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© Introduction
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1D linearized GN model

Asymptotic model for water wave

@ Under the effect of the gravity, the motion of an irrotational
and incompressible fluid is described by the free-surface Euler
equations. Because of the complexity of this system,
asymptotic models for the water wave problem were derived?

@ The 2D Green-Naghdi model® includes the dispersive effects

@ A one-dimensional simplification, linearized around the steady
state (H,u) := (Ho, 0) + (u1,u2), with |(u1,u2)| < 1, can be
derived as the Green-Nagdhi (GN) system, where H is the
fluid depth, u; the surface elevation and us the velocity

?D. Lannes, The Water Waves Problem: Mathematical Analysis and
Asymptotics, Providence, AMS, 2013.

bA. Green and P. Naghdi, A derivation of equations for wave propagation in
water of variable depth, Journal of Fluid Mechanics, 78 (1976), pp.237-246.
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Introduction

1D GN system

(ul)t + (UQ):I: =0,
(u2)t + (u1)s = K(u2)zat, = €R,T>0,
u1(z,0) = ui(z), uz(z,0) = uz(z), =z €R,

lim wi(x,t) =0, lim wa(x,t)=0, t>0.

|z| =400 |z| =400

where £ is the dispersion parameter.
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Introduction

Need to truncate the unbounded domain for the numerical
simulation

@ Usually, the technique of absorbing/artificial boundary
conditions (ABC) or the method of Perfectly Matched Layers
(PML) for PDEs is used — huge literature available since
more than 45 years with their pros/cons

@ For the GN system, it was studied only recently for ABCs by
Kazakova and Noble? and for PMLs by Kazakova in her PhD
thesis (2018)

@ Here, we are considering ABCs for the 1D GN system for a
finite interval |z_; x|

?M. Kazakova and P. Nobel, Discrete transparent boundary conditions for
the linearized Green- Naghdi system of equations, SIAM Journal on Numerical
Analysis, 1 (2020), pp.657-683
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© Exact ABCs for the 1D GN system

7/32



Exact ABCs for the 1D GN system

Rewriting the system (1/2)

8/32

We consider the 1D GN problem on the whole space

Opuy (x,t) + Opua(z,t) =0,
Opug(x,t) + Opuy (z,t) = KOpgiua(z,t), VzeR, Vi>0,

ui(x,0) = ui(x), uz(z,0) = ua(x), VzeR,
lim w(z,t) =0, lim wg(x,t)=0, Vi>O0.
|z|—+o0 |z|—+o0

Introduce the new unknowns: v;(z,t) = e “tu;(x,t), i = 1,2,
where o > 0 is a parameter used to later control the stability of
the fast algorithm.



Exact ABCs for the 1D GN system

Rewriting the system (2/2)

Then one gets

o1 (z,t) + ovy (2, t) + Opva(z,t) =0,
Orva(x,t) + ova(x, t) + Opvr(z,t)

= KOz (Opv2(z,t) + ova(x, 1)), VzeR, Vt >0,
v1(z,0) = w1 (z),v2(z,0) = ug(z), Vz eR,

lim wvi(z,t) =0, lim wy(z,t)=0, VE>0

|z| =400 |z|—>+oo
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Exact ABCs for the 1D GN system

For compactly supported initial data

Solve the exterior problem on [z, +00) (1/2)

We obtain
8,5’01(.%',75) i UU1( Z, )+ 10) ’Ug(x, ) =
(915’02(.%‘,15) = 0'112( x, ) + 0, ’Ul(af, )
= KOpg (Opv2(z,t) + ova(x,t)),V € [z4,+00),VE > 0,
v1($70) = 071]2(1'7 ) =0,Vz € [13+,-|-OO),

:vgr-ir-loo vi(z,t) = O,xgrfoo va(z,t) =0,V > 0.
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Exact ABCs for the 1D GN system

Solve the exterior problem on [z, +00) (2/2)

@ We use a relatively standard and direct method
@ Laplace transform L the equation in time

@ Solve the corresponding ODE system to extract the solution
as the superposition of two waves

@ Write the BC as a Dirichlet-to-Neumann map to keep the

outgoing wave

Go back to the time domain by inverse Laplace transform £~!

11/32



Exact ABCs for the 1D GN system

Truncated system with ABC in (z_,x)

01 (z,t) + ovi(x,t) + Ogva(x,t) =0,
Opva(z,t) + ova(x, t) + Ogvi(x,t)
= KOz (Opv2(z,t) + ova(x,t)), Vo € (x_,24), Vit >0,
(T xvo)(xs,t) = Opva(xs,t),VE >0,
01 (24,t) + ovi (24, t) £ Opva(xs,t) =0,
v1(2,0) = uy(z),v2(2,0) = ug(z),Va € [x_, 4],

where 0,= outward normal derivative at x4+ and
(T xvg)(zx,t) := —L7[{/S(5) Ta(z, 8)](t) Vit > 0.

(s +0)?
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© Discretization of the 1D GN system with exact semi-discrete
ABC
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Semi-discrete CN discretization of (2.1)

We have v'(z) =~ v;(z,t,), for i = 1,2

(D7 4+ o E)i (x) + 0-Evy (z) =
(Dr + o E)vy () + 0, Evl(x)
= KOpz(Dr + 0 E)vy(x), Ve e R, Vn >0,

W (2) = wi (), v3(x) = ug(), Vz R,
I —0, I —0, Vn>1,
|x|i>IEoo v ( ) |x|i>I£l-oo 02( ) "=

@ 7 > 0 is the uniform time step, t, =n7, 0 <n < N.

N7 =T = ty, with T" = maximal time of computation.

The operator S is: Su = {u" ™1}, for u = {u"},.
=(S+1I1)/2and D, =(S—1I)/T.

Su™ = (Su)", Eu™ = (Eu)" and D;u"™ = (D,u)".
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ABC for this semi-discrete scheme (1/2)

How to achieve this?
@ Basically you try to follow a similar path as in the time
continuous case

@ Replace the Laplace transform by the Z-transform

@ You can mimic the continuous approach to get ABCs

— semi-discrete version of the time convolution operator T as

n

(Trva)™ = Tjuh ™, (3.1)

J=0

with the power series expansion

T(2) = —\/s(z) = ZTJZJ VzeD
i=0

S(2) = S(M). (3.2)
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ABC for this semi-discrete scheme (2/2)

What you get: semi-discrete problem with ABC

(Dr + cE)vT(x) + 0z Evy (z) = 0,
(Dr + cE)vg (x) + O Evi(x)
= KOype(Dr + 0 E)vy(x), Vr e (z_,zy), Vn >0,
(T *xva)"(z4) = Opvy(zx), Vn >0,
(Dr + Bl (zs) = FOv5(zs), VYn >0,

W (x) = ui(z),v3(z) = up(z), Vz€lz_,zy]

(3.3)
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Spatial discretization (1/3)

o Let M be a positive integer, h = (x4 — xz_)/M uniform mesh
size. We define the mesh points:

zp=a_+ (k—1/2)h,for k=0,1,--- ,M +1,
Tpy1/2 = w0+ (k+1/2)h for k=0,1,--- , M,

where zo and xps41 are two ghost points.

@ In (3.3), we use (v2)} to denote the numerical approximation
of v} (z), with 0 <k < M +1, and (v;1)}} to define that of
U?(xk—l/Q)v with 1 S k S M+ 1.

o Let
(v2)" = ((v2)g, -+ (v2) 1 41)

and
(v1)"™ = (1)1, (v1)Rr41)-
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Spatial discretization (2/3)

@ The linear operator which maps the (M + 2)-dimensional
vector w = (wp, -+ ,wpr+1) to the M-dimensional vector
(w1, ,wpr) will be denoted by P.

@ Being given a vector x = (x1, -+, xm+1) € RM+L or
w= (wo, " ,Wn+1) € RM+2 e introduce the discrete
gradients Vj,x and V,w such that

_(X2—X1 X3 X2 XM+41 — XM
VhX—( h ) h ) ) h )7
_ (W1 W w2 w1 WMl T Wi
Vhw—( h ) h ; ) h )7

respectively.
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Spatial discretization (3/3)
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Now, in (3.3), replacing the function v}'(x) by the vector
o = ()75 (1) 41), 03 (2) by v5 = ((v2)g, -+, (v2)41)
and changing 0., — /A, we obtain

the semi-discrete problem with ABC

(Dr + oE)v} + Vi Evy =0,
(D; + 0cE)Pvy + V3 Evl = kAR(Dr + cE)vy, ¥Yn >0,
(T % yFvp)™ — 0Ful =0, Vn >0,

o) = (ur(w1)2), -+ s ur(Targ1)2)), v§ = (ua(wo), - -, ua(war41)).
As it can be seen, the ABC is defined by a nonlocal time operator
which is costly to evaluate. We now focus on its stable and
efficient evaluation.



@ Fast evaluation of the boundary discrete convolution
(T * ’Yivg)n
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Rational approximation of the convolution quadrature 1/2

Padé approximation R,, of order m

The Padé approximation of the square-root function /s on the
closed right half complex plane can be written as

V5 = \/1+S—1~1+ZW(5_1)1)ER,”(8), Re(s) > 0.

<

and after some manipulations, It can be shown that:
m
=A- A=1 681,
Sy AR

5=197

h]:aj_lﬁj( _Bj)v g]_a]1]27 jzla'”7m

o = 2 sin?( T
T om 41 2m + 1

), B = cosz( nz
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Rational approximation of the convolution quadrature 2/2

Padé approximation R,, of order m

Forall 7 >0, 0 >0, and for s(z) defined by (3.2), we can
introduce the rational approximation 7™ (z) of the symbol 7 ()
as

7-(m)(2) = —Rpn(s(2)), VYm2>0.

We denote by 7™« the convolution operator analogously defined
as (3.1) by replacing the convolution coefficients with the series
expansion coefficients of the function 7 (™) (z).
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Fast evaluation of (7™ % yFv,)"

After some manipulations, we obtain

(T( *”/ vg)" Z ’Y v2) n=J

where T(m 2t Cr ()7, with

Ag By,

Cop—1 = m,czk =4

ak+0k’y __—ak—l-ck
bk+dk7 2k bk_dk; )
for 1 <k <m. (We can fix y2,+1 = 0 and Cyp41.)

V2k—1 = —

— we have a fast implementation with O(mn) operations.
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Adaptive error control of the fast evaluation with m

Let us assume that the condition o > \% is satisfied, the time

2K
step 7 is small enough and m is sufficiently large, i.e. it fulfills
1
2m+12ﬁ, for some € € ( 'ufT 1,
V20
with u(k,0) = B and
V201 + ko2
S(k,0) = . (4.1)
02 + V201 + ko2 + 1 + ko?
Then, the following inequality holds
(m) T 7
< nu—.
gé%ﬂT (2) =T ()] < p

In addition, the full scheme can be proved to be 2nd order

accurate both in space and time (too long).
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© Numerical example
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o We take 0 = l/ﬂ and adapt the number of Padé expansion
terms following the rule (with p and § given by (4.1))

Ine _ py/RT?

€

T oma o) 8

For N fixed (with N7 = T), the total computational cost to
efficiently evaluate the convolution is
O(mN) = O(N log(N)).

@ The initial distribution for the free-surface elevation is

ui(z,0) = exp(—400(x — 0.5)) sin(207z),

and set ug(x,0) = 0. The data u; can be considered as
compactly supported in [z_,z4] = [0, 1].
o We fix  =107%, T'=1and N = M = 1280.
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Numerical results 1/4
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Figure: Left: surface elevation uy; Right: velocity us
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Numerical results 2 /4

Figure: Error 10g10(|u§ef —u,|) for j =1,2
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Numerical results 3/4
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Numerical results 4/4
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Figure: Computational time for the evaluation of the convolution by the
fast algorithm vs N (for M = 160). The total number of time steps N
increases from N = 1.2 x 10° to N = 7.2 x 10, with step 1.2 x 10°. We
observe a slope equal to 1, showing that the cost is linear according to
log(1/N), i.e. as O(N log N) for the computational time.



@ Conclusion - perspectives
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Conclusion - perspectives

@ Solution of the 1D GN system with ABCs, efficient algorithm,
second-order scheme*

@ A remaining problem is that the damping term e~?! should
satisfies the stability condition o > NoTE For a small
dispersion k, the damping term e =% which decays too fast
may bring some numerical errors.

@ Extensions to higher-dimensional problems still need further
investigations.

@ The variable coefficients and nonlinear cases of the
Green-Naghdi system remain open problems as well as the
case of the two-layer Green-Naghdi system.

e and thank you for your attention

*G. Pang, S. Ji and X. Antoine, A fast second-order discretization scheme
for the linearized Green-Naghdi system with absorbing boundary conditions,

HAL Id : hal-03130074, submitted 2021.
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