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Degenerate gradient flows

Consider

ẋ(t) = −c(t)c(t)>x(t), x ∈ Rn, c : [0,+∞) → Rn. (DGF)

These systems appear in algorithms for, e.g.,

1. Gradient descent with incomplete knowledge of the gradient
2. Identification and model reference adaptive control
3. Consensus in multi-agent systems

Objective
Guarantee convergence and stability of (DGF) at the origin, and
extract information on the decay rate.
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Motivation: Adaptive filters

Consider the scalar output system

z(t) = h>c(t).

Problem
Estimate the parameter h ∈ Rn, knowing the input c : R+ → Rn and
the output z : [0,+∞) → R.

Given an estimate ĥ : [0,+∞) → Rn, we let ẑ(t) = ĥ(t)>c(t). Then let
d
dt
ĥ(t) = (z(t)− ẑ(t))c(t).

Then, the misalignement vector x(t) = h− ĥ(t) satisfies (DGF):

ẋ(t) = − (z(t)− ẑ(t)) c(t) = −
(
x(t)>c(t)

)
c(t)

Convergence to 0 of (DGF) ⇐⇒ Quality of the estimator ĥ
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Persistent excitation

We say that c verifies the persistent excitation condition if there
exists a,b, T > 0 such that

∀t ≥ 0, a Idn ≤
∫ t+T

t
c(s)c(s)> ds ≤ b Idn . (PE)

Theorem (cf., Anderson, Narendra, et al.)
A signal c verifies (PE) if and only if (DGF) is uniformly globally
exponentially stable at 0. That is, there exist C, α > 0 such that

‖x(t)‖ ≤ Ce−α(t−s)‖x(s)‖, ∀t > s ≥ 0.

• (PE) says that c “visits all directions of Rn during a time window”.
• The upper bound b is essential. Indeed, by Barabanov et al.
(2005), if b = +∞ it can happen that

x(t) −→ x 6= 0 as t → +∞
3



Decay rate

Under (PE), the system ẋ = −cc>x is globally exponentially stable:

‖x(t)‖ ≤ Ce−αt‖x(0)‖, ∀t ≥ 0. (GES)

The decay rate for (DGF) is

R(c) := sup{α > 0 | (GES) holds} = − lim sup
t→+∞

log ‖Φc(t, 0)‖
t

,

where Φc(t, 0) is the fundamental matrix of (DGF) from 0 to t.

Definition
The worst decay rate is

R(a,b, T,n) := inf{R(c) | c satisfies (PE) with parameters a,b, T}.

 Yields the guaranteed convergence rate of the system.
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Main result

Many lower bounds for R(a,b, T,n) exist in the literature, of the type:

Theorem (cf., Andersson and Krishnaprasad (2002))
There exists C1 > 0 such that

R(a,b, T,n) ≥ C1a
(1+ nb2)T

, ∀T > 0, a < b, n ∈ N.

Problem: Are these bounds optimal ?

Theorem (Chitour-Mason-Prandi)
There exists C0 > 0 such that

R(a,b, T,n) ≤ C0a
(1+ b2)T

, ∀T > 0, a < b, n ∈ N.

 We recover the result by Barabanov et al. (2005)
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Application I: Generalized persistent excitation

More general condition considered in Barabanov and Ortega (2017),
Praly (2017), Efimov et al. (2018):

a` Idn ≤
∫ τ`+1

τ`

c(s)c(s)> ds ≤ b` Idn, ∀` ∈ N (GPE)

where a`,b` > 0, and (τ`)`∈N is strictly increasing with τ` → +∞.

Theorem (Praly (2017))
Condition (GPE) guarantees global asymptotic stability of (DGF) if

∞∑
`=1

a`
(1+ b`)2

= +∞. (2)

Theorem (Chitour-Mason-Prandi)
For every sequence (a`)`∈N, (b`)`∈N ⊂ (0,+∞) not satisfying (2),
there exists a signal c satisfying (GPE) for which (DGF) is not
globally asymptotically stable.
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Application II: L2-gain for (DGF) systems with linear input

Consider the controlled (DGF) system:

ẋ(t) = −c(t)c(t)>x(t) + u(t), u ∈ L2([0,+∞),Rn).

Let γ(c) be the L2-gain of the input/output map u 7→ x:

γ(c) = sup
u∈L2\{0}

‖xu‖2
‖u‖2

Rantzer (1999) posed the problem of determining the worst L2 gain:

γ(a,b, T,n) = sup{γ(c) | c satisfies (PE) }.

Theorem (Chitour-Mason-Prandi)
There exists κ0, κ1 > 0 such that for all T > 0, a ≤ b, n ≥ 2, it holds

κ0
(1+ b2)T

a
≤ γ(a,b, T,n) ≤ κ1

(1+ nb2)T
a

.
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Sketch of the proof

Idea
Connect R(a,b, T,n) = inf R(c) with an optimal control problem.

Recall that
R(c) =

Polar coordinates: Letting x = rω for r > 0 and ω ∈ Sn−1, (DGF) reads{
ṙ = −(c>ω)2r,
ω̇ = −c>ω

(
c − (c>ω)ω

)
,

r0 = ‖x(0)‖, ω0 =
x(0)

‖x(0)‖
. (Pol)

• The dynamics of ω are independent of r.
• The dynamics of r yield:

− log
‖x(T)‖
‖x(0)‖

= − log
r(T)
r(0)

=

∫ T

0
(c>ω)2 ds =: JT(c, ω0).
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Sketch of the proof II

Optimal control problem:

µ(a,b, T,n) := min JT(c, ω0) = min

∫ T

0
(c>ω)2 ds

Here, c : [0, T] → Rn runs over all signals satisfying

a Idn ≤
∫ T

0
c(s)c(s)> ds ≤ b Idn,

and ω is a solution to (Pol) with ω(0) = ω0 ∈ Sn−1.

Steps:

1. Prove that
R(a,b, T,n) ≤ 2µ(a/2,b/2, T,n)

T
 Show that µ(a/2, b/2, T, n) is realized by an optimal control c? : [0, T] → Rn ,

which extends to a 2T-periodic (PE) signal c? : R+ → Rn

2. Show that µ(a,b, T,n) ≤ µ(a,b, T, 2);
3. Precisely estimate µ(a,b, T, 2).
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More general systems

We obtain the same result for the worst rate of decay for the more
general system

ẋ(t) = −S(t)x(t)

were S(t) ∈ Rn×n is such that S(t) ≥ 0 and for a,b, T > 0

a Idn ≤
∫ t+T

t
Sds ≤ b Idn

 The family of signals S is obtained as the convexification of the
family cc> where c : [0, T] → Rn satisfies (PE)

 the worst rate of decay is realized by (DGF), e.g., S = cc>
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Perspectives

Open question
For a,b, T fixed, what dependence on the dimension?

C1
n

≤ lim
b→∞

R(a,b, T,n) (1+ b2)T
a

≤ C0.

• The technique used in the proof yields also the lower bound

R(a,b, T,n) ≥ µ(a,b, T,n)
T

.

• At the moment we cannot directly access µ(a,b, T,n) for n 6= 2.
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