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Compartmental models
Kermack-McKendrick 1927

I Complex diseases require using compartmental models featuring several classes
corresponding to clinical states...

I A classical example of compartmental model :

S RIE
I Amore complex example :

S
R

H
R

D

E I

I ...Classes/compartments are structuring variables which are observable or play a role in
transmission (health condition, employment category, age...)
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Compartmental models

I Under the assumption of large populations and...

I Lack of memory property of
I the time spent in each compartment

I the time between consecutive infections

I ...Compartmental models typically lead to systems of ODEs of the type
Ė = βSI− ηE
İ = ηE − γI
Ṡ = −βSI
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Life cycle of SARS-Cov2...
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I Requires a large number of compartments

I Non-exponential durations spent in each compartment and between infections

I Q1. How can we avoid using high-dimensional systems of ODEs (large pop limit)?

I Q2. How can we take advantage of the spontaneous growth to large pop?
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A general branching process model

I Susceptibles in excess (branching process assumption)

I Each individual is identified by her age a = time elapsed since her infection

I Each infected individual is characterized by

(i) A stochastic life-history process (X(a); a ≥ 0)where

X(a) = state of ind at age a

(ii) A stochastic infection point processP encoding the times of transmission of the disease to
susceptibles

I Example : the SEIR model is recovered by setting

X(a) =


E if a ∈ [0, TI)
I if a ∈ [TI, TR)
R if a ∈ [TR,∞)

and Pk = 1[TI,TR)P

where P is a rate β Poisson point process.

I Each newly infected individual draws a pair (X,P) in the same distribution,
independently of donor state and age
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A word on assumptions

I Susceptibles in excess (branching process model)

I No re-infection

I No spatial/social structure (mean-field model)

I Independence of receiver and donor (contact matrix with identical rows)

I Allows for any type of correlation and temporal auto-correlation of (X,P)

I Additional feature : each new infection occurring at time t is successful with probability
c(t) (lockdown, masks, social distancing...)
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Additional notation

I Average attack rate
τ(a) da := E[P(da)]

I Average number of secondary infections per capita is

R0 =

∫ ∞
0

τ(a) da <∞.

I Malthusian parameterα = exponential growth rate (if c ≡ 1), given by

R0
∫ ∞
0

τ(t) e−αtdt = 1.

I Define the empirical measure of the population as

µt(da× {i}) := #{ infected ind’s at time t, in state i and of age∈ da }

=
∑
k

δt−σk (da)1Xk(t−σk)=i

where σk is the birth time of individual k.

I Also define

Yt(i) := #{ infected ind’s at time t, in state i } =
∫ ∞
a=0

µt(da× {i})

Zt := #{ infected ind’s at time t } =
∑
i

Yt(i)
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A law of large numbers

I Start with N infected individuals at time 0.

I Assume that the ages of the initial individuals (Ak)k are iid with density g.

I The initial life-cycle and infection processes are iid (X̃k, P̃k)k , where

X̃k(a) = Xk(Ak + a), P̃k(da) = Pk(Ak + da).

Theorem (Foutel–Rodier et al, 2020)
As N→∞, for any t,

1
N
µNt (da× {i}) −→ n(t, a) p(a, i) da

where p(a, i) = P(X(a) = i) and n is the solution to the McKendrick–von Foerster PDE

∂n
∂a

+
∂n
∂t

= 0,

with boundary condition

n(t, 0) = c(t)
∫ ∞
0

n(t, a)τ(a) da,

and initial condition
n(0, a) = g(a).
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A law of large numbers : consequences

I The age structure converges to the solution to a PDE that only depends on τ

I The class structure YNt (i) converges to∫ ∞
0

n(t, a) p(a, i) da

which only depends on p(a, i) = P(X(a) = i).

I Structuring by age...

I decouples transmission and life history

I decouples time and class structure.

I Drawbacks :

I requires assuming large initial population size

I requires specifying age profile g, which is not observable.
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Branching process counted with its characteristic

I Branching process counted with the random characteristic χ

Zχt :=
∑
k

χk(t − σk),

where σk = infection time of ind k and sum is taken over all ind’s in the course of the
epidemic.

I Examples

χk(t) =
{

1 if k is in state i at time t
0 otherwise. =⇒ Zχt = Yt(i)

χk(t) =
{

1 if t ≥ a
0 otherwise. =⇒ Zχt = #{ ind’s of age≥ a at time t }.
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A.s. limit theorems
Jagers 74, Nerman 81, Jagers & Nerman 84

Theorem (Jagers 74, Nerman 81, Jagers & Nerman 84)
Assumeα > 0. Then there is a single random variable W∞ such that for all random
characteristicsχ simultaneously, with probability 1,

lim
t→∞

e−αtZχt =
E (χ̂(α))

αβ
W∞,

where β := R0
∫∞
0 t τ(t) e−αtdt and

χ̂(α) := α

∫ ∞
0

χ(t) e−αtdt,

where it is implicit thatχ(t) is the characteristic of the ancestor, ‘born’ at time 0.
In particular, if we takeχ(t) = 1t≥a, we get

lim
t→∞

#{ ind’s of age≥ a at time t }
Zt

= e−αa.
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A second law of large numbers

I Start with 1 infected individual at time 0.

I Assumeα > 0.

I Let TK be a random time such that limK→∞ TK =∞, e.g., time when> K infected.

I c(t)← c(TK + t).

Theorem (Foutel–Rodier et al, 2020)
Recall Zt denote the total number of infected by time t. As K →∞, for any t,

1
ZTK

µKTK+t(da× {i}) −→ n(t, a)P(X(a) = i)da a.s.,

where n is the solution to the McKendrick–von Foerster PDE

∂n
∂a

+
∂n
∂t

= 0,

with boundary condition

n(t, 0) = c(t)
∫ ∞
0

n(t, a)τ(a) da,

and initial condition
n(0, a) = αe−αa.
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Application to the COVID-19 epidemic in France

I Given the profile of τ , a compartmental model and a parameter set :
I α is estimated as the initial growth rate

I the PDE is solved numerically

I the one-dimensional marginals P(X(a) = i) can be computed assuming Gamma distributed
sojourn times

I the observations are assumed to follow a Poisson distribution centered on the predicted value

I The best parameter set is obtained by maximum likelihood
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Fitting the incidence curves
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Fitting the incidence curves
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Discussion

I A general, stochastic, individual-basedmodel for the spread of complex diseases

I Law of large numbers as a result of spontaneous growth, with emerging age structure

I Limit in the form of an age-structured McKendrick-von Foerster PDE decoupling
time/class structure and transmission/life history.

I Model is tractable enough to be used for inference.

I Preprint : “From individual-based epidemicmodels to McKendrick-von Foerster PDEs : A
guide to modeling and inferring COVID-19 dynamics”, by

Foutel-Rodier* F, Blanquart F, Courau P, Czuppon P, Duchamps JJ, Gamblin J, Kerdoncu� E,
Kulathinal R, Régnier L, Vuduc L, Lambert∗∗ A & Schertzer∗∗ E (2020).
∗ first author, ∗∗ co-last authors
https://arxiv.org/abs/2007.09622

I See also :

JY Fan, K Hamza, P Jagers, F Klebaner. Convergence of the age structure of general schemes of
population processes. Bernoulli 2020.

K Hamza, P Jagers, F Klebaner. The age structure of population- dependent general branching
processes in environments with a high carrying capacity. Proceedings of the Steklov Institute of
Mathematics, 2013.

VC Tran. Large population limit and time behaviour of a stochastic particle model describing an
age-structured population. ESAIM : Probability and Statistics, 2008.
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Notation Description Value Source

R0 Basic reproduction number during lockdown 0.734 E

W Total number of infections before March 17 2020 9.52× 105 E

pcrit + psev Probability of being hospitalized 0.036 S
pcrit(1−dhosp)

pcrit+psev
Probability of entering ICU conditional on being at the
hospital

0.19 S

dhosp+(1−dhosp)dICU
1+psev/pcrit

Death probability conditional on being hospitalized 0.181 S

dICU Probability of death conditional on being in ICU 0.709 E

pshort Probability of a short stay at hospital 0.701 E

DCh Delay between severe infection and hospital admission 14.5 days E

Dshort Delay between hospital admission and quick discharge 7.36 days E

Dlong Delay between hospital admission and slow discharge 47.5 days E

DCu Delay between critical infection and hospital admission 11.0 days E

DH Delay between hospital admission and ICU admission 1.5 days S

DU Delay between ICU admission and discharge 28.2 days E

DD Delay between ICU admission and death 9.90 days E

γ Scale parameter common to all Gamma distributions 0.316 E

TABLE – Inferred parameter set for the occupancy model. The values indicated for the durations correspond to the means of
the Gamma distributions. In the “Source” column, “E”= estimated, “F”= taken from Salje et al (2020).
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