on C	QMOM 0000	HyQMOM	Results 0000000	Conclusion, Perspectives

Hyperbolic Quadrature Method of Moments for the one-dimensional kinetic equation

Frédérique LAURENT-NÈGRE

Laboratoire EM2C - CNRS - CentraleSupélec - Université Paris-Saclay Fédération de Mathématiques de CentraleSupélec - CNRS

Rodney O. Fox

Department of Chemical and Biological Engineering, Iowa State University, USA

Congrès SMAI 2021

21-25 juin 2021

◆□▶ ◆□▶ ◆□▶ ◆□▶ 三国章 ���� 1/28

Introduction	QMOM	HyQMOM	Results	Conclusion, Perspectives
000000	0000	000000	000000	00

Table of content

Introduction

- Context
- Moment method
- Hyperbolicity

- Principle of the method
- Hyperbolicity
- 3

HyQMOM

- First version of HyQMOM
- New HyQMOM closure
- Properties Practical computations

4 Re

Results

- Configuration
- Results

Conclusion, Perspectives

Introduction	QMOM	HyQMOM	Results	Conclusion, Perspectives
• • • • • • • • • • • • • • • • • • •	0000	000000	0000000	
Outline				

Introduction Context

- Moment method
- Hyperbolicity
- - Principle of the method
 - Hyperbolicity
- - First version of HyQMOM
 - New HyQMOM closure
 - Properties Practical computations

- Configuration
- Results

Introduction	QMOM 0000	HyQMOM 000000	Results	Conclusion, Perspectives
Context				

Considered kinetic model

Kinetic model on $f(t, \mathbf{x}, \mathbf{v})$

$$\underbrace{\partial_t f + \partial_{\mathbf{X}} \cdot (\mathbf{V} f)}_{\text{physical transport}} = \underbrace{\mathcal{S}(f)}_{\text{Source terms}}$$

(□) (圖) (필) (필) (필) (0) (0) 4/28

Introduction ••••••	QMOM 0000	HyQMOM 000000	Results 0000000	Conclusion, Perspectives
Context				
Considered	d kinetic m	odel		

Kinetic model on $f(t, \mathbf{x}, \mathbf{v})$ $\underbrace{\partial_t f + \partial_{\mathbf{x}} \cdot (\mathbf{v} f)}_{\text{physical transport}} = \underbrace{\mathcal{S}(f)}_{\text{Source terms}}$ Gas dynamics for example BGK source term: $\mathcal{S}(f) = -\frac{f - f_{eq}}{Kn}$ Transition regime : 0.01 < Kn < 10Far from the Maxwellian equilibrium

Introduction ••••••	QMOM 0000	HyQMOM 000000	Results	Conclusion, Perspectives
Context				

Considered kinetic model

Kinetic model on $f(t, \mathbf{x}, \mathbf{v})$

$$\underbrace{\partial_t f + \partial_{\mathbf{X}} \cdot (\mathbf{V} f)}_{\text{physical transport}} = \underbrace{\mathcal{S}(f)}_{\text{Source terms}}$$

Gas dynamics

for example BGK source term:
$$S(f) = -\frac{f - f_{ec}}{Kn}$$

Transition regime : 0.01 < Kn < 10

Far from the Maxwellian equilibrium

Population of inertial particles in a gas

for example drag source term:
$$S(f) = -\partial_{\mathbf{v}} \cdot \left(\frac{\mathbf{v}_g(t, \mathbf{x}) - \mathbf{v}}{St}f\right)$$

Particle trajectory crossing for large enough particles (and St): f is no more a Dirac delta function

Introduction	QMOM	HyQMOM	Results	Conclusion, Perspectives
000000	0000	000000	0000000	00
Contoxt				

Context

Considered kinetic model

Kinetic model on $f(t, \mathbf{x}, \mathbf{v})$

$$\underbrace{\partial_t f + \partial_{\mathbf{X}} \cdot (\mathbf{V} f)}_{\text{physical transport}} = \underbrace{\mathcal{S}(f)}_{\text{Source term}}$$

Gas dynamics

for example BGK source term: $S(f) = -\frac{f - f_{eq}}{Kn}$ Transition regime : 0.01 < Kn < 10

Far from the Maxwellian equilibrium

Population of inertial particles in a gas

for example drag source term:
$$S(f) = -\partial_{\mathbf{v}} \cdot \left(\frac{\mathbf{v}_g(t, \mathbf{x}) - \mathbf{v}}{St} f \right)$$

Particle trajectory crossing for large enough particles (and St): f is no more a Dirac delta function

- The kinetic model is too costly to solve with direct methods of Monte-Carlo type
- Moments $\int_{\mathbb{R}} v^k f(t, \mathbf{x}, \mathbf{v}) d\mathbf{v}$ of order k smaller than 1 or 2 are not enough to represent the distribution.

Introduction	QMOM 0000	HyQMOM 000000	Results 0000000	Conclusion, Perspectives
Moment method				

Moment method

Principle of the method

Write equations on a finite set of moments $\mathbf{m}_N = (m_0, m_1, \dots, m_N)^t$:

$$\partial_t m_k + \partial_x m_{k+1} = \mathcal{S}_k, \qquad k = 0, 1, \dots, N$$
 (1)

Closure: express m_{N+1} (and eventually the source terms S_k) as a function of \mathbf{m}_N .

Issues:

- $(m_0, m_1, \ldots, m_N, m_{N+1})^t$ is realizable
- The system (1) is globally hyperbolic
- Capture equilibrium state

Strategy

Solve the Hamburger truncated moment problem:

find a positive measure μ such that $\mathbf{m}_N = \int_{\mathbb{T}} (1, v, \dots, v^N)^t d\mu(v)$.

and set $\mathit{m}_{N+1} = \int_{\mathbb{R}} \mathit{v}^{N+1} \mathrm{d} \mu(\mathit{v})$

Give directly m_{N+1}

Introduction	QMOM 0000	HyQMOM 000000	Results 0000000	Conclusion, Perspectives
Moment method				

Moment method

Principle of the method

Write equations on a finite set of moments $\mathbf{m}_N = (m_0, m_1, \dots, m_N)^t$:

$$\partial_t m_k + \partial_x m_{k+1} = \mathcal{S}_k, \qquad k = 0, 1, \dots, N$$
 (1)

Closure: express m_{N+1} (and eventually the source terms S_k) as a function of \mathbf{m}_N .

Issues:

- $(m_0, m_1, \ldots, m_N, m_{N+1})^t$ is realizable
- The system (1) is globally hyperbolic
- Capture equilibrium state

Examples of closure in the literature

- Grad closure [Grad, 1949]
 → hyperbolic only around the moments of the maxwellian distribution
- Entropy maximization [Levermore, 1996, Müller and Ruggeri, 1998] → high computational cost - not valid on the entire realizability domain
- Quadrature method of moment [McGraw, 1997, Fox, 2008] → weakly hyperbolic

Introduction	QMOM 0000	HyQMOM 000000	Results 0000000	Conclusion, Perspectives
Moment method				

Moment space

Definition

The n^{th} -moment space \mathcal{M}_n is defined by

$$\mathcal{M}_n = \left\{ \mathbf{m} \in \mathbb{R}^{n+1} \mid \exists \mu \in \mathcal{M}_+(\mathbb{R}), \quad \mathbf{m} = \int_{\mathbb{T}} (1, v, \dots, v^n)^t d\mu(v) \right\}$$

If **m** belongs to $\dot{\mathcal{M}}_n$, then it is said to be <u>realizable</u>. If **m** belongs to the interior Int \mathcal{M}_n of \mathcal{M}_n , it is said to be strictly realizable.

Characterized by the non-negativity of the **Hankel determinants**: $n \ge 0$

$$\underline{H}_{2n} = \left| \begin{array}{ccc} m_0 & \dots & m_n \\ \vdots & & \vdots \\ m_n & \dots & m_{2n} \end{array} \right|$$

Theorem

 $\mathbf{m}_N = (m_0, m_1, \dots, m_N)^t \text{ strictly realizable} \Leftrightarrow \underline{H}_{2k} > 0, \quad k \in \{0, 1, \dots, \left\lfloor \frac{N}{2} \right\rfloor \}$

$$\mathbf{m}_{N} \in \partial \mathcal{M}_{N} \cap \mathcal{M}_{n} \Rightarrow \underline{H}_{0} > 0, \dots, \underline{H}_{2k-2} > 0, \underline{H}_{2k} = 0, \dots, \underline{H}_{2\left\lfloor \frac{N}{2} \right\rfloor} = 0, \, k \leq \left\lfloor \frac{N}{2} \right\rfloor.$$

In the latter case, the only corresponding measure is a sum of k weighted Dirac delta functions.

[Shohat and Tamarkin, 1943, Gautschi, 2004, Schmüdgen, 2017]

Introduction	QMOM 0000	HyQMOM 000000	Results 0000000	Conclusion, Perspectives
Moment method				

Moment space

Definition

The n^{th} -moment space \mathcal{M}_n is defined by

$$\mathcal{M}_n = \left\{ \mathbf{m} \in \mathbb{R}^{n+1} \mid \exists \mu \in \mathcal{M}_+(\mathbb{R}), \quad \mathbf{m} = \int_{\mathbb{R}} (1, v, \dots, v^n)^t d\mu(v) \right\}$$

If **m** belongs to M_n , then it is said to be <u>realizable</u>. If **m** belongs to the interior Int M_n of M_n , it is said to be strictly realizable.

Characterized by the non-negativity of the <u>Hankel determinants</u>: $n \ge 0$

$$\underline{\mathcal{H}}_{2n} = \left| \begin{array}{ccc} m_0 & \dots & m_n \\ \vdots & & \vdots \\ m_n & \dots & m_{2n} \end{array} \right|,$$

First constraints for the strict realizability:

$$m_0 > 0 \qquad m_2 > \frac{m_1^2}{m_0}$$
$$m_4 > \frac{m_0 m_3^2 - 2m_1 m_2 m_3 + m_2^3}{m_2 m_0 - m_1^2}$$

Introduction	QMOM	HyQMOM	Results	Conclusion, Perspectives
0000000	0000	000000	0000000	00
Hyperbolicity				

Characteristic polynomial

System on moments

Equations on $\mathbf{m}_N = (m_0, m_1, \dots, m_N)^t$:

$$\partial_t \mathbf{m}_N + \partial_x F(\mathbf{m}_N) = \overline{S}$$

Characteristic Polynomial

Jacobian matrix

$$\frac{D\mathbf{F}(\mathbf{m}_N)}{D\mathbf{m}_N} = \begin{pmatrix} 0 & 1 & 0 & \dots & 0\\ 0 & 0 & 1 & & 0\\ \vdots & & \ddots & \ddots & \vdots\\ 0 & 0 & 0 & 0 & 1\\ \frac{\partial m_{N+1}}{\partial m_0} & \frac{\partial m_{N+1}}{\partial m_1} & \frac{\partial m_{N+1}}{\partial m_2} & \dots & \frac{\partial m_{N+1}}{\partial m_N} \end{pmatrix}$$

Characteristic polynomial

$$\overline{P}_{N+1}(X) = X^{N+1} - \sum_{i=0}^{N} \frac{\partial m_{N+1}}{\partial m_i} X^i$$

Introduction	QMOM	HyQMOM	Results	Conclusion, Perspectives
0000000	0000	000000	0000000	00
Like a site all alters				

Hyperbolicity

Moments - Central moments - Standardized moments

moments:

$$m_k = \int_{\mathbb{R}} v^k f(v) \mathrm{d} v$$

<u>central moments</u>: with $\rho = m_0$, $u = \frac{m_1}{m_0}$ and $f^c(c) = \frac{1}{\rho}f(c+u)$

$$C_k = \frac{1}{\rho} \int_{\mathbb{R}} (v - u)^k f(v) \mathrm{d}v = \int_{\mathbb{R}} c^k f^c(c) \mathrm{d}c$$

so that $C_0 = 1$ and $C_1 = 0$.

<u>standardized moments</u>: with $\sigma = \sqrt{C_2}$, $f^s(s) = \frac{\sigma}{\rho}f(u + \sigma s)$

$$S_k = \frac{1}{m_0} \int_{\mathbb{R}} \left(\frac{v - u}{\sqrt{C_2}} \right)^k f(v) \mathrm{d}v = \int_{\mathbb{R}} s^k f^s(s) \mathrm{d}s$$

so that $S_0 = 1$, $S_1 = 0$ and $S_2 = 1$.

link:

$$C_{k} = \sum_{i=0}^{k} {\binom{k}{i}} \left(-\frac{m_{1}}{m_{0}}\right)^{k-i} m_{i}, \quad m_{k} = \rho \left(\sum_{i=2}^{k} {\binom{k}{i}} u^{k-i} C_{i} + u^{k}\right), \quad S_{k} = \frac{C_{k}}{(C_{2})^{k/2}}.$$

Introduction	QMOM 0000	HyQMOM 000000	Results 0000000	Conclusion, Perspectives
Hyperbolicity				

Property of the characteristic polynomial

 $\mathbf{m}_N = (m_0, m_1, \dots, m_N)^t$ be a realizable moment vector such that $m_0 > 0$ and $C_2 > 0$. linear functional $\langle . \rangle_{\mathbf{m}_N}$ on the space $\mathbb{R}[X]_N$

$$\langle X^k \rangle_{\mathbf{m}_N} = m_k, \quad \text{for } k \in \{0, 1, \dots, N\}.$$

linear functional $\langle . \rangle_{S_N}$ associated with the standardized moments $S_N = (S_0, \dots, S_N)^t$:

$$\langle X^k \rangle := \langle X^k \rangle_{\mathbf{S}_N} = S_k, \text{ for } k \in \{0, 1, \dots, N\}.$$

Property of the scaled characteristic polynomial

Let us assume that the function S_{N+1} does not depend on (m_0, u, C_2) , i.e., $S_{N+1}(S_3, \ldots, S_N)$. Then, the following polynomial

$$P_{N+1}(X) := \overline{P}_{N+1}\left(u + C_2^{1/2}X\right)C_2^{-(N+1)/2}$$

only depends on (S_3, \ldots, S_N) , and

$$\langle P_{N+1} \rangle = 0, \quad \langle P'_{N+1} \rangle = 0, \quad \langle XP'_{N+1} \rangle = 0.$$

Introduction	QMOM	HyQMOM	Results	Conclusion, Perspectives
0000000	●○○○	000000	0000000	
Outline				

Outline

Introduction

- Context
- Moment method
- Hyperbolicity

2 C

QMOM

- Principle of the method
- Hyperbolicity

3 HyQM0

- First version of HyQMOM
- New HyQMOM closure
- Properties Practical computations

4 Resul

- Configuration
- Results

Conclusion, Perspective

Introduction	QMOM	HyQMOM	Results	Conclusion, Perspectives
0000000	0000	000000	0000000	00
Principle of the method				

QMOM: Principles of the method

From a strictly realizable moment vector \mathbf{m}_{2n-1}

Reconstruction
reconstruct the discret measure
$$\mu = \sum_{i=1}^{n} w_i \delta_{u_i}$$

in such a way that
 $\sum_{i=1}^{n} w_i u_i^k = m_k \quad k = 0, 1, \dots, 2n-1$

Closure

$$m_{2n} = \int_{\mathbb{R}} \mathbf{v}^{2n} \mathrm{d}\mu = \sum_{i=1}^{n} w_i u_i^{2n}$$

It is the minimal value for this moment

Introduction	QMOM	HyQMOM	Results	Conclusion, Perspectives
0000000	000	000000	000000	00

QMOM: Principles of the method

From a strictly realizable moment vector \mathbf{m}_{2n-1}

Reconstruction reconstruct the discret measure $\mu = \sum_{i=1}^{n} w_i \delta_{u_i}$ in such a way that $\sum_{i=1}^{n} w_i u_i^k = m_k \quad k = 0, 1, \dots, 2n-1$

Closure

$$m_{2n} = \int_{\mathbb{R}} v^{2n} \mathrm{d}\mu = \sum_{i=1}^{n} w_i u_i^{2n}$$

It is the minimal value for this moment

From the standardized moments \mathbf{S}_{2n-1} , with $\rho = m_0$, $u = m_1/m_0$, $\sigma = \sqrt{C_2}$

Reconstruction

reconstruct the discret measure

$$\mu = \sum_{i=1}^{n} \rho \omega_i \delta_{u+\sigma c_i} \text{ in such a way that}$$

$$\sum_{i=1}^{n} \omega_i c_i^k = S_k \quad k = 0, 1, \dots, 2n-1$$

Closure

$$S_{2n} = \sum_{i=1}^n \omega_i c_i^{2n}$$

▲□ → ▲□ → ▲ = → ▲ = → ④ = → ● € 11/28

Introduction	QMOM	HyQMOM	Results	Conclusion, Perspectives
0000000	0000	000000	0000000	00

QMOM: Principles of the method

From a strictly realizable moment vector \mathbf{m}_{2n-1}

Reconstructionreconstruct the discret measure $\mu = \sum_{i=1}^{n} w_i \delta_{u_i}$ in such a way that $\sum_{i=1}^{n} w_i u_i^k = m_k \quad k = 0, 1, \dots, 2n-1$ Closure $m_{2n} = \int_{\mathbb{R}} v^{2n} d\mu = \sum_{i=1}^{n} w_i u_i^{2n}$ Closure $m_{2n} = \int_{\mathbb{R}} v^{2n} d\mu = \sum_{i=1}^{n} w_i u_i^{2n}$

It is the minimal value for this moment

$$S_{2n} = \sum_{i=1}^{n} \omega_i c_i^{2n}$$

From the standardized moments S_{2n-1} ,

with $\rho = m_0, \, u = m_1/m_0, \, \sigma = \sqrt{C_2}$

Remarks

The reconstruction μ is the only one possible for the moment vector m_{2n}.

• \mathbf{m}_{2n} is at the boundary of the moment space: $\underline{H}_{2n} = 0$

Introduction	QMOM	HyQMOM	Results	Conclusion, Perspectives
0000000	0000	000000	0000000	00

QMOM: Computation of the weights and abscissas

m_{2n-1}: strictly realizable moment vector

Orthogonal polynomials

Family $(Q_k)_{k=0,...,n}$ of monic orthogonal polynomials for the scalar product $(p,q) \mapsto \langle pq \rangle$ of $\mathbb{R}_n[X]$.

$$Q_{k+1}(X) = (X - a_k)Q_k(X) - b_kQ_{k-1}(X)$$

with $Q_{-1} = 0$ and $Q_0 = 1$.

The recurrence coefficients a_k and b_k can be found from the standardized moments using the Chebyshev algorithm [Chebyshev, 1859, Wheeler, 1974, Gautschi, 2004]

$$a_{k} = \frac{\langle X Q_{k}^{2} \rangle}{\langle Q_{k}^{2} \rangle}, \qquad b_{k} = \frac{\langle Q_{k}^{2} \rangle}{\langle Q_{k-1}^{2} \rangle} = \frac{H_{2k}H_{2k-4}}{H_{2k-2}^{2}}$$

example

$$a_{0} = 0, \qquad a_{1} = S_{3}, \qquad a_{2} = \frac{S_{5} - S_{3}(2 + S_{3}^{2} + 2H_{4})}{H_{4}}$$

$$b_{0} = 1, \qquad b_{1} = 1, \qquad b_{2} = H_{4}, \qquad b_{3} = H_{6}/H_{4}^{2}$$

$$(\Box > \langle \Box \rangle \langle$$

Introduction	QMOM	HyQMOM	Results	Conclusion, Perspectives
0000000	0000	000000	0000000	00

QMOM: Computation of the weights and abscissas

m_{2n-1}: strictly realizable moment vector

Orthogonal polynomials

Family $(Q_k)_{k=0,...,n}$ of monic orthogonal polynomials for the scalar product $(p, q) \mapsto \langle pq \rangle$ of $\mathbb{R}_n[X]$.

$$Q_{k+1}(X) = (X - a_k)Q_k(X) - b_kQ_{k-1}(X)$$

with $Q_{-1} = 0$ and $Q_0 = 1$.

The recurrence coefficients a_k and b_k can be found from the standardized moments using the Chebyshev algorithm [Chebyshev, 1859, Wheeler, 1974, Gautschi, 2004]

The abscissas c_i are the zeros of Q_n and also the eigenvalues of the Jacobi matrix

$$\mathbf{J}_{n} = \begin{pmatrix} a_{0} & \sqrt{b_{1}} & & & \\ \sqrt{b_{1}} & a_{1} & \sqrt{b_{2}} & & \\ & \ddots & \ddots & \ddots & \\ & & \sqrt{b_{n-2}} & a_{n-2} & \sqrt{b_{n-1}} \\ & & & & \sqrt{b_{n-1}} & a_{n-1} \end{pmatrix}$$

Introduction 0000000	QMOM ○○○●	HyQMOM 000000	Results	Conclusion, Perspectives
Hyperbolicity				

Hyperbolicity of the QMOM method

Theorem

The QMOM closure $b_n = 0$ induces the following characteristic polynomial $P_{2n} = Q_n^2$ and the system is only weakly hyperbolic.

▲□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

proof [Chalons et al., 2012, Huang et al., 2020]

Introduction	QMOM 0000	HyQMOM ●○○○○○	Results	Conclusion, Perspectives
Outline				

- Context
- Moment method
- Hyperbolicity
- - Principle of the method
 - Hyperbolicity

HyQMOM

- First version of HyQMOM
- New HyQMOM closure
- Properties Practical computations

- Configuration
- Results

Introduction	QMOM	HyQMOM	Results	Conclusion, Perspectives
0000000	0000	00000	0000000	00

First version of HyQMOM

First version of the HyQMOM closure [Fox et al., 2018]

Extension of QMOM, adding one moment and one abscissa for the reconstruction [Fox et al., 2018]

three-node HyQMOM

reconstruction with an additional fixed abscissa $\mu = w_0 \delta_u + \sum w_i \delta_{u_i}$ in such a way that

$$w_0 u^k + \sum_{i=1}^n w_i u_i^k = m_k \quad k = 0, 1, \dots, 4$$

Closure

in term of the standardized moments: $S_5 = S_3(2S_4 - S_3^2)$

Theorem (Hyperbolicity)

Assuming that the vector m_4 is strictly realizable, then system with the three-node HyQMOM closure is hyperbolic.

Problem

- The generalization to a larger number of moment is not easy
- The eigenvalues of the problem do not tend to the ones of QMOM when $\underline{H}_4 \rightarrow 0$

Introduction	QMOM	HyQMOM	Results	Conclusion, Perspectives
0000000	0000	00000	0000000	00

New HyQMOM closure

New HyQMOM closure [Fox and Laurent, 2021]

Idea:

- Instead of looking at a reconstruction or at a closure on S_{2n+1}, one looks at a_n.
- Have a reduced characteristic polynomial on the form

$$P_{2n+1} = Q_n \left[(X - \alpha_n) Q_n - \beta_n Q_{n-1} \right]$$

such that β_n tends to zero when $H_{2n} \rightarrow 0$.

Theorem

For all n = 1, 2, ...; let the monic polynomial P_{2n+1} be given by

$$P_{2n+1} = Q_n [(X - \alpha_n)Q_n - \beta_n Q_{n-1}] \qquad \alpha_n, \beta_n \in \mathbb{R}$$

Then, the following statements are equivalent:

(i)
$$\langle P_{2n+1} \rangle = 0$$
, $\langle P'_{2n+1} \rangle = 0$ and $\langle XP'_{2n+1} \rangle = 0$.
(ii) $\alpha_n = a_n = \frac{1}{n} \sum_{k=0}^{n-1} a_k$ and $\beta_n = \frac{2n+1}{n} b_n$.

Introduction	QMOM	HyQMOM	Results	Conclusion, Perspectives
0000000	0000	000000	0000000	00

New HyQMOM closure

New HyQMOM closure [Fox and Laurent, 2021]

Theorem

For all n = 1, 2, ..., 9; the scaled characteristic polynomial can be written as

$$P_{2n+1} = Q_n \left[(X - \alpha_n) Q_n - \beta_n Q_{n-1} \right]$$

if and only if the closure on S_{2n+1} , defined through the coefficient a_n , and the coefficients α_n and β_n are related to the recurrence coefficients a_k and b_k by

$$a_n = \alpha_n = \frac{1}{n} \sum_{k=0}^{n-1} a_k, \quad \beta_n = \frac{2n+1}{n} b_n.$$

Proof using formal computation with matlab symbolic: from the a_k and b_k , k = 0, ..., n - 1 (with $a_0 = 0$, $a_1 = 1$, $b_0 = 1$)

• set the closure
$$a_n = \frac{1}{n} \sum_{k=0}^{n-1} a_k$$

compute the Standardized moments S_{2n+1} with the reverse Chebyshev algorithm
compute the coefficients c_k of P_{2n+1}
compute the polynomials Q_k, k = 0, 1, ..., n
compute P_{2n+1} - Q_n [(X - a_n)Q_n - ²ⁿ⁺¹/_n b_nQ_{n-1}]

Introduction	QMOM	HyQMOM	Results	Conclusion, Perspectives
0000000	0000	000000	0000000	00

New HyQMOM closure

New HyQMOM closure [Fox and Laurent, 2021]

Theorem

For all n = 1, 2, ..., 9; the scaled characteristic polynomial can be written as

$$P_{2n+1} = Q_n \left[(X - \alpha_n) Q_n - \beta_n Q_{n-1} \right]$$

if and only if the closure on S_{2n+1} , defined through the coefficient a_n , and the coefficients α_n and β_n are related to the recurrence coefficients a_k and b_k by

$$a_n = \alpha_n = \frac{1}{n} \sum_{k=0}^{n-1} a_k, \quad \beta_n = \frac{2n+1}{n} b_n.$$

Examples

- n = 1: $S_3 = 0$ (as for the Maxwellian reconstruction)
- n = 2: $S_5 = \frac{1}{2}S_3(5S_4 3S_3^2 1)$ (different from the previous version: $S_5 = S_3(2S_4 - S_3^2)$)

Introduction	QMOM	HyQMOM	Results	Conclusion, Perspectives
0000000	0000	000000	0000000	

Hyperbolicity - Eigenvalues

Theorem

When $\beta_n > 0$, the n + 1 roots of $R_{n+1} = (X - \alpha_n)Q_n - \beta_nQ_{n-1}$ are real-valued and bound and separate the n roots of Q_n .

comes from Christoffel-Darboux formula.

The roots of P_{2n+1} are then the eigenvalues of the two following Jacobi matrices:

$$\begin{pmatrix} a_0 & \sqrt{b_1} & & & \\ \sqrt{b_1} & a_1 & \sqrt{b_2} & & \\ & \ddots & \ddots & & \\ & & \sqrt{b_{n-2}} & a_{n-2} & \sqrt{b_{n-1}} \\ & & & & \sqrt{b_{n-1}} & a_{n-1} \end{pmatrix}, \begin{pmatrix} a_0 & \sqrt{b_1} & & & \\ \sqrt{b_1} & a_1 & \sqrt{b_2} & & \\ & \ddots & \ddots & \ddots & \\ & & & \sqrt{b_{n-1}} & a_{n-1} & \sqrt{\beta_n} \\ & & & & \sqrt{\beta_n} & \alpha_n \end{pmatrix}$$

Introduction	QMOM	HyQMOM	Results	Conclusion, Perspectives
0000000	0000	000000	0000000	00

Hyperbolicity - Eigenvalues

Theorem

When $\beta_n > 0$, the n + 1 roots of $R_{n+1} = (X - \alpha_n)Q_n - \beta_nQ_{n-1}$ are real-valued and bound and separate the n roots of Q_n .

comes from Christoffel–Darboux formula.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Introduction	QMOM	HyQMOM	Results	Conclusion, Perspectives
0000000	0000	000000	0000000	00

Hyperbolicity - Eigenvalues

Theorem

When $\beta_n > 0$, the n + 1 roots of $R_{n+1} = (X - \alpha_n)Q_n - \beta_nQ_{n-1}$ are real-valued and bound and separate the n roots of Q_n .

comes from Christoffel–Darboux formula.

The moment system with the HyQMOM closure is then hyperbolic, whatever the strictly realizable moment.

Introduction	QMOM	HyQMOM	Results	Conclusion, Perspectives	
0000000	0000	00000	0000000	00	
Properties - Practical computations					

Practical computations

Closure, directly from the moments \mathbf{m}_{2n}

O compute the $(\bar{a}_k)_{k=0}^{n-1}$ and $(\bar{b}_k)_{k=0}^n$ from \mathbf{m}_{2n} with the Chebyshev algorithm

set the closure
$$\bar{a}_n = \frac{1}{n} \sum_{k=0}^{n-1} \bar{a}_k$$

Compute m_{2n+1} using the reverse Chebyshev algorithm

Introduction	QMOM	HyQMOM	Results	Conclusion, Perspectives
0000000	0000	000000	0000000	00

Practical computations

Closure, directly from the moments \mathbf{m}_{2n}

• compute the $(\bar{a}_k)_{k=0}^{n-1}$ and $(\bar{b}_k)_{k=0}^n$ from \mathbf{m}_{2n} with the Chebyshev algorithm

) set the closure
$$\bar{a}_n = \frac{1}{n} \sum_{k=0}^{n-1} \bar{a}_k$$

Compute m_{2n+1} using the reverse Chebyshev algorithm

Eigenvalues of the system

eigenvalues of the two following Jacobi matrices:

$$\begin{pmatrix} \bar{a}_0 & \sqrt{\bar{b}_1} & & & \\ \sqrt{\bar{b}_1} & \bar{a}_1 & \sqrt{\bar{b}_2} & & & \\ & \ddots & \ddots & \ddots & & \\ & & \sqrt{\bar{b}_{n-2}} & \bar{a}_{n-2} & \sqrt{\bar{b}_{n-1}} \\ & & & & \sqrt{\bar{b}_{n-1}} & \bar{a}_{n-1} \end{pmatrix}, \quad \begin{pmatrix} \bar{a}_0 & \sqrt{\bar{b}_1} & & & \\ \sqrt{\bar{b}_1} & \bar{a}_1 & \sqrt{\bar{b}_2} & & & \\ & \ddots & \ddots & \ddots & & \\ & & & \sqrt{\bar{b}_{n-1}} & \bar{a}_{n-1} & \sqrt{\frac{2n+1}{n}\bar{b}_n} \\ & & & & \sqrt{2n+1}\bar{b}_n & \bar{a}_n \end{pmatrix}$$

Introduction	QMOM	HyQMOM	Results	Conclusion, Perspectives
0000000	0000	00000	0000000	00

2

Practical computations

Closure, directly from the moments \mathbf{m}_{2n}

() compute the $(\bar{a}_k)_{k=0}^{n-1}$ and $(\bar{b}_k)_{k=0}^n$ from \mathbf{m}_{2n} with the Chebyshev algorithm

) set the closure
$$\bar{a}_n = \frac{1}{n} \sum_{k=0}^{n-1} \bar{a}_k$$

Compute m_{2n+1} using the reverse Chebyshev algorithm

Eigenvalues of the system

eigenvalues of the two following Jacobi matrices:

$$\begin{pmatrix} \bar{a}_0 & \sqrt{\bar{b}_1} & & & \\ \sqrt{\bar{b}_1} & \bar{a}_1 & \sqrt{\bar{b}_2} & & \\ & \ddots & \ddots & & \\ & & \sqrt{\bar{b}_{n-2}} & \bar{a}_{n-2} & \sqrt{\bar{b}_{n-1}} \\ & & & & \sqrt{\bar{b}_{n-1}} & \bar{a}_{n-1} \end{pmatrix}, \quad \begin{pmatrix} \bar{a}_0 & \sqrt{\bar{b}_1} & & & \\ \sqrt{\bar{b}_1} & \bar{a}_1 & \sqrt{\bar{b}_2} & & \\ & \ddots & \ddots & \ddots & & \\ & & \sqrt{\bar{b}_{n-1}} & \bar{a}_{n-1} & \sqrt{\frac{2n+1}{n}\bar{b}_n} \\ & & & & \sqrt{\frac{2n+1}{n}\bar{b}_n} & \bar{a}_n \end{pmatrix}$$

Reconstruction

A reconstruction as a sum of weighted Dirac delta function corresponds to the closure. The abscissas and weights can be easily computed from the $(\bar{a}_k, \bar{b}_k)_{k=0,...,n}$.

Introduction 0000000	QMOM 0000	HyQMOM 000000	Results ●○○○○○○	Conclusion, Perspectives
Outline				

- - Context
 - Moment method
 - Hyperbolicity

- Principle of the method
- Hyperbolicity
- - First version of HyQMOM
 - New HyQMOM closure
 - Properties Practical computations

- Configuration
- Results

Introduction 0000000	QMOM 0000	HyQMOM 000000	Results	Conclusion, Perspectives
O and in mating				

Configuration

The 1D Riemann problem

problem at the kinetic level

Two homogeneous sprays, with Gaussian distribution and infinite Stokes, crossing.

Problem at the kinetic level

$$\partial_t f + \partial_x (v f) = 0,$$

 $f(v; 0, x) = \mathcal{M}_\sigma (v - \overline{u}(x))$

with
$$\sigma = 1/3$$

 $\bar{u}(x) = \begin{cases} 1 & \text{if } x < 0, \\ -1 & \text{otherwise.} \end{cases}$
Analytical solution $f(t, x, v) = \mathcal{M}_{\sigma}(v - \bar{u}(x - vt)) = \begin{cases} \mathcal{M}_{\sigma}(v - 1) & \text{if } v > x/t, \\ \mathcal{M}_{\sigma}(v + 1) & \text{otherwise.} \end{cases}$

Introduction	QMOM 0000	HyQMOM 000000	Results	Conclusion, Perspectives
Configuration				

The 1D Riemann problem

problem at the kinetic level

Two homogeneous sprays, with Gaussian distribution and infinite Stokes, crossing.

Problem at the kinetic level

$$\partial_t f + \partial_x (v f) = 0,$$

 $f(v; 0, x) = \mathcal{M}_\sigma (v - \overline{u}(x))$

with $\sigma = 1/3$ $\overline{\nu}(x) = \begin{cases} 1 & \text{if } x < 0, \\ -1 & \text{otherwise.} \end{cases}$ Analytical solution $f(t, x, v) = \mathcal{M}_{\sigma}(v - \overline{\nu}(x - vt)) = \begin{cases} \mathcal{M}_{\sigma}(v - 1) & \text{if } v > x/t, \\ \mathcal{M}_{\sigma}(v + 1) & \text{otherwise.} \end{cases}$

moment problem

$$\partial_t m_k + \partial_x m_{k+1} = 0, \quad k = 0, \ldots, 2n$$

with the initial condition for the standardized moments

$$\rho(0, x) = 1, \quad u(0, x) = \bar{u}(x), \quad C_2(0, x) = \sigma, \quad \begin{cases} S_{2k-1} = 0, \\ S_{2k} = (2k-1)S_{2k-2}, \end{cases} \quad k = 2, \dots, r$$

numerical scheme: HLL [Harten et al., 1983]

Introduction 0000000	QMOM 0000	HyQMOM 000000	Results	Conclusion, Perspectives
Desults				

The 1D Riemann problem - Results

moments - cases n=2,3,4

Good behavior on this hard test case.

Introduction	QMOM	HyQMOM	Results	Conclusion, Perspectives
0000000	0000	000000	0000000	00

The 1D Riemann problem - Results

standardized moments - cases n=2,3,4

Good behavior on this hard test case.

Introduction	QMOM	HyQMOM	Results	Conclusion, Perspectives
0000000	0000	000000	0000000	
Desults				

The 1D Riemann problem - Results

first moments - case n=10

Close to the analytical solution.

Introduction	QMOM	HyQMOM	Results	Conclusion, Perspectives
0000000	0000	000000	0000000	00

The 1D Riemann problem - Results

first standardized moments - case n=10

Close to the analytical solution.

Introduction	QMOM	HyQMOM	Results	Conclusion, Perspectives
0000000	0000	000000	000000	00

The 1D Riemann problem - Convergence

error on the moments

The moment method seems to converge to the solution of the kinetic equation when the number of moments increases.

Introduction	QMOM	HyQMOM	Results	Conclusion, Perspectives
0000000	0000	000000	0000000	
Outline				

- - Context
 - Moment method
 - Hyperbolicity
 - - Principle of the method
 - Hyperbolicity
- - First version of HyQMOM
 - New HyQMOM closure
 - Properties Practical computations

- Configuration
- Results

Introd	uction
0000	000

QMOM 0000 HyQMOM

Results

Conclusion, Perspectives

Conclusion and Perspectives

Conclusion

- Closure inducing a global hyperbolicity
- Include the Maxwellian distribution
- Good behavior at the boundary of the moment space
- Efficient algorithm to compute the closure and the eigenvalues

Introd	uction
0000	0000

QMOM 0000 HyQMOM

Results

Conclusion, Perspectives

Conclusion and Perspectives

Conclusion

- Closure inducing a global hyperbolicity
- Include the Maxwellian distribution
- Good behavior at the boundary of the moment space
- Efficient algorithm to compute the closure and the eigenvalues

Perspectives

2D-3D version of the HyQMOM closure

Introd	uction
0000	0000

QMOM 0000 HyQMOM 000000 Results

Conclusion, Perspectives

Conclusion and Perspectives

Conclusion

- Closure inducing a global hyperbolicity
- Include the Maxwellian distribution
- Good behavior at the boundary of the moment space
- Efficient algorithm to compute the closure and the eigenvalues

Perspectives

2D-3D version of the HyQMOM closure

THANK YOU FOR YOUR ATTENTION

References I

Chalons, C., Kah, D., and Massot, M. (2012).

Beyond pressureless gas dynamics: quadrature-based velocity moment models. *Commun. Math. Sci.*, 10(4):1241–1272.

Chebyshev, P. L. (1859).

Sur l'interpolation par la méthode des moindres carrés. *Mém. Acad. Impér. Sci. St. Petersbourg*, 1(15):1–24. Also in œuvres I pp. 473–498.

Fox, R. O. (2008).

A quadrature-based third-order moment method for dilute gas-particle flow. J. Comput. Phys., 227(12):6313–6350.

Fox, R. O. and Laurent, F. (2021).

Hyperbolic quadrature method of moments for the one-dimensional kinetic equation. submitted, https://hal.archives-ouvertes.fr/hal-03171566/.

Fox, R. O., Laurent, F., and Vié, A. (2018).

Conditional hyperbolic quadrature method of moments for kinetic equations. *J. Comput. Phys.*, 365:269–293.

Gautschi, W. (2004).

Orthogonal Polynomials: Computation and Approximation. Oxford University Press, Oxford, UK.

References II

Grad, H. (1949).

On the kinetic theory of rarefied gases. Commun. Pure Appl. Math., 2(4):331–407.

Harten, A., Lax, P. D., and van Leer, B. (1983).

On upstream differencing and Godunov-type schemes for hyperbolic conservation laws. SIAM Review, 25(1):35–61.

Huang, Q., Li, S., and Yong, W.-A. (2020).

Stability analysis of quadrature-based moment methods for kinetic equations. SIAM J. Appl. Math., 80(1):206–231.

Levermore, C. D. (1996).

Moment closure hierarchies for kinetic theories. J. Stat. Phys., 83:1021–1065.

McGraw, R. (1997).

Description of aerosol dynamics by the quadrature method of moments. Aerosol Science and Technology, 27:255–265.

Müller, I. and Ruggeri, T. (1998).

Rational Extended Thermodynamics. Springer-Verlag, New York.

Schmüdgen, K. (2017).

The Moment Problem, volume 277 of Graduate Texts in Mathematics. Springer, Cham.

References III

Shohat, J. A. and Tamarkin, J. D. (1943).

The Problem of Moments. American Mathematical Society, 4th edition.

Wheeler, J. C. (1974).

Modified moments and Gaussian quadratures. Rocky Mt. J. Math., 4:287–296.

Chebyshev algorithm

<u>Three terms recurrence relation</u> for a sequence $(Q_k)_{k\geq 0}$ of orthogonal polynomials relative to $\langle ., . \rangle$:

$$Q_{k+1}(x) = (x - a_k)Q_k(x) - b_kQ_{k-1}(x).$$

Chebyshev algorithm [Chebyshev, 1859, Wheeler, 1974, Gautschi, 2004] $Z_{k,p} = \langle Q_k X^p \rangle$ $Z_{-1,p} = 0, \quad Z_{0,p} = m_p$ $Z_{k+1,p} = Z_{k,p+1} - a_k Z_{k,p} - b_k Z_{k-1,p}.$ $b_0 = m_0, \quad a_0 = \frac{m_1}{m_0}, \quad \forall k > 0 \quad b_k = \frac{Z_{k,k}}{Z_{k-1,k-1}}, \quad a_k = \frac{Z_{k,k+1}}{Z_{k,k}} - \frac{Z_{k-1,k}}{Z_{k-1,k-1}},$

<□> < @ > < E > < E > E = の < 0 32/28</p>