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Context

Considered kinetic model
Kinetic model on f (t , x , v)

∂t f + ∂x · (v f )︸ ︷︷ ︸
physical transport

= S(f )︸︷︷︸
Source terms

Gas dynamics

for example BGK source term: S(f) = −
f− feq

Kn
Transition regime : 0.01 < Kn < 10
Far from the Maxwellian equilibrium

Population of inertial particles in a gas

for example drag source term: S(f ) = −∂v ·
(

vg(t , x)− v
St

f
)

Particle trajectory crossing for large enough particles (and St): f is no more a Dirac
delta function

The kinetic model is too costly to solve with direct methods of Monte-Carlo type

Moments
∫
R vk f (t , x , v)dv of order k smaller than 1 or 2 are not enough to

represent the distribution.
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Moment method

Moment method

Principle of the method

Write equations on a finite set of moments mN = (m0,m1, . . . ,mN )t :

∂t mk + ∂x mk+1 = Sk , k = 0, 1, . . . ,N (1)

Closure: express mN+1 (and eventually the source terms Sk ) as a function of mN .

Issues:

(m0,m1, . . . ,mN ,mN+1)t is realizable

The system (1) is globally hyperbolic

Capture equilibrium state

Strategy
Solve the Hamburger truncated moment problem:

find a positive measure µ such that mN =

∫
R

(1, v , . . . , vN )t dµ(v).

and set mN+1 =
∫
R vN+1dµ(v)

Give directly mN+1
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Principle of the method

Write equations on a finite set of moments mN = (m0,m1, . . . ,mN )t :

∂t mk + ∂x mk+1 = Sk , k = 0, 1, . . . ,N (1)

Closure: express mN+1 (and eventually the source terms Sk ) as a function of mN .

Issues:

(m0,m1, . . . ,mN ,mN+1)t is realizable

The system (1) is globally hyperbolic

Capture equilibrium state

Examples of closure in the literature

Grad closure [Grad, 1949]
→ hyperbolic only around the moments of the maxwellian distribution

Entropy maximization [Levermore, 1996, Müller and Ruggeri, 1998]
→ high computational cost - not valid on the entire realizability domain

Quadrature method of moment [McGraw, 1997, Fox, 2008]
→ weakly hyperbolic
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Moment method

Moment space
Definition

The nth-moment spaceMn is defined by

Mn =

{
m ∈ Rn+1 | ∃µ ∈M+(R), m =

∫
R

(1, v , . . . , vn)t dµ(v)

}
If m belongs toMn, then it is said to be realizable.
If m belongs to the interior IntMn ofMn, it is said to be strictly realizable.

Characterized by the non-negativity of the Hankel determinants: n ≥ 0

H2n =

∣∣∣∣∣∣∣
m0 . . . mn
...

...
mn . . . m2n

∣∣∣∣∣∣∣ ,
Theorem

mN = (m0,m1, . . . ,mN )t strictly realizable⇔ H2k > 0, k ∈ {0, 1, . . . ,
⌊

N
2

⌋
}

mN ∈ ∂MN ∩Mn ⇒ H0 > 0, . . . ,H2k−2 > 0,H2k = 0, . . . ,H
2
⌊

N
2

⌋ = 0, k ≤
⌊

N
2

⌋
.

In the latter case, the only corresponding measure is a sum of k weighted Dirac delta
functions.
[Shohat and Tamarkin, 1943, Gautschi, 2004, Schmüdgen, 2017]



6/28

Introduction QMOM HyQMOM Results Conclusion, Perspectives

Moment method

Moment space
Definition

The nth-moment spaceMn is defined by

Mn =

{
m ∈ Rn+1 | ∃µ ∈M+(R), m =

∫
R

(1, v , . . . , vn)t dµ(v)

}
If m belongs toMn, then it is said to be realizable.
If m belongs to the interior IntMn ofMn, it is said to be strictly realizable.

Characterized by the non-negativity of the Hankel determinants: n ≥ 0

H2n =

∣∣∣∣∣∣∣
m0 . . . mn
...

...
mn . . . m2n

∣∣∣∣∣∣∣ ,
First constraints for the strict realizability:

m0 > 0 m2 >
m2

1
m0

m4 >
m0m2

3 − 2m1m2m3 + m3
2

m2m0 −m2
1

. . .
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Hyperbolicity

Characteristic polynomial

System on moments

Equations on mN = (m0,m1, . . . ,mN )t :

∂t mN + ∂x F (mN ) = S

Characteristic Polynomial

Jacobian matrix

DF(mN )

DmN
=



0 1 0 . . . 0
0 0 1 0
...

. . .
. . .

...
0 0 0 0 1

∂mN+1
∂m0

∂mN+1
∂m1

∂mN+1
∂m2

. . .
∂mN+1
∂mN

 .

Characteristic polynomial

PN+1(X) = X N+1 −
N∑

i=0

∂mN+1

∂mi
X i
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Hyperbolicity

Moments - Central moments - Standardized moments
moments:

mk =

∫
R

vk f (v)dv

central moments: with ρ = m0, u = m1
m0

and f c(c) = 1
ρ

f (c + u)

Ck =
1
ρ

∫
R

(v − u)k f (v)dv =

∫
R

ck f c(c)dc

so that C0 = 1 and C1 = 0.

standardized moments: with σ =
√

C2, f s(s) = σ
ρ

f (u + σs)

Sk =
1

m0

∫
R

(
v − u√

C2

)k

f (v)dv =

∫
R

sk f s(s)ds

so that S0 = 1, S1 = 0 and S2 = 1.

link:

Ck =
k∑

i=0

(k
i

)(
−

m1

m0

)k−i
mi , mk = ρ

 k∑
i=2

(k
i

)
uk−i Ci + uk

 , Sk =
Ck

(C2)k/2
.
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Hyperbolicity

Property of the characteristic polynomial

mN = (m0,m1, . . . ,mN )t be a realizable moment vector such that m0 > 0 and C2 > 0.

linear functional 〈.〉mN on the space R[X ]N

〈X k 〉mN = mk , for k ∈ {0, 1, . . . ,N}.

linear functional 〈.〉SN
associated with the standardized moments SN = (S0, . . . ,SN )t :

〈X k 〉 := 〈X k 〉SN
= Sk , for k ∈ {0, 1, . . . ,N}.

Property of the scaled characteristic polynomial

Let us assume that the function SN+1 does not depend on (m0, u,C2), i.e.,
SN+1(S3, . . . ,SN ). Then, the following polynomial

PN+1(X) := PN+1

(
u + C1/2

2 X
)

C−(N+1)/2
2

only depends on (S3, . . . ,SN ), and

〈PN+1〉 = 0, 〈P′N+1〉 = 0, 〈XP′N+1〉 = 0.
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Principle of the method

QMOM: Principles of the method

From a strictly realizable moment vector m2n−1

Reconstruction

reconstruct the discret measure µ =
n∑

i=1

wiδui

in such a way that
n∑

i=1

wi uk
i = mk k = 0, 1, . . . , 2n − 1

Closure

m2n =

∫
R

v2ndµ =
n∑

i=1

wi u2n
i

It is the minimal value for this moment

From the standardized moments S2n−1,
with ρ = m0, u = m1/m0, σ =

√
C2

Reconstruction

reconstruct the discret measure

µ =
n∑

i=1

ρωiδu+σci in such a way that

n∑
i=1

ωi ck
i = Sk k = 0, 1, . . . , 2n − 1

Closure

S2n =
n∑

i=1

ωi c2n
i

Remarks

The reconstruction µ is the only one possible for the moment vector m2n.

m2n is at the boundary of the moment space: H2n = 0
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Principle of the method

QMOM: Computation of the weights and abscissas
m2n−1: strictly realizable moment vector

Orthogonal polynomials

Family (Qk )k=0,...,n of monic orthogonal polynomials for the scalar product
(p, q) 7→ 〈pq〉 of Rn[X ].

Qk+1(X) = (X − ak )Qk (X)− bk Qk−1(X)

with Q−1 = 0 and Q0 = 1.
The recurrence coefficients ak and bk can be found from the standardized moments
using the Chebyshev algorithm [Chebyshev, 1859, Wheeler, 1974, Gautschi, 2004]

ak =
〈XQ2

k 〉
〈Q2

k 〉
, bk =

〈Q2
k 〉

〈Q2
k−1〉

=
H2k H2k−4

H2
2k−2

.

example

a0 = 0, a1 = S3, a2 =
S5 − S3(2 + S2

3 + 2H4)

H4

b0 = 1, b1 = 1, b2 = H4, b3 = H6/H2
4
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QMOM: Computation of the weights and abscissas
m2n−1: strictly realizable moment vector

Orthogonal polynomials

Family (Qk )k=0,...,n of monic orthogonal polynomials for the scalar product
(p, q) 7→ 〈pq〉 of Rn[X ].

Qk+1(X) = (X − ak )Qk (X)− bk Qk−1(X)

with Q−1 = 0 and Q0 = 1.
The recurrence coefficients ak and bk can be found from the standardized moments
using the Chebyshev algorithm [Chebyshev, 1859, Wheeler, 1974, Gautschi, 2004]

The abscissas ci are the zeros of Qn and also the eigenvalues of the Jacobi matrix

Jn =


a0

√
b1√

b1 a1
√

b2
. . .

. . .
. . .√

bn−2 an−2
√

bn−1√
bn−1 an−1


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Hyperbolicity

Hyperbolicity of the QMOM method

Theorem

The QMOM closure bn = 0 induces the following characteristic polynomial P2n = Q2
n

and the system is only weakly hyperbolic.

proof [Chalons et al., 2012, Huang et al., 2020]
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First version of HyQMOM

First version of the HyQMOM closure [Fox et al., 2018]

Extension of QMOM, adding one moment and one abscissa for the reconstruction
[Fox et al., 2018]

three-node HyQMOM

reconstruction with an additional fixed abscissa µ = w0δu +
2∑

i=1

wiδui in such a way that

w0uk +
n∑

i=1

wi uk
i = mk k = 0, 1, . . . , 4

Closure

in term of the standardized moments: S5 = S3(2S4 − S2
3)

Theorem (Hyperbolicity)

Assuming that the vector m4 is strictly realizable, then system with the three-node
HyQMOM closure is hyperbolic.

Problem

The generalization to a larger number of moment is not easy

The eigenvalues of the problem do not tend to the ones of QMOM when H4 → 0
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New HyQMOM closure

New HyQMOM closure [Fox and Laurent, 2021]

Idea:
Instead of looking at a reconstruction or at a closure on S2n+1, one looks at an.

Have a reduced characteristic polynomial on the form

P2n+1 = Qn [(X − αn)Qn − βnQn−1]

such that βn tends to zero when H2n → 0.

Theorem

For all n = 1, 2, . . . ; let the monic polynomial P2n+1 be given by

P2n+1 = Qn [(X − αn)Qn − βnQn−1] αn, βn ∈ R

Then, the following statements are equivalent:

(i) 〈P2n+1〉 = 0, 〈P′2n+1〉 = 0 and 〈XP′2n+1〉 = 0.

(ii) αn = an =
1
n

n−1∑
k=0

ak and βn =
2n + 1

n
bn.
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New HyQMOM closure

New HyQMOM closure [Fox and Laurent, 2021]

Theorem

For all n = 1, 2, . . . , 9; the scaled characteristic polynomial can be written as

P2n+1 = Qn [(X − αn)Qn − βnQn−1]

if and only if the closure on S2n+1, defined through the coefficient an, and the
coefficients αn and βn are related to the recurrence coefficients ak and bk by

an = αn =
1
n

n−1∑
k=0

ak , βn =
2n + 1

n
bn.

Proof using formal computation with matlab symbolic:
from the ak and bk , k = 0, . . . , n − 1 (with a0 = 0, a1 = 1, b0 = 1)

1 set the closure an =
1
n

n−1∑
k=0

ak

2 compute the Standardized moments S2n+1 with the reverse Chebyshev algorithm
3 compute the coefficients ck of P2n+1
4 compute the polynomials Qk , k = 0, 1, . . . , n

5 compute P2n+1 − Qn

[
(X − an)Qn −

2n + 1
n

bnQn−1

]
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New HyQMOM closure [Fox and Laurent, 2021]

Theorem

For all n = 1, 2, . . . , 9; the scaled characteristic polynomial can be written as

P2n+1 = Qn [(X − αn)Qn − βnQn−1]

if and only if the closure on S2n+1, defined through the coefficient an, and the
coefficients αn and βn are related to the recurrence coefficients ak and bk by

an = αn =
1
n

n−1∑
k=0

ak , βn =
2n + 1

n
bn.

Examples

n = 1: S3 = 0 (as for the Maxwellian reconstruction)

n = 2: S5 = 1
2 S3(5S4 − 3S2

3 − 1) (different from the previous version:
S5 = S3(2S4 − S2

3))
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Properties - Practical computations

Hyperbolicity - Eigenvalues

Theorem

When βn > 0, the n + 1 roots of Rn+1 = (X − αn)Qn − βnQn−1 are real-valued and
bound and separate the n roots of Qn.

comes from Christoffel–Darboux formula.

The roots of P2n+1 are then the eigenvalues of the two following Jacobi matrices:
a0

√
b1√

b1 a1
√

b2
. . .

. . .
. . .√

bn−2 an−2
√

bn−1√
bn−1 an−1

 ,


a0

√
b1√

b1 a1
√

b2
. . .

. . .
. . .√

bn−1 an−1
√
βn√

βn αn


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Example of the evolution of the eigenvalues with H2n

S3 = −1

-8 -6 -4 -2 0 2 4 6 8
0

5

10

15

20

-15 -10 -5 0 5 10 15
0

100

200

300

400

500

600

700

-20 -10 0 10 20
0

2

4

6

8

10
10

5

-20 -10 0 10 20
0

2

4

6

8

10
10

10
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The moment system with the HyQMOM closure is then hyperbolic, whatever the strictly
realizable moment.
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Properties - Practical computations

Practical computations
Closure, directly from the moments m2n

1 compute the (āk )n−1
k=0 and (b̄k )n

k=0 from m2n with the Chebyshev algorithm

2 set the closure ān =
1
n

n−1∑
k=0

āk

3 compute m2n+1 using the reverse Chebyshev algorithm

Eigenvalues of the system

eigenvalues of the two following Jacobi matrices:

ā0

√
b̄1√

b̄1 ā1

√
b̄2

. . .
. . .

. . .√
b̄n−2 ān−2

√
b̄n−1√

b̄n−1 ān−1


,



ā0

√
b̄1√

b̄1 ā1

√
b̄2

. . .
. . .

. . .√
b̄n−1 ān−1

√
2n+1

n b̄n√
2n+1

n b̄n ān



Reconstruction

A reconstruction as a sum of weighted Dirac delta function corresponds to the closure.
The abscissas and weights can be easily computed from the (āk , b̄k )k=0,...,n.
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Configuration

The 1D Riemann problem
problem at the kinetic level

Two homogeneous sprays, with Gaussian distribution and infinite Stokes, crossing.

Problem at the kinetic level

∂t f + ∂x (v f ) = 0,

f (v ; 0, x) =Mσ(v − ū(x))

with σ = 1/3
ū(x) =

{
1 if x < 0,
−1 otherwise.

Analytical solution f (t , x , v) =Mσ(v − ū(x − vt)) =

{
Mσ(v − 1) if v > x/t ,
Mσ(v + 1) otherwise.

t = 0:

X=0 
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The 1D Riemann problem
problem at the kinetic level

Two homogeneous sprays, with Gaussian distribution and infinite Stokes, crossing.

Problem at the kinetic level

∂t f + ∂x (v f ) = 0,

f (v ; 0, x) =Mσ(v − ū(x))

with σ = 1/3
ū(x) =

{
1 if x < 0,
−1 otherwise.

Analytical solution f (t , x , v) =Mσ(v − ū(x − vt)) =

{
Mσ(v − 1) if v > x/t ,
Mσ(v + 1) otherwise.

moment problem

∂t mk + ∂x mk+1 = 0, k = 0, . . . , 2n

with the initial condition for the standardized moments

ρ(0, x) = 1, u(0, x) = ū(x), C2(0, x) = σ,

{
S2k−1 = 0,
S2k = (2k − 1)S2k−2,

k = 2, . . . , n

numerical scheme: HLL [Harten et al., 1983]
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Results

The 1D Riemann problem - Results

moments - cases n=2,3,4

Good behavior on this hard test case.
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Results

The 1D Riemann problem - Results

standardized moments - cases n=2,3,4

Good behavior on this hard test case.



24/28

Introduction QMOM HyQMOM Results Conclusion, Perspectives

Results

The 1D Riemann problem - Results

first moments - case n=10

Close to the analytical solution.
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Results

The 1D Riemann problem - Results

first standardized moments - case n=10

Close to the analytical solution.
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Results

The 1D Riemann problem - Convergence

error on the moments

odd order
moments

even order
moments

increasing order

The moment method seems to converge to the solution of the kinetic equation when
the number of moments increases.
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Conclusion and Perspectives

Conclusion

Closure inducing a global hyperbolicity

Include the Maxwellian distribution

Good behavior at the boundary of the moment space

Efficient algorithm to compute the closure and the eigenvalues

Perspectives

2D-3D version of the HyQMOM closure

THANK YOU FOR YOUR ATTENTION
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Chebyshev algorithm

Three terms recurrence relation for a sequence (Qk )k≥0 of orthogonal polynomials
relative to 〈., .〉:

Qk+1(x) = (x − ak )Qk (x)− bk Qk−1(x).

Chebyshev algorithm [Chebyshev, 1859, Wheeler, 1974, Gautschi, 2004]

Zk,p = 〈Qk X p〉
Z−1,p = 0, Z0,p = mp

Zk+1,p = Zk,p+1 − ak Zk,p − bk Zk−1,p.

b0 = m0, a0 =
m1

m0
, ∀k > 0 bk =

Zk,k

Zk−1,k−1
, ak =

Zk,k+1

Zk,k
−

Zk−1,k

Zk−1,k−1
,
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