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Introduction



Real world motivation: aligning genomic data1

Aligning RNA data

Data is:
• Heterogeneous ( 6=

dimensions)
• imbalanced
⇒ Need for adaptive and
robust (yet meaningful)
assignments !

1Demetci, Pinar, et al. Gromov-Wasserstein optimal transport to align single-cell multi-omics data.
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Optimal transport and its generalizations

Optimal transport displays three restrictions:

• Compares measures with same mass,
• Compares measures defined on the same space,
• Scales poorly in numerical solvers : O(n3 log(n)).

There exists extensions to overcome these issues:

• Unbalanced optimal transport,
• Gromov-Wasserstein distances,
• Entropic regularization.
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Outline of the presentation

1. Background - UOT ( • )
2. Sinkhorn algorithm ( • + • )
3. Unbalanced Gromov-Wasserstein ( • + • )
4. Implementation of UGW ( • + • + • )
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Unbalanced OT



Representing probabilities and measures

Several models for measures, most commonly pointclouds.

Measure α =
∑
i αiδxi ,

Mass m(α) =
∑
i αi .

Important example: Gaussian densities in R with α ∝
∑
i p(xi)δxi

• β = mixture 70/30
• α = mixture 40/60
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Optimal Transport (OT)

Balanced Optimal Transport Distance2

OT(α, β) def.
= min

π≥0

∑
i,j

Cijπij :
π1 = α

π>1 = β

 .

Called p-Wasserstein distance for C = dp.

Intuition: Moving πij grams from xi to yj costs
πij × Cij .
Choice of C → Choice of geometric prior.

2Kantorovich, L. (1942). On the transfer of masses (in Russian).
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Unbalanced OT

Idea: Soften the constraint π1 = α

� KL(π1|α) =
∑
i log(

π1,i
αi

)αi −m(π1) +m(α)

Definition - Unbalanced OT3

For any positive measures (α, β) one defines
UOTρ(α, β) = infπ≥0 LUOT(π) where

LUOT(π)
def.
=

∑
i,j

Cijπij + ρKL(π1|α) + ρKL(π>1|β).

• 2 choices: transport vs create/destroy
• Other penalties: TV, or Csiszàr div Dϕ.
• Balanced OT = ρ→∞ or Dϕ = ι(=).
3Liero, M., Mielke, A., & Savaré, G. (2018). Optimal entropy-transport problems and a new Hellinger–Kantorovich

distance between positive measures.
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Entropic Optimal Transport



Regularization of OT

Reminder: OT is computationally expensive.

Idea: Add an entropic penalty εKL(π|α⊗ β).

Entropic Unbalanced OT4 5

UOTε,ρ(α, β)
def.
= inf

π≥0

∑
i,j

Cijπij + ρKL(π1|α) + ρKL(π>1, β)

+ εKL(π|α⊗ β)

4Cuturi, M. (2013). Sinkhorn distances: Lightspeed computation of optimal transport.
5Chizat, L., Peyré, G., Schmitzer, B., & Vialard, F. X. (2018). Scaling algorithms for unbalanced optimal transport

problems.
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Duality of regularized Balanced OT

The dual for UOTε,ρ reads

UOTε,ρ(α, β) = sup
f ,g

∑
i
ρ(1− e−fi/ρ)αi +

∑
j
ρ(1− e−gj/ρ)βj

− ε
∑
i,j

(e
fi+gj−Cij

ε − 1)αiβj .

We consider alternate dual ascent to compute UOTε,ρ:
Alternate dual ascent
Given any initialization f0. At time t one has (ft , gt). Then
iterate until convergence:

1. Fix ft and find optimal g in the dual → gt+1,
2. Fix gt+1 and find optimal f in the dual → ft+1.
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Duality of regularized Balanced OT

The dual for UOTε,ρ reads

UOTε,ρ(α, β) = sup
f ,g

∑
i
ρ(1− e−fi/ρ)αi +

∑
j
ρ(1− e−gj/ρ)βj

− ε
∑
i,j

(e
fi+gj−Cij

ε − 1)αiβj .

Unbalanced Sinkhorn algorithm = Alternate dual ascent

fi ← ρ
ε+ρ

[
− ε log

∑
j
e(gj−Ci j )/εβj

]
,

gj ← ρ
ε+ρ

[
− ε log

∑
i
e(fi−Ci j )/εαi

]
.

Rmk: Solve dual ⇒ Solve primal: π∗ij = exp((f ∗i + g∗j − Cij/ε)αiβj .
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Unbalanced Gromov-Wasserstein



Balanced Gromov-Wasserstein distance

mm-space: X = (X , d(X), α) with (X , d(X)) complete separable,
α positive measure
Definition - GW distance6

Take X = (X , d(X), α) and Y = (Y , d(Y ), β) equipped with
probabilities. One defines GW(X ,Y) = inf{π1=α, π>1=β} G(π)
where

G(π) def.
=

∑
i,j,k,l

(
d(X)ik − d

(Y )
jl

)2
πijπkl .

6Mémoli, F. (2011). Gromov–Wasserstein distances and the metric approach to object matching. 11



Isometric mm-spaces

The GW distances encodes an equivalence relation of isometry.
Isometric mm-spaces
Def: X ∼ Y ⇔ ∃ψ : X → Y bijective isometry s.t.

dX (x , x ′) = dY (ψ(x), ψ(x ′)) and β =
∑
i
αiδψ(xi )

Prop: With λ(t) = tq, GW
1
q distance and definite iff X ∼ Y

Balanced OT GW
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Specificities of GW

Two key differences with OT
• GW is non-convex (quadratic assignment

program)
• (X ,Y) can differ radically in nature.7

7Solomon, J., Peyré, G., Kim, V. G., & Sra, S. (2016). Entropic metric alignment for correspondence problems.
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Unbalanced Gromov-Wasserstein

Define the tensor product of measures (π ⊗ π)ijkl
def.
= πijπkl .

Definition
One defines UGW(X ,Y) = infπ≥0 L2(π) where

LUGW(π) =
∑
i,j,k,l

(
d(X)ik − d

(Y )
jl

)2
πijπkl + ρKL(π1 ⊗ π1, α⊗ α)

+ ρKL(π2 ⊗ π2, β ⊗ β).

To be compared with

G(π) =
∑
i,j,k,l

(
d(X)ik − d

(Y )
jl

)2
πijπkl ,

LUOT (π) =
∑
i,j

Cijπij + ρKL(π1, α) + ρKL(π2, β).
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Numeric in dimension 1

Balanced OT UOT-KL

GW UGW

18



Take home message

1 to 1 1 to 1 ⊕ reweighting

1 to 1 ⊕ isometry 1 to 1 ⊕ isom. ⊕ rew.

We can enrich assignments with a variety of priors.
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Theoretical results and conic formulation

• UOT is not convenient to prove the triangle inequality.
• Need to use another formulation called ”conic” (COT)
→ COT = OT on a lifted space C = X × R+

• Thm 1: UOT is definite.
• Thm 2: COT is a distance between positive measures.
• Thm 3: One has UOT = COT.

Theorem [S., Vialard, Peyré]

1. UGW is definite up to isometries.
2. There exists a conic formulation CGW which is a distance

between mm-spaces up to isometry.
3. One has UGW ≥ CGW.
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Implementation of UGW and
experiments



Implementing UGW

Idea: Entropic regularization + alternate minimization

UGWε(X ,Y)
def.
= inf

π≥0
LUGW(π) + εKL(π ⊗ π, (α⊗ β)⊗2)

≥ inf
π,γ≥0

F(π, γ) + εKL(π ⊗ γ, (α⊗ β)⊗2),

where F(π, γ) def.
=

∑
i,j,k,l

(
d(X)ik − d

(Y )
jl

)2
πijγkl

+ ρKL(π1 ⊗ γ1, α⊗ α) + ρKL(π2 ⊗ γ2, β ⊗ β)
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Reformulation of the alternate minimization

Proposition - alternate descent ↔ solve UOT
For a fixed γ, π ∈ argmin

π
F(π, γ) + εKL(π ⊗ γ|(α⊗ β)⊗2) is

the solution of
min
π

∑
i,j
c̃ijπij + ρ̃KL(π1|α) + ρ̃KL(π2|β)

+ ε̃KL(π|α⊗ β),
where (c̃, ρ̃, ε̃) depend on the fixed measure γ via a computable
formula.
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Back to genomic data alignment8

From Demetci et al.

• GW reaches state of
the art performance
for RNASeq data.

• UGW improves the
classification
performance over
GW.

• See rsinghlab/SCOT
on Github.

8Demetci, Pinar, et al. Gromov-Wasserstein optimal transport to align single-cell multi-omics data.
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Application - Positive Unlabeled learning

• Domain adaptation = Propagate labels on a similar dataset.
• PU learning = supervised learning but we learn from only one

class.
• Idea: Use a transport plan to map positive samples to

unlabeled positive ones.

−→
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Performance results

Dataset prior Init (PW) PGW UGW Dataset prior Init (FLB) PGW UGW
surf-C → surf-C 0.1 89.9 84.9 83.9 surf-C → decaf-C 0.1 85.0 85.1 85.6
surf-C → surf-A 0.1 81.8 82.2 83.5 surf-C → decaf-A 0.1 84.2 87.1 83.6
surf-C → surf-W 0.1 81.9 81.3 80.3 surf-C → decaf-W 0.1 86.2 88.6 86.8
surf-C → surf-D 0.1 80.0 81.4 83.2 surf-C → decaf-D 0.1 84.7 91.1 90.7
surf-C → surf-C 0.2 79.7 75.7 75.4 surf-C → decaf-C 0.2 74.8 75.6 75.9
surf-C → surf-A 0.2 65.6 66.0 76.4 surf-C → decaf-A 0.2 76.2 87.9 82.4
surf-C → surf-W 0.2 65.1 64.3 67.3 surf-C → decaf-W 0.2 81.5 88.4 89.9

decaf-C → decaf-C 0.1 93.9 83.0 86.8 decaf-C → surf-C 0.1 81.7 81.0 81.1
decaf-C → decaf-A 0.1 80.1 81.4 85.6 decaf-C → surf-A 0.1 80.9 81.2 82.4
decaf-C → decaf-W 0.1 80.1 82.7 86.1 decaf-C → surf-W 0.1 82.0 81.3 83.5
decaf-C → decaf-D 0.1 80.6 83.8 83.4 decaf-C → surf-D 0.1 80.0 80.8 81.5
decaf-C → decaf-C 0.2 90.6 76.7 80.5 decaf-C → surf-C 0.2 66.6 63.7 65.2
decaf-C → decaf-A 0.2 62.5 68.7 74.7 decaf-C → surf-A 0.2 62.9 62.4 69.3
decaf-C → decaf-W 0.2 65.7 75.9 79.2 decaf-C → surf-W 0.2 65.1 61.4 83.3

Table 1: Accuracy for all tasks. The left block are domain adaptation
experiments with similar features, where both PGW and UGW are
initialised with PW. The right block are domain adaptation experiments
with different features, and the reported init is FLB used for UGW.
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Conclusion

• Flexibility of UOT models through (C, ρ, ε) + KL Dϕ

• Blending of UOT with GW distances
• Computations on GPUs → UGW
• Theoretical aspects → CGW distance

• UOTε,ρ is fast to compute but lost OT properties,
• Possible to ”debias” UOTε,ρ to retrieve some of them.
• Open question: Can we debias UGWε? Which properties ?
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Implementations - github repositories
• thibsej/unbalanced-ot-functionals

• jeanfeydy/geomloss

• thibsej/unbalanced_gromov_wasserstein

References
• Feydy, J., Séjourné, T., Vialard, F. X., Amari, S. I., Trouvé, A., & Peyré, G. (2019).

Interpolating between optimal transport and MMD using Sinkhorn divergences.

• Séjourné, T., Feydy, J., Vialard, F. X., Trouvé, A., & Peyré, G. (2019). Sinkhorn
Divergences for Unbalanced Optimal Transport.

• Séjourné, T., Vialard, F. X., & Peyré, G. (2020). The Unbalanced Gromov
Wasserstein Distance: Conic Formulation and Relaxation.

Thank you !
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Correcting the entropic bias -
Sinkhorn divergence



Entropic bias

Problem: L = OTε does not retrieve β for ε > 0.

Not a distance: OTε(α, α) > 0,
∃α ∈M+

1 (X ), OTε(α, β) < OTε(β, β).

ε

⇒ One cannot crossvalidate the parameter ε.
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Unbalanced Sinkhorn Divergence

Definition
Setting m(µ) =

∑
i µi , we define

Sε,ρ(α, β)
def.
=UOTε,ρ(α, β)− 1

2UOTε,ρ(α, α)− 1
2UOTε,ρ(β, β)

+ ε
2(m(α)−m(β))

2.

It extends the balanced Sinkhorn divergence9 10.

Remark: When α = β, one has Sε,ρ(α, β) = 0.

Is it positive ? Definite ? Smooth ?

9Ramdas, A., Trillos, N. G., & Cuturi, M. (2017). On wasserstein two-sample testing and related families of
nonparametric tests.
10Genevay, A., Peyré, G., & Cuturi, M. (2018, March). Learning generative models with sinkhorn divergences.
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Main Theorem

Theorem [S., Feydy, Vialard, Trouve, Peyre ’19]

For any Lipschitz cost C on a compact set s.t. kε
def.
= e− C

ε is a
positive universal kernel, for any ε > 0

• Sε,ρ is convex, positive, definite.
• It is (weakly) differentiable.
• One has Sε,ρ(α, β)→ 0⇔ α ⇀ β.

Corollary: holds for C(x , y) = ‖ψ(x)− ψ(y)‖22, for ψ neural net.

30



Numerical insights on UOT and the
Sinkhorn divergence



Numerical experiments model

Setting adapted from [Chizat ’19]11.
• Position/mass parameterization
θ = {(xi , ri)i} ∈ (Rd × R+)

n

• Model measure θ 7→ α(θ) =
∑n
i r2i δxi

• Minimize L(α(θ), β) w.r.t. θ

Updates of the coordinates

x (t+1)
i = x (t)i − ηx∇xiL(α(θ

(t)), β),

r (t+1)
i = r (t)i . exp

(
− 2ηr∇riL(α(θ(t)), β)

)
11Chizat, L. (2019). Sparse optimization on measures with over-parameterized gradient descent.
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Numerics - Gradient descent

Parameters: C(x , y) = ‖x − y‖22 on [0, 1]2, ρ = 0.3, ηx = 60.0, ηr = 0.3

L = UOTε,ρ, ε = 10−3

L = Sε,ρ, ε = 10−3

L = Sε,ρ, ε = 10−2
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Supplementary slides



Csiszàr divergences12

Define ϕ : R+ → R+ l.s.c., convex, ϕ(1) = 0, ϕ′∞ = limx�∞
ϕ(x)
x .

Write α =
∑
i αiδxi and β =

∑
i β iδxi (Same support (xi))

Definition - ϕ-divergence

Dϕ(α, β) =
∑
βi 6=0

ϕ(αiβi )β i + ϕ′∞
∑
βi=0

αi .

Examples:
• KL(α, β) =

∑
i(log(

αi
βi
)αi − αi + β i):

ϕ(x) = x log x − x + 1,
• TV(α, β) =

∑
i |αi − β i |: ϕ(x) = |x − 1|.

12Csiszár, I. (1967). Information-type measures of difference of probability distributions and indirect observation.

33



Alternate UGW = sequence of Sinkhorn updates

• Focus on λ(t) = t2 for improved time and memory complexity
• Focus on Dϕ = KL which verifies

KL(µ⊗ ν, α⊗ β) = m(ν)KL(µ, α) +m(µ)KL(ν, β)
+(m(µ)−m(α))(m(ν)−m(β)).

⇒ Given γ, minimizing w.r.t. π amounts to solve a regularized
UOT problem.
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Algorithm

Algorithm 1 – UGW(X , Y, ρ, ε)
Input: mm-spaces (X ,Y), relaxation ρ, regularization ε
Output: approximation (π, γ) minimizing F + εKL⊗

1: Initialize (π, γ) and (f , g)
2: while (π, γ) has not converged do
3: Update γ ← π and compute the cost c̃ ← cε,γ
4: Update parameters (ρ̃, ε̃)← (m(π)ρ,m(π)ε)
5: Compute (f , g) that solves UOT(µ, ν, c̃, ρ̃, ε̃)
6: Update γij ← exp

[
(fi + gj − c̃ij)/ε̃

]
αiβj

7: Rescale γ ←
√
m(π)/m(γ)γ

8: Return (π, γ).
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Detailed algorithm

Algorithm 2 – UGW(X , Y, ρ, ε)
Input: mm-spaces (X ,Y), relaxation ρ, regularization ε
Output: approximation (π, γ) minimizing F + εKL⊗

1: Initialize π = γ = µ⊗ ν/
√
m(µ)m(ν), g = 0.

2: while (π, γ) has not converged do
3: Update π ← γ, then c ← cεπ, ρ̃← m(π)ρ, ε̃← m(π)ε
4: while (f , g) has not converged do
5: ∀x , f (x)← − ε̃ρ̃

ε̃+ρ̃ log
( ∫

e(g(y)−c(x ,y))/ε̃dν(y)
)

6: ∀y , g(y)← − ε̃ρ̃
ε̃+ρ̃ log

( ∫
e(f (x)−c(x ,y))/ε̃dµ(x)

)
7: Update γ(x , y)← exp

[
(f (x) + g(y)− c(x , y))/ε̃

]
µ(x)ν(y)

8: Rescale γ ←
√
m(π)/m(γ)γ

9: Return (π, γ).
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