Hyperbolic Quadrature Method of Moments for the one-dimensional kinetic equation

Frédérique LAURENT-NÉGRE
Laboratoire EM2C - CNRS - CentraleSupélec - Université Paris-Saclay
Fédération de Mathématiques de CentraleSupélec - CNRS

Rodney O. Fox
Department of Chemical and Biological Engineering, Iowa State University, USA

Congrès SMAI 2021
21-25 juin 2021
Table of content

1. Introduction
 - Context
 - Moment method
 - Hyperbolicity

2. QMOM
 - Principle of the method
 - Hyperbolicity

3. HyQMOM
 - First version of HyQMOM
 - New HyQMOM closure
 - Properties - Practical computations

4. Results
 - Configuration
 - Results

5. Conclusion, Perspectives
Outline

1. Introduction
 - Context
 - Moment method
 - Hyperbolicity

2. QMOM
 - Principle of the method
 - Hyperbolicity

3. HyQMOM
 - First version of HyQMOM
 - New HyQMOM closure
 - Properties - Practical computations

4. Results
 - Configuration
 - Results

5. Conclusion, Perspectives
Considered kinetic model

Kinetic model on $f(t, x, v)$

$$\frac{\partial f}{\partial t} + \nabla \cdot (v f) = S(f)$$

- $\frac{\partial f}{\partial t}$ physical transport
- $S(f)$ Source terms
Context

Considered kinetic model

Kinetic model on \(f(t, x, v) \)

\[
\frac{\partial f}{\partial t} + \frac{\partial}{\partial x} \left(v f \right) = S(f)
\]

- **physical transport**
- **Source terms**

Gas dynamics

For example, BGK source term: \(S(f) = -\frac{f - f_{eq}}{Kn} \)

Transition regime: \(0.01 < Kn < 10 \)

Far from the Maxwellian equilibrium
Considered kinetic model

Kinetic model on \(f(t, x, v) \)

\[
\partial_t f + \partial_x \cdot (v f) = S(f)
\]

- **physical transport**
- **Source terms**

Gas dynamics

for example BGK source term: \(S(f) = -\frac{f - f_{eq}}{Kn} \)

Transition regime: \(0.01 < Kn < 10 \)
Far from the Maxwellian equilibrium

Population of inertial particles in a gas

for example drag source term: \(S(f) = -\partial_v \cdot \left(\frac{v_g(t, x) - v}{St} f \right) \)

Particle trajectory crossing for large enough particles (and \(St \)): \(f \) is no more a Dirac delta function
Considered kinetic model

Kinetic model on \(f(t, x, v) \)

\[
\frac{\partial t f + \partial_x \cdot (v f)}{\partial t} = S(f)
\]

- **Physical transport**
- **Source terms**

Gas dynamics

- For example BGK source term: \(S(f) = -\frac{f - f_{eq}}{Kn} \)
- Transition regime: \(0.01 < Kn < 10 \)
- Far from the Maxwellian equilibrium

Population of inertial particles in a gas

- For example drag source term: \(S(f) = -\partial_v \cdot \left(\frac{v_g(t, x) - v}{St} f \right) \)
- Particle trajectory crossing for large enough particles (and \(St \)): \(f \) is no more a Dirac delta function

- The kinetic model is too costly to solve with direct methods of Monte-Carlo type
- Moments \(\int_{\mathbb{R}} v^k f(t, x, v) dv \) of order \(k \) smaller than 1 or 2 are not enough to represent the distribution.
Moment method

Principle of the method

Write equations on a finite set of moments $\mathbf{m}_N = (m_0, m_1, \ldots, m_N)^t$:

$$\partial_t m_k + \partial_x m_{k+1} = S_k, \quad k = 0, 1, \ldots, N \quad (1)$$

Closure: express m_{N+1} (and eventually the source terms S_k) as a function of \mathbf{m}_N.

Issues:
- $(m_0, m_1, \ldots, m_N, m_{N+1})^t$ is realizable
- The system (1) is globally hyperbolic
- Capture equilibrium state

Strategy
- Solve the Hamburger truncated moment problem:

 find a positive measure μ such that $\mathbf{m}_N = \int_{\mathbb{R}} (1, \mathbf{v}, \ldots, \mathbf{v}^N)^t d\mu(\mathbf{v})$.

 and set $m_{N+1} = \int_{\mathbb{R}} \mathbf{v}^{N+1} d\mu(\mathbf{v})$
- Give directly m_{N+1}
Moment method

Principle of the method

Write equations on a finite set of moments $\mathbf{m}_N = (m_0, m_1, \ldots, m_N)^t$:

$$
\partial_t m_k + \partial_x m_{k+1} = S_k, \quad k = 0, 1, \ldots, N
$$

Closure: express m_{N+1} (and eventually the source terms S_k) as a function of \mathbf{m}_N.

Issues:
- $(m_0, m_1, \ldots, m_N, m_{N+1})^t$ is realizable
- The system (1) is globally hyperbolic
- Capture equilibrium state

Examples of closure in the literature
- Grad closure [Grad, 1949] \rightarrow hyperbolic only around the moments of the maxwellian distribution
- Entropy maximization [Levermore, 1996, Müller and Ruggeri, 1998] \rightarrow high computational cost - not valid on the entire realizability domain
Moment method

Moment space

Definition

The \(n^{th} \)-moment space \(\mathcal{M}_n \) is defined by

\[
\mathcal{M}_n = \left\{ \mathbf{m} \in \mathbb{R}^{n+1} \mid \exists \mu \in \mathcal{M}_+(\mathbb{R}), \quad \mathbf{m} = \int_{\mathbb{R}} (1, v, \ldots, v^n)^t d\mu(v) \right\}
\]

If \(\mathbf{m} \) belongs to \(\mathcal{M}_n \), then it is said to be realizable.
If \(\mathbf{m} \) belongs to the interior \(\text{Int} \mathcal{M}_n \) of \(\mathcal{M}_n \), it is said to be strictly realizable.

Characterized by the non-negativity of the **Hankel determinants**: \(n \geq 0 \)

\[
H_{2n} = \begin{vmatrix}
 m_0 & \cdots & m_n \\
 \vdots & \ddots & \vdots \\
 m_n & \cdots & m_{2n}
\end{vmatrix}
\]

Theorem

\[
\mathbf{m}_N = (m_0, m_1, \ldots, m_N)^t \text{ strictly realizable } \iff H_{2k} > 0, \quad k \in \{0, 1, \ldots, \left\lfloor \frac{N}{2} \right\rfloor \}
\]

\[
\mathbf{m}_N \in \partial \mathcal{M}_N \cap \mathcal{M}_n \Rightarrow H_0 > 0, \ldots, H_{2k-2} > 0, H_{2k} = 0, \ldots, H_{2\left\lfloor \frac{N}{2} \right\rfloor} = 0, \quad k \leq \left\lfloor \frac{N}{2} \right\rfloor.
\]

In the latter case, the only corresponding measure is a sum of \(k \) weighted Dirac delta functions.

Moment method

Moment space

Definition

The **nth-moment space** \mathcal{M}_n is defined by

$$
\mathcal{M}_n = \left\{ \mathbf{m} \in \mathbb{R}^{n+1} \mid \exists \mu \in \mathcal{M}_+(\mathbb{R}), \quad \mathbf{m} = \int_{\mathbb{R}} (1, v, \ldots, v^n)^t d\mu(v) \right\}
$$

If \mathbf{m} belongs to \mathcal{M}_n, then it is said to be **realizable**.

If \mathbf{m} belongs to the interior $\text{Int} \, \mathcal{M}_n$ of \mathcal{M}_n, it is said to be **strictly realizable**.

Characterized by the non-negativity of the **Hankel determinants**: $n \geq 0$

$$
H_{2n} = \begin{vmatrix}
m_0 & \ldots & m_n \\
\vdots & \ddots & \vdots \\
m_n & \ldots & m_{2n}
\end{vmatrix}
$$

First constraints for the strict realizability:

$$
m_0 > 0 \quad m_2 > \frac{m_1^2}{m_0} \quad m_4 > \frac{m_0 m_3^2 - 2m_1 m_2 m_3 + m_3^2}{m_2 m_0 - m_1^2} \quad \ldots
$$
Hyperbolicity

Characteristic polynomial

System on moments

Equations on \(\mathbf{m}_N = (m_0, m_1, \ldots, m_N)^t \):

\[
\partial_t \mathbf{m}_N + \partial_x F(\mathbf{m}_N) = \bar{S}
\]

Characteristic Polynomial

Jacobian matrix

\[
\frac{DF(\mathbf{m}_N)}{D\mathbf{m}_N} =
\begin{pmatrix}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & 0 & 0 \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
0 & 0 & 0 & 0 & 1
\end{pmatrix}
\]

Characteristic polynomial

\[
\bar{P}_{N+1}(X) = X^{N+1} - \sum_{i=0}^{N} \frac{\partial m_{N+1}}{\partial m_i} X^i
\]
Moments - Central moments - Standardized moments

moments:

\[m_k = \int_{\mathbb{R}} v^k f(v) dv \]

central moments: with \(\rho = m_0, \ u = \frac{m_1}{m_0} \) and \(f^c(c) = \frac{1}{\rho} f(c + u) \)

\[C_k = \frac{1}{\rho} \int_{\mathbb{R}} (v - u)^k f(v) dv = \int_{\mathbb{R}} c^k f^c(c) dc \]

so that \(C_0 = 1 \) and \(C_1 = 0 \).

standardized moments: with \(\sigma = \sqrt{C_2} \), \(f^s(s) = \frac{\sigma}{\rho} f(u + \sigma s) \)

\[S_k = \frac{1}{m_0} \int_{\mathbb{R}} \left(\frac{v - u}{\sqrt{C_2}} \right)^k f(v) dv = \int_{\mathbb{R}} s^k f^s(s) ds \]

so that \(S_0 = 1, S_1 = 0 \) and \(S_2 = 1 \).

link:

\[C_k = \sum_{i=0}^{k} \binom{k}{i} \left(-\frac{m_1}{m_0} \right)^{k-i} m_i, \quad m_k = \rho \left(\sum_{i=2}^{k} \binom{k}{i} u^{k-i} C_i + u^k \right), \quad S_k = \frac{C_k}{(C_2)^{k/2}}. \]
Property of the characteristic polynomial

\[m_N = (m_0, m_1, \ldots, m_N)^t \] be a realizable moment vector such that \(m_0 > 0 \) and \(C_2 > 0 \).

Linear functional \(\langle \cdot \rangle_{m_N} \) on the space \(\mathbb{R}[X]_N \)

\[\langle X^k \rangle_{m_N} = m_k, \quad \text{for } k \in \{0, 1, \ldots, N\}. \]

Linear functional \(\langle \cdot \rangle_{S_N} \) associated with the standardized moments \(S_N = (S_0, \ldots, S_N)^t \):

\[\langle X^k \rangle := \langle X^k \rangle_{S_N} = S_k, \quad \text{for } k \in \{0, 1, \ldots, N\}. \]

Property of the scaled characteristic polynomial

Let us assume that the function \(S_{N+1} \) does not depend on \((m_0, u, C_2)\), i.e., \(S_{N+1}(S_3, \ldots, S_N) \). Then, the following polynomial

\[P_{N+1}(X) := \overline{P}_{N+1} \left(u + C_2^{1/2} X \right) C_2^{-(N+1)/2} \]

only depends on \((S_3, \ldots, S_N)\), and

\[\langle P_{N+1} \rangle = 0, \quad \langle P'_{N+1} \rangle = 0, \quad \langle XP'_{N+1} \rangle = 0. \]
Outline

1. Introduction
 - Context
 - Moment method
 - Hyperbolicity

2. QMOM
 - Principle of the method
 - Hyperbolicity

3. HyQMOM
 - First version of HyQMOM
 - New HyQMOM closure
 - Properties - Practical computations

4. Results
 - Configuration
 - Results

5. Conclusion, Perspectives
QMOM: Principles of the method

From a strictly realizable moment vector \mathbf{m}_{2n-1}

Reconstruction

reconstruct the discret measure $\mu = \sum_{i=1}^{n} w_i \delta u_i$
in such a way that

$$\sum_{i=1}^{n} w_i u_i^k = m_k \quad k = 0, 1, \ldots, 2n - 1$$

Closure

$$m_{2n} = \int_{\mathbb{R}} v^{2n} d\mu = \sum_{i=1}^{n} w_i u_i^{2n}$$

It is the minimal value for this moment
QMOM: Principles of the method

Reconstruction

From a strictly realizable moment vector m_{2n-1}

reconstruct the discret measure $\mu = \sum_{i=1}^{n} w_i \delta u_i$

in such a way that

$$\sum_{i=1}^{n} w_i u_i^k = m_k \quad k = 0, 1, \ldots, 2n - 1$$

Closure

$$m_{2n} = \int_{\mathbb{R}} v^{2n} d\mu = \sum_{i=1}^{n} w_i u_i^{2n}$$

It is the minimal value for this moment

Reconstruction

From the standardized moments S_{2n-1}, with $\rho = m_0$, $u = m_1/m_0$, $\sigma = \sqrt{C_2}$

reconstruct the discret measure

$$\mu = \sum_{i=1}^{n} \rho \omega_i \delta u + \sigma c_i$$

in such a way that

$$\sum_{i=1}^{n} \omega_i c_i^k = S_k \quad k = 0, 1, \ldots, 2n - 1$$

Closure

$$S_{2n} = \sum_{i=1}^{n} \omega_i c_i^{2n}$$
QMOM: Principles of the method

From a strictly realizable moment vector \(m_{2n-1} \)

Reconstruction

reconstruct the discret measure \(\mu = \sum_{i=1}^{n} w_i \delta u_i \) in such a way that

\[
\sum_{i=1}^{n} w_i u_i^k = m_k \quad k = 0, 1, \ldots, 2n - 1
\]

Closure

\[
m_{2n} = \int_{\mathbb{R}} v^{2n} d\mu = \sum_{i=1}^{n} w_i u_i^{2n}
\]

It is the minimal value for this moment

From the standardized moments \(S_{2n-1} \), with \(\rho = m_0, u = m_1/m_0, \sigma = \sqrt{C_2} \)

Reconstruction

reconstruct the discret measure

\[
\mu = \sum_{i=1}^{n} \rho \omega_i \delta u_i + \sigma c_i
\]

in such a way that

\[
\sum_{i=1}^{n} \omega_i c_i^k = S_k \quad k = 0, 1, \ldots, 2n - 1
\]

Closure

\[
S_{2n} = \sum_{i=1}^{n} \omega_i c_i^{2n}
\]

Remarks

- The reconstruction \(\mu \) is the only one possible for the moment vector \(m_{2n} \).
- \(m_{2n} \) is at the boundary of the moment space: \(H_{2n} = 0 \)
Introduction

QMOM

HyQMOM

Results

Conclusion, Perspectives

Principle of the method

QMOM: Computation of the weights and abscissas

\(m_{2n-1} \): strictly realizable moment vector

Orthogonal polynomials

Family \((Q_k)_{k=0,...,n}\) of monic orthogonal polynomials for the scalar product \((p, q) \mapsto \langle pq \rangle\) of \(\mathbb{R}_n[X]\).

\[Q_{k+1}(X) = (X - a_k)Q_k(X) - b_k Q_{k-1}(X) \]

with \(Q_{-1} = 0\) and \(Q_0 = 1\).

The recurrence coefficients \(a_k\) and \(b_k\) can be found from the standardized moments using the Chebyshev algorithm [Chebyshev, 1859, Wheeler, 1974, Gautschi, 2004]

\[
\begin{align*}
 a_k &= \frac{\langle XQ_k^2 \rangle}{\langle Q_k^2 \rangle}, \\
 b_k &= \frac{\langle Q_k^2 \rangle}{\langle Q_{k-1}^2 \rangle} = \frac{H_{2k} H_{2k-4}}{H_{2k-2}^2}.
\end{align*}
\]

example

\[
\begin{align*}
 a_0 &= 0, & a_1 &= S_3, & a_2 &= \frac{S_5 - S_3(2 + S_3^2 + 2H_4)}{H_4} \\
 b_0 &= 1, & b_1 &= 1, & b_2 &= H_4, & b_3 &= H_6 / H_4^2
\end{align*}
\]
QMOM: Computation of the weights and abscissas

\[m_{2n-1} \]: strictly realizable moment vector

Orthogonal polynomials

Family \((Q_k)_{k=0,\ldots,n}\) of monic orthogonal polynomials for the scalar product \((p, q) \mapsto \langle pq \rangle\) of \(\mathbb{R}_n[X]\).

\[
Q_{k+1}(X) = (X - a_k)Q_k(X) - b_k Q_{k-1}(X)
\]

with \(Q_{-1} = 0\) and \(Q_0 = 1\).

The recurrence coefficients \(a_k\) and \(b_k\) can be found from the standardized moments using the Chebyshev algorithm [Chebyshev, 1859, Wheeler, 1974, Gautschi, 2004]

The abscissas \(c_i\) are the zeros of \(Q_n\) and also the eigenvalues of the Jacobi matrix

\[
J_n = \begin{pmatrix}
a_0 & \sqrt{b_1} & \sqrt{b_2} & \cdots & \sqrt{b_{n-2}} & a_{n-2} & \sqrt{b_{n-1}} \\
\sqrt{b_1} & a_1 & \sqrt{b_2} & \cdots & \sqrt{b_{n-1}} & a_{n-1} \\
\sqrt{b_2} & \sqrt{b_1} & a_1 & \cdots & \sqrt{b_{n-2}} & a_{n-2} \\
\vdots & \vdots & \ddots & \ddots & \ddots & \ddots \\
\sqrt{b_{n-2}} & \sqrt{b_{n-1}} & \cdots & \sqrt{b_2} & a_1 & \sqrt{b_1} \\
\sqrt{b_{n-1}} & \sqrt{b_{n-2}} & \cdots & \sqrt{b_1} & a_1 & \sqrt{b_0}
\end{pmatrix}
\]
Hyperbolicity of the QMOM method

Theorem

The QMOM closure $b_n = 0$ induces the following characteristic polynomial $P_{2n} = Q_n^2$ and the system is only weakly hyperbolic.

proof [Chalons et al., 2012, Huang et al., 2020]
Outline

1. Introduction
 - Context
 - Moment method
 - Hyperbolicity

2. QMOM
 - Principle of the method
 - Hyperbolicity

3. HyQMOM
 - First version of HyQMOM
 - New HyQMOM closure
 - Properties - Practical computations

4. Results
 - Configuration
 - Results

5. Conclusion, Perspectives
First version of the HyQMOM closure [Fox et al., 2018]

Extension of QMOM, adding one moment and one abscissa for the reconstruction [Fox et al., 2018]

three-node HyQMOM

reconstruction with an additional fixed abscissa \(\mu = w_0 \delta_u + \sum_{i=1}^{2} w_i \delta u_i \) in such a way that

\[
w_0 u^k + \sum_{i=1}^{n} w_i u_i^k = m_k \quad k = 0, 1, \ldots, 4
\]

Closure

in term of the standardized moments: \(S_5 = S_3(2S_4 - S_3^2) \)

Theorem (Hyperbolicity)

Assuming that the vector \(m_4 \) is strictly realizable, then system with the three-node HyQMOM closure is hyperbolic.

Problem

- The generalization to a larger number of moment is not easy
- The eigenvalues of the problem do not tend to the ones of QMOM when \(H_4 \to 0 \)
Idea:
- Instead of looking at a reconstruction or at a closure on S_{2n+1}, one looks at a_n.
- Have a reduced characteristic polynomial on the form

$$P_{2n+1} = Q_n [(X - \alpha_n)Q_n - \beta_n Q_{n-1}]$$

such that β_n tends to zero when $H_{2n} \to 0$.

Theorem:

For all $n = 1, 2, \ldots$; let the monic polynomial P_{2n+1} be given by

$$P_{2n+1} = Q_n [(X - \alpha_n)Q_n - \beta_n Q_{n-1}] \quad \alpha_n, \beta_n \in \mathbb{R}$$

Then, the following statements are equivalent:

(i) $\langle P_{2n+1} \rangle = 0$, $\langle P_{2n+1}' \rangle = 0$ and $\langle XP_{2n+1}' \rangle = 0$.

(ii) $\alpha_n = a_n = \frac{1}{n} \sum_{k=0}^{n-1} a_k$ and $\beta_n = \frac{2n+1}{n} b_n$.
New HyQMOM closure [Fox and Laurent, 2021]

Theorem

For all \(n = 1, 2, \ldots, 9 \); the scaled characteristic polynomial can be written as

\[
P_{2n+1} = Q_n \left[(X - \alpha_n)Q_n - \beta_nQ_{n-1} \right]
\]

if and only if the closure on \(S_{2n+1} \), defined through the coefficient \(a_n \), and the coefficients \(\alpha_n \) and \(\beta_n \) are related to the recurrence coefficients \(a_k \) and \(b_k \) by

\[
a_n = \alpha_n = \frac{1}{n} \sum_{k=0}^{n-1} a_k, \quad \beta_n = \frac{2n+1}{n} b_n.
\]

Proof using formal computation with matlab symbolic:
from the \(a_k \) and \(b_k \), \(k = 0, \ldots, n - 1 \) (with \(a_0 = 0, a_1 = 1, b_0 = 1 \))

1. set the closure \(a_n = \frac{1}{n} \sum_{k=0}^{n-1} a_k \)

2. compute the Standardized moments \(S_{2n+1} \) with the reverse Chebyshev algorithm

3. compute the coefficients \(c_k \) of \(P_{2n+1} \)

4. compute the polynomials \(Q_k, k = 0, 1, \ldots, n \)

5. compute \(P_{2n+1} - Q_n \left[(X - a_n)Q_n - \frac{2n+1}{n} b_nQ_{n-1} \right] \)
New HyQMOM closure

Theorem

For all \(n = 1, 2, \ldots, 9 \); the scaled characteristic polynomial can be written as

\[
P_{2n+1} = Q_n [(X - \alpha_n)Q_n - \beta_n Q_{n-1}]
\]

if and only if the closure on \(S_{2n+1} \), defined through the coefficient \(a_n \), and the coefficients \(\alpha_n \) and \(\beta_n \) are related to the recurrence coefficients \(a_k \) and \(b_k \) by

\[
a_n = \alpha_n = \frac{1}{n} \sum_{k=0}^{n-1} a_k, \quad \beta_n = \frac{2n+1}{n} b_n.
\]

Examples

- \(n = 1 \): \(S_3 = 0 \) (as for the Maxwellian reconstruction)
- \(n = 2 \): \(S_5 = \frac{1}{2} S_3 (5S_4 - 3S_3^2 - 1) \) (different from the previous version: \(S_5 = S_3 (2S_4 - S_3^2) \))
Hyperbolicity - Eigenvalues

Theorem

When $\beta_n > 0$, the $n + 1$ roots of $R_{n+1} = (X - \alpha_n)Q_n - \beta_nQ_{n-1}$ are real-valued and bound and separate the n roots of Q_n.

comes from Christoffel–Darboux formula.

The roots of P_{2n+1} are then the eigenvalues of the two following Jacobi matrices:

$$
\begin{pmatrix}
 a_0 & \sqrt{b_1} & \sqrt{b_2} & \cdots & \sqrt{b_{n-2}} & a_{n-2} & \sqrt{b_{n-1}} \\
 \sqrt{b_1} & a_1 & \sqrt{b_2} & \cdots & \sqrt{b_{n-2}} & a_{n-2} & \sqrt{b_{n-1}} \\
 \sqrt{b_2} & a_1 & \sqrt{b_2} & \cdots & \sqrt{b_{n-2}} & a_{n-2} & \sqrt{b_{n-1}} \\
 \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
 \sqrt{b_{n-2}} & a_{n-2} & \sqrt{b_{n-2}} & \cdots & \sqrt{b_{n-1}} & a_{n-2} & \sqrt{b_{n-1}} \\
 \sqrt{b_{n-1}} & a_{n-1} & \sqrt{b_{n-1}} & \cdots & \sqrt{b_{n-1}} & a_{n-1} & \sqrt{b_{n-1}} \\
 a_{n-1} & \sqrt{b_{n-1}} & a_{n-1} & \cdots & \sqrt{b_{n-1}} & a_{n-1} & \sqrt{b_{n-1}} \\
 \sqrt{\beta_n} & a_{n-1} & \sqrt{\beta_n} & \cdots & \sqrt{\beta_n} & a_{n-1} & \sqrt{\beta_n} \\
 \sqrt{\alpha_n} & a_{n-1} & \sqrt{\alpha_n} & \cdots & \sqrt{\alpha_n} & a_{n-1} & \sqrt{\alpha_n}
\end{pmatrix}
$$
Hyperbolicity - Eigenvalues

Theorem

When $\beta_n > 0$, the $n + 1$ roots of $R_{n+1} = (X - \alpha_n)Q_n - \beta_n Q_{n-1}$ are real-valued and bound and separate the n roots of Q_n.

comes from Christoffel–Darboux formula.

Example of the evolution of the eigenvalues with H_{2n}

$$S_3 = -1$$

$$n = 2$$

$$(S_3, S_4, S_5) = (-1, 5, -8)$$

$$n = 3$$
Theorem

When $\beta_n > 0$, the $n + 1$ roots of $R_{n+1} = (X - \alpha_n)Q_n - \beta_n Q_{n-1}$ are real-valued and bound and separate the n roots of Q_n.

comes from Christoffel–Darboux formula.

Example of the evolution of the eigenvalues with H_{2n}

\[
S_3 = -1
\]

\[
(S_3, S_4, S_5) = (-1, 5, -8)
\]

The moment system with the HyQMOM closure is then hyperbolic, whatever the strictly realizable moment.
Practical Computations

Closure, directly from the moments \(m_{2n} \)

1. Compute the \((\bar{a}_k)^{n-1}_{k=0} \) and \((\bar{b}_k)^n_{k=0} \) from \(m_{2n} \) with the Chebyshev algorithm.

2. Set the closure \(\bar{a}_n = \frac{1}{n} \sum_{k=0}^{n-1} \bar{a}_k \).

3. Compute \(m_{2n+1} \) using the reverse Chebyshev algorithm.
Properties - Practical computations

Practical computations

Closure, directly from the moments \(m_{2n} \)

1. Compute the \((\bar{a}_k)^{n-1}_{k=0} \) and \((\bar{b}_k)^n_{k=0} \) from \(m_{2n} \) with the Chebyshev algorithm.
2. Set the closure \(\bar{a}_n = \frac{1}{n} \sum_{k=0}^{n-1} \bar{a}_k \).
3. Compute \(m_{2n+1} \) using the reverse Chebyshev algorithm.

Eigenvalues of the system

Eigenvalues of the two following Jacobi matrices:

\[
\begin{pmatrix}
\bar{a}_0 & \sqrt{\bar{b}_1} \\
\sqrt{\bar{b}_1} & \bar{a}_1 & \sqrt{\bar{b}_2} \\
& \ddots & \ddots & \ddots \\
& \sqrt{\bar{b}_{n-2}} & \bar{a}_{n-2} & \sqrt{\bar{b}_{n-1}} \\
& & \sqrt{\bar{b}_{n-1}} & \bar{a}_{n-1}
\end{pmatrix},
\begin{pmatrix}
\bar{a}_0 & \sqrt{\bar{b}_1} \\
\sqrt{\bar{b}_1} & \bar{a}_1 & \sqrt{\bar{b}_2} \\
& \ddots & \ddots & \ddots \\
& \sqrt{2n+1} \bar{b}_n & \bar{a}_{n-1} & \sqrt{\frac{2n+1}{n} \bar{b}_n}
\end{pmatrix}
\]
Practical computations

Closure, directly from the moments \(m_{2n} \)

1. Compute the \((\bar{a}_k)_{k=0}^{n-1} \) and \((\bar{b}_k)_{k=0}^{n} \) from \(m_{2n} \) with the Chebyshev algorithm.

2. Set the closure \(\bar{a}_n = \frac{1}{n} \sum_{k=0}^{n-1} \bar{a}_k \).

3. Compute \(m_{2n+1} \) using the reverse Chebyshev algorithm.

Eigenvalues of the system

Eigenvalues of the two following Jacobi matrices:

\[
\begin{pmatrix}
\bar{a}_0 & \sqrt{\bar{b}_1} & \sqrt{\bar{b}_2} & \cdots & \sqrt{\bar{b}_{n-2}} & \sqrt{\bar{b}_{n-1}} \\
\sqrt{\bar{b}_1} & \bar{a}_1 & \sqrt{\bar{b}_2} & \cdots & \sqrt{\bar{b}_{n-2}} & \sqrt{\bar{b}_{n-1}} \\
\vdots & \vdots & \ddots & \ddots & \vdots & \vdots \\
\sqrt{\bar{b}_{n-2}} & \sqrt{\bar{b}_{n-2}} & \bar{a}_{n-2} & \sqrt{\bar{b}_{n-1}} & \sqrt{\bar{b}_{n-1}} & \bar{a}_{n-1} \\
\sqrt{\bar{b}_{n-1}} & \sqrt{\bar{b}_{n-1}} & \bar{a}_{n-1} & \sqrt{\bar{b}_{n}} & \sqrt{\bar{b}_{n}} & \bar{a}_{n} \\
\end{pmatrix}
\]

Reconstruction

A reconstruction as a sum of weighted Dirac delta function corresponds to the closure. The abscissas and weights can be easily computed from the \((\bar{a}_k, \bar{b}_k)_{k=0,\ldots,n} \).
Outline

1. Introduction
 - Context
 - Moment method
 - Hyperbolicity

2. QMOM
 - Principle of the method
 - Hyperbolicity

3. HyQMOM
 - First version of HyQMOM
 - New HyQMOM closure
 - Properties - Practical computations

4. Results
 - Configuration
 - Results

5. Conclusion, Perspectives
The 1D Riemann problem

Problem at the kinetic level

\[\frac{\partial f}{\partial t} + \frac{\partial}{\partial x} (v f) = 0, \]
\[f(v; 0, x) = M_\sigma(v - \bar{u}(x)) \]

with \(\sigma = 1/3 \)

\[\bar{u}(x) = \begin{cases} 1 & \text{if } x < 0, \\ -1 & \text{otherwise}. \end{cases} \]

Analytical solution \(f(t, x, v) = M_\sigma(v - \bar{u}(x - vt)) = \begin{cases} M_\sigma(v - 1) & \text{if } v > x/t, \\ M_\sigma(v + 1) & \text{otherwise}. \end{cases} \)

\(t = 0: \)

\[X=0 \]
The 1D Riemann problem

Problem at the kinetic level

Two homogeneous sprays, with Gaussian distribution and infinite Stokes, crossing.

Problem at the kinetic level

\[\partial_t f + \partial_x (v f) = 0, \]
\[f(v; 0, x) = M_\sigma (v - \bar{u}(x)) \]

with \(\sigma = 1/3 \)

\[\bar{u}(x) = \begin{cases} 1 & \text{if } x < 0, \\ -1 & \text{otherwise.} \end{cases} \]

Analytical solution

\[f(t, x, v) = M_\sigma (v - \bar{u}(x - vt)) = \begin{cases} M_\sigma (v - 1) & \text{if } v > x/t, \\ M_\sigma (v + 1) & \text{otherwise.} \end{cases} \]

Moment problem

\[\partial_t m_k + \partial_x m_{k+1} = 0, \quad k = 0, \ldots, 2n \]

with the initial condition for the standardized moments

\[\rho(0, x) = 1, \quad u(0, x) = \bar{u}(x), \quad C_2(0, x) = \sigma, \quad \begin{cases} S_{2k-1} = 0, \\ S_{2k} = (2k - 1)S_{2k-2}, \end{cases} \quad k = 2, \ldots, n \]

Numerical scheme: HLL [Harten et al., 1983]
The 1D Riemann problem - Results

moments - cases n=2,3,4

Good behavior on this hard test case.
The 1D Riemann problem - Results

standardized moments - cases n=2,3,4

Good behavior on this hard test case.
The 1D Riemann problem - Results

first moments - case n=10

Close to the analytical solution.
The 1D Riemann problem - Results

first standardized moments - case n=10

Close to the analytical solution.
The 1D Riemann problem - Convergence

The moment method seems to converge to the solution of the kinetic equation when the number of moments increases.
Outline

1. Introduction
 - Context
 - Moment method
 - Hyperbolicity

2. QMOM
 - Principle of the method
 - Hyperbolicity

3. HyQMOM
 - First version of HyQMOM
 - New HyQMOM closure
 - Properties - Practical computations

4. Results
 - Configuration
 - Results

5. Conclusion, Perspectives
Conclusion and Perspectives

Conclusion

- Closure inducing a global hyperbolicity
- Include the Maxwellian distribution
- Good behavior at the boundary of the moment space
- Efficient algorithm to compute the closure and the eigenvalues

THANK YOU FOR YOUR ATTENTION
Conclusion and Perspectives

Conclusion
- Closure inducing a global hyperbolicity
- Include the Maxwellian distribution
- Good behavior at the boundary of the moment space
- Efficient algorithm to compute the closure and the eigenvalues

Perspectives
- 2D-3D version of the HyQMOM closure
Conclusion and Perspectives

Conclusion
- Closure inducing a global hyperbolicity
- Include the Maxwellian distribution
- Good behavior at the boundary of the moment space
- Efficient algorithm to compute the closure and the eigenvalues

Perspectives
- 2D-3D version of the HyQMOM closure

THANK YOU FOR YOUR ATTENTION
Beyond pressureless gas dynamics: quadrature-based velocity moment models.

Sur l'interpolation par la méthode des moindres carrés.
Also in œuvres I pp. 473–498.

Hyperbolic quadrature method of moments for the one-dimensional kinetic equation.
submitted, https://hal.archives-ouvertes.fr/hal-03171566/.

Conditional hyperbolic quadrature method of moments for kinetic equations.

Orthogonal Polynomials: Computation and Approximation.
Oxford University Press, Oxford, UK.
On the kinetic theory of rarefied gases.

On upstream differencing and Godunov-type schemes for hyperbolic conservation laws.

Stability analysis of quadrature-based moment methods for kinetic equations.

Moment closure hierarchies for kinetic theories.

Description of aerosol dynamics by the quadrature method of moments.

Rational Extended Thermodynamics.
Springer-Verlag, New York.

The Moment Problem, volume 277 of Graduate Texts in Mathematics.
Springer, Cham.
References III

Shohat, J. A. and Tamarkin, J. D. (1943).
The Problem of Moments.

Modified moments and Gaussian quadratures.
Chebyshev algorithm

Three terms recurrence relation for a sequence \((Q_k)_{k \geq 0}\) of orthogonal polynomials relative to \(\langle ., . \rangle\):

\[
Q_{k+1}(x) = (x - a_k)Q_k(x) - b_k Q_{k-1}(x).
\]

\[
Z_{k,p} = \langle Q_k x^p \rangle
\]

\[
Z_{-1,p} = 0, \quad Z_{0,p} = m_p
\]

\[
Z_{k+1,p} = Z_{k,p+1} - a_k Z_{k,p} - b_k Z_{k-1,p}.
\]

\[
b_0 = m_0, \quad a_0 = \frac{m_1}{m_0}, \quad \forall k > 0 \quad b_k = \frac{Z_{k,k}}{Z_{k-1,k-1}}, \quad a_k = \frac{Z_{k,k+1}}{Z_{k,k}} - \frac{Z_{k-1,k}}{Z_{k-1,k-1}},
\]