Ω) + ‖div w‖Lp(Ω) +
J∑

j=1

| < w · n, 1 >Σj |, (4)

is a norm equivalent to the full norm ‖ · ‖W 1,p(Ω).
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Estimate for weak vector potential

Theorem 4

Let F ∈ L6/5(Ω) and satisfying

div F = 0 in Ω, F · n = 0 on Γ and 〈F · n, 1〉Σj = 0, ∀ 1 6 j 6 J. (5)

i) There exists a unique v ∈W 1,6/5(Ω) with div v = 0 in Ω such that

curl v = F in Ω, v × n = 0 on Γ and 〈v · n, 1〉Γi = 0 ∀ 1 6 i 6 I (6)

and satisfying the following estimate:

‖v‖W 1,6/5(Ω) 6 C (Ω)‖F‖L6/5(Ω). (7)

ii) Moreover, we have
‖v‖L2(Ω) 6 C (Ω)‖F‖[H1

τ (Ω)]′ (8)
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Stokes system with Navier type boundary conditions

{
r(p) = max

{
1, 3p

p+3

}
if p 6= 3

2 ,

r(p) > 1 if p = 3
2 .

(9)

Theorem 5

i) Let F ∈ Lr(p)(Ω) with div F = 0 in Ω and verifying the following compatibility
conditions:

for any v ∈ K 2
T (Ω),

∫
Ω

F · v dx = 0, (10)

f · n = 0 on Γ. (11)

Then, the problem

(E)


−∆ω = F and divω = 0 in Ω,

ω · n = 0 and curlω × n = 0 on Γ,

〈ω · n, 1〉Σj = 0, 1 ≤ j ≤ J.
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Stokes system with Navier type boundary conditions

has a unique solution ω in W 1,p(Ω) satisfying the estimate:

‖ω ‖W 1,p(Ω) ≤ C (Ω)‖F ‖Lr(p)(Ω). (12)

ii) Moreover if F ∈ Lq(Ω) for 1 < q < +∞ and Ω is of class C2,1, then the
solution ω is in W 2,q(Ω) and satisfies the estimate:

‖ω‖W 2,q(Ω) 6 C (Ω)‖F‖Lq(Ω). (13)
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Solution for the MHD Problem

We define the following Hilbert spaces

V = {u ∈ H1
0 (Ω); div u = 0 in Ω},

W = {B ∈ H1(Ω); div B = 0 in Ω, B · n = 0 on Γ,

∫
Σj

B · n = 0, 1 6 j 6 J},

Z = V ×W ,

and we set
‖ (u,B) ‖Z = ‖u‖H1(Ω) + ‖B‖H1(Ω).

18 / 23



Solution for the MHD Problem

Theorem 6

Let f ∈ H−1(Ω), k ∈ L6/5(Ω) with

div k = 0 in Ω, k · n = 0 on Γ and

∫
Ω

k ·ϕ dx = 0 ∀ϕ ∈ K 2
T (Ω) (14)

Then Problem (S) has at least one weak solution

(u,B, π) ∈ H1(Ω)×H1(Ω)× L2(Ω)

satisfying the following estimate

‖u‖H1(Ω) + ‖B‖H1(Ω) 6 C
(
‖f ‖H−1(Ω) + ‖k‖L6/5(Ω)

)
(15)

Moreover, if Ω is of class C2,1 then B ∈W 2,6/5(Ω).
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Solution for the MHD Problem

Idea of proof:

We will use Leray-Schauder fixed point theorem to show the existence of weak
solution. For proving the compactness, the idea is to apply the estimates of weak
vector potential given by Theorem 4.
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Regularity of solution

Theorem 7 (Regularity W 1,p(Ω) with p ≥ 2)

Assume that Ω is of class C2,1. Let

f ∈W−1,p(Ω) and k ∈ Lr(p)(Ω) with r(p) =
3p

p + 3

and satisfying the condition (14). Then the weak solution of Problem (S) given
by Theorem (6) satisfies

(u,B, π) ∈W 1,p(Ω)×W 2,r(p)(Ω)× Lp(Ω). (16)
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Regularity of solution

Theorem 8 (Regularity W 2,p(Ω) with p ≥ 6/5)

Assume that Ω is of class C2,1. Let

f ∈ Lp(Ω) and k ∈ Lp(Ω)

satisfying the condition (14). Then the weak solution of Problem (S) given by
Theorem (6) satisfies

(u,B, π) ∈W 2,p(Ω)×W 2,p(Ω)×W 1,p(Ω). (17)
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