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Degenerate gradient flows

Consider

x(t) = —c(t)c(t)Tx(t), x€R", c:[0,+00) = R". (DGF)

These systems appear in algorithms for, e.g,,

1. Gradient descent with incomplete knowledge of the gradient
2. ldentification and model reference adaptive control

3. Consensus in multi-agent systems

Objective

Guarantee convergence and stability of (DGF) at the origin, and
extract information on the decay rate.



Motivation: Adaptive filters

Consider the scalar output system
z(t) = h'c(t).

Problem

Estimate the parameter h € R", knowing the input ¢ : R, — R" and
the output z : [0, +00) — R.

Given an estimate h : [0, +00) — R", we let 2(t) = h(t)Tc(t). Then let

A = (@) - 20)c(t).

Then, the misalignement vector x(t) = h — h(t) satisfies (DGF):
X(t) = — (2(8) = (1)) c(t) = — (x(t) "c(t)) c(t)
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Then, the misalignement vector x(t) = h — h(t) satisfies (DGF):
X(t) = — (2(8) = (1)) c(t) = — (x(t) "c(t)) c(t)

Convergence to 0 of (DGF) += Quality of the estimator h



Persistent excitation

We say that c verifies the persistent excitation condition if there
exists a,b, T > 0 such that

t4T
vt>0, ald, < / c(s)c(s) " ds < bld, . (PE)
t

Theorem (cf., Anderson, Narendra, et al.)

A signal c verifies (PE) if and only if (DGF) is uniformly globally
exponentially stable at 0. That is, there exist C,a > 0 such that

I < Ce*Cx(s)[l,  vt>s>0.

- (PE) says that ¢ “visits all directions of R” during a time window”.
- The upper bound b is essential. Indeed, by Barabanov et al.
(2005), if b = 400 it can happen that

X(t) —X#0 ast— 400



Under (PE), the system x = —cc T x is globally exponentially stable:
Xl < CeIx(0)|l,  vt>o0. (GES)

The decay rate for (DGF) is

R(c) := sup{a > 0 | (GES) holds} = — limsup log [[®<(t, 0)|

t—+oo t ’
where ®(t,0) is the fundamental matrix of (DGF) from 0 to t.

Definition
The worst decay rate is

R(a,b,T,n) :=inf{R(c) | c satisfies (PE) with parameters a, b, T}.

~ Yields the guaranteed convergence rate of the system.



Many lower bounds for R(a, b, T, n) exist in the literature, of the type:
Theorem (cf., Andersson and Krishnaprasad (2002))
There exists C; > 0 such that

Gia

>
R(a,b,Tﬂ’?) = (1 +nb2)7—7

VT >0,a<b,neN.

Problem: Are these bounds optimal ?
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Theorem (cf., Andersson and Krishnaprasad (2002))
There exists C; > 0 such that
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>
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Theorem (Chitour-Mason-Prandi)
There exists Cy > 0 such that

Coa
R T < — T .
(a, b, ’n)—(1+b2)T’ VT >0,a<b,neN

~ We recover the result by Barabanov et al. (2005)



Application I: Generalized persistent excitation

More general condition considered in Barabanov and Ortega (2017),
Praly (2017), Efimov et al. (2018):

Te+1
agld, < / c(s)c(s) " ds < by ld, V¢ eN (GPE)

Te

where ag, by > 0, and (7¢)een Is strictly increasing with 7, — +ooc.
Theorem (Praly (2017))
Condition (GPE) guarantees global asymptotic stability of (DGF) if

o0

Z 1 - be +00. (2)
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Theorem (Praly (2017))

Condition (GPE) guarantees global asymptotic stability of (DGF) if

21 1+be = +00.

Theorem (Chitour-Mason-Prandi)

For every sequence (a¢)een, (be)een C (0, +00) not satisfying (2),
there exists a signal ¢ satisfying (GPE) for which (DGF) is not
globally asymptotically stable.



Application Il: L?-gain for (DGF) systems with linear input

Consider the controlled (DGF) system:
x(t) = —c(t)c(t) Tx(t) + u(t),  u e L*([0,400),R™).

Let y(c) be the L?-gain of the input/output map u ~ x:

[Xull2

verr\{oy llull2

y(c) =

Rantzer (1999) posed the problem of determining the worst L? gain:
v(a,b, T,n) = sup{y(c) | ¢ satisfies (PE) }.
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Consider the controlled (DGF) system:
x(t) = —c(t)c(t) "x(t) + u(t), u € L([0, +o0),R").

Let y(c) be the L?-gain of the input/output map u ~ x:
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Rantzer (1999) posed the problem of determining the worst L? gain:

v(a,b, T,n) = sup{y(c) | ¢ satisfies (PE) }.

Theorem (Chitour-Mason-Prandi)

There exists kg, k1 > 0 such that forall T > 0,a < b, n > 2, it holds

2 2
How <~(a,b,T,n) < mw.



Sketch of the proof

Idea
Connect R(a, b, T,n) = inf R(c) with an optimal control problem.
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R(c) = — limsup - sup {Iog
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Polar coordinates: Letting x = rw for r > 0 and w € S"~", (DGF) reads

Fo= —(cTw)r, B o x(0)
{w e (), PO @ = o

- The dynamics of w are independent of r.
- The dynamics of r yield:
Dl _ ()

M) T e y
PO _IOg@ _/o (¢ w)"ds =:Jr(c,wo).




Sketch of the proof

Idea
Connect R(a, b, T,n) = inf R(c) with an optimal control problem.

Recall that
R(¢) = liminf ! inf {j‘(c.w‘) | wo € T}

t——+o0o t

Polar coordinates: Letting x = rw for r > 0 and w € S"~", (DGF) reads

ro=—(cTw)r, x(0

iy o= KO, wp =

w =—-Cw(c—("ww), [Ix(0)l
- The dynamics of w are independent of r.
- The dynamics of r yield:

IX(DIl r(7) /’T T Y2
—lo = —log —=~ = c'w) ds =:J1(c,wp).
B =~ %% (@) ~ Jy (¢ W P T ew)



Sketch of the proof Il

Optimal control problem:

T
w(a,b, T,n) :=minJr(c,wy) = min/ (cTw)?ds
0

Here, ¢ : [0, T] — R” runs over all signals satisfying
T
ald, < / c(s)e(s)T ds < blidy,
0

and w is a solution to (Pol) with w(0) = wy € S"~".
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~ Show that u(a/2,b/2,T,n) is realized by an optimal control ¢4 : [0, T] — R",

which extends to a 2T-periodic (PE) signal ¢x : Ry — R”
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More general systems

We obtain the same result for the worst rate of decay for the more
general system

X(t) = =S(Ox(t)
were S(t) € R"™*" is such that S(t) > 0 and for a,b,T > 0

it T
aldng/ Sds < bld,
t

~ The family of signals S is obtained as the convexification of the
family cc™ where ¢ : [0, T] — R" satisfies (PE)

~ the worst rate of decay is realized by (DGF), e.g, S = cc’



Open question

For a, b, T fixed, what dependence on the dimension?
2

G < lim R(a,b,T, n)M

< (Cp.
n b—oo

- The technique used in the proof yields also the lower bound

/1’(07 b7 T7 n)
, >EE DY
R(a,b,T,n) > 7

- At the moment we cannot directly access u(a, b, T, n) for n # 2.

i



Thank you for your attention!
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