A fast second-order discretization scheme for the linearized Green-Naghdi system with absorbing boundary conditions

Xavier ANTOINE*, Gang PANG[†], Songsong JI[‡]

SMAI 2021 Mini-symposium :

Conditions aux limites numériques : analyse et méthodes

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

^{*}Institut Elie Cartan de Lorraine, Université de Lorraine, Nancy, France + ANR Nabuco

[†]School of Mathematical Science, Beihang University, Beijing, China

[‡]College of Engineering, Peking University, Beijing, China

1 Introduction

- 2 Exact ABCs for the 1D GN system
- Obscretization of the 1D GN system with exact semi-discrete ABC

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- 4 Fast evaluation of the boundary discrete convolution $(\mathcal{T}*\gamma^{\pm}v_2)^n$
- 5 Numerical example
- 6 Conclusion perspectives

- 2 Exact ABCs for the 1D GN system
- 3 Discretization of the 1D GN system with exact semi-discrete ABC
- 4 Fast evaluation of the boundary discrete convolution $(\mathcal{T}*\gamma^{\pm}v_2)^n$
- 5 Numerical example
- 6 Conclusion perspectives

Asymptotic model for water wave

- Under the effect of the gravity, the motion of an irrotational and incompressible fluid is described by the free-surface Euler equations. Because of the complexity of this system, asymptotic models for the water wave problem were derived^a
- The 2D Green-Naghdi model^b includes the dispersive effects
- A one-dimensional simplification, linearized around the steady state $(H, u) := (H_0, 0) + (u_1, u_2)$, with $|(u_1, u_2)| \ll 1$, can be derived as the Green-Nagdhi (GN) system, where H is the fluid depth, u_1 the surface elevation and u_2 the velocity

^aD. Lannes, The Water Waves Problem: Mathematical Analysis and Asymptotics, Providence, AMS, 2013.

^bA. Green and P. Naghdi, A derivation of equations for wave propagation in water of variable depth, Journal of Fluid Mechanics, 78 (1976), pp.237-246.

1D GN system

$$\begin{cases} (u_1)_t + (u_2)_x = 0, \\ (u_2)_t + (u_1)_x = \kappa(u_2)_{xxt}, & x \in \mathbb{R}, t > 0, \\ u_1(x, 0) = u_1(x), u_2(x, 0) = u_2(x), & x \in \mathbb{R}, \\ \lim_{|x| \to +\infty} u_1(x, t) = 0, & \lim_{|x| \to +\infty} u_2(x, t) = 0, \quad t > 0. \end{cases}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣○

where κ is the dispersion parameter.

Introduction

Need to truncate the unbounded domain for the numerical simulation

- Usually, the technique of absorbing/artificial boundary conditions (ABC) or the method of Perfectly Matched Layers (PML) for PDEs is used → huge literature available since more than 45 years with their pros/cons
- For the GN system, it was studied only recently for ABCs by Kazakova and Noble^a and for PMLs by Kazakova in her PhD thesis (2018)
- Here, we are considering ABCs for the 1D GN system for a finite interval $]x_-;x_+[$

^aM. Kazakova and P. Nobel, Discrete transparent boundary conditions for the linearized Green- Naghdi system of equations, SIAM Journal on Numerical Analysis, 1 (2020), pp.657-683.

2 Exact ABCs for the 1D GN system

- 3 Discretization of the 1D GN system with exact semi-discrete ABC
- 4 Fast evaluation of the boundary discrete convolution $(\mathcal{T}*\gamma^{\pm}v_2)^n$
- 5 Numerical example
- 6 Conclusion perspectives

Rewriting the system (1/2)

We consider the 1D GN problem on the whole space

$$\begin{split} \partial_t u_1(x,t) &+ \partial_x u_2(x,t) = 0, \\ \partial_t u_2(x,t) &+ \partial_x u_1(x,t) = \kappa \partial_{xxt} u_2(x,t), \quad \forall x \in \mathbb{R}, \ \forall t > 0, \\ u_1(x,0) &= u_1(x), u_2(x,0) = u_2(x), \quad \forall x \in \mathbb{R}, \\ \lim_{|x| \to +\infty} u_1(x,t) &= 0, \lim_{|x| \to +\infty} u_2(x,t) = 0, \quad \forall t > 0. \end{split}$$

Introduce the new unknowns: $v_i(x,t) = e^{-\sigma t}u_i(x,t)$, i = 1, 2, where $\sigma > 0$ is a parameter used to later control the stability of the fast algorithm.

Rewriting the system (2/2)

Then one gets

$$\begin{split} \partial_t v_1(x,t) &+ \sigma v_1(x,t) + \partial_x v_2(x,t) = 0, \\ \partial_t v_2(x,t) &+ \sigma v_2(x,t) + \partial_x v_1(x,t) \\ &= \kappa \partial_{xx} (\partial_t v_2(x,t) + \sigma v_2(x,t)), \qquad \forall x \in \mathbb{R}, \ \forall t > 0, \\ v_1(x,0) &= u_1(x), v_2(x,0) = u_2(x), \qquad \forall x \in \mathbb{R}, \\ &\lim_{|x| \to +\infty} v_1(x,t) = 0, \lim_{|x| \to +\infty} v_2(x,t) = 0, \ \forall t > 0. \end{split}$$

・ロト・西ト・田・・田・ ひゃぐ

For compactly supported initial data

Solve the exterior problem on $[x_+, +\infty)$ (1/2)

We obtain

$$\begin{split} \partial_t v_1(x,t) &+ \sigma v_1(x,t) + \partial_x v_2(x,t) = 0, \\ \partial_t v_2(x,t) &+ \sigma v_2(x,t) + \partial_x v_1(x,t) \\ &= \kappa \partial_{xx} (\partial_t v_2(x,t) + \sigma v_2(x,t)), \forall x \in [x_+, +\infty), \forall t > 0, \\ v_1(x,0) &= 0, v_2(x,0) = 0, \forall x \in [x_+, +\infty), \\ &\lim_{x \to +\infty} v_1(x,t) = 0, \lim_{x \to +\infty} v_2(x,t) = 0, \forall t > 0. \end{split}$$

Solve the exterior problem on $[x_+, +\infty)$ (2/2)

- We use a relatively standard and direct method
- \bullet Laplace transform ${\cal L}$ the equation in time
- Solve the corresponding ODE system to extract the solution as the superposition of two waves
- Write the BC as a Dirichlet-to-Neumann map to keep the outgoing wave
- Go back to the time domain by inverse Laplace transform \mathcal{L}^{-1}

(日)

Exact ABCs for the 1D GN system

Truncated system with ABC in (x_-, x_+)

$$\begin{split} \partial_t v_1(x,t) &+ \sigma v_1(x,t) + \partial_x v_2(x,t) = 0, \\ \partial_t v_2(x,t) &+ \sigma v_2(x,t) + \partial_x v_1(x,t) \\ &= \kappa \partial_{xx} (\partial_t v_2(x,t) + \sigma v_2(x,t)), \forall x \in (x_-, x_+), \; \forall t > 0, \\ (\top * v_2)(x_{\pm},t) &= \partial_{\nu} v_2(x_{\pm},t), \forall t > 0, \\ \partial_t v_1(x_{\pm},t) + \sigma v_1(x_{\pm},t) \pm \partial_{\nu} v_2(x_{\pm},t) = 0, \\ v_1(x,0) &= u_1(x), v_2(x,0) = u_2(x), \forall x \in [x_-, x_+], \end{split}$$

where $\partial_{\nu} =$ outward normal derivative at x_{\pm} and

$$(\mathsf{T} * v_2)(x_{\pm}, t) := -\mathcal{L}^{-1}[\sqrt{\mathsf{S}(s)}\,\widehat{v}_2(x_{\pm}, s)](t) \quad \forall t > 0.$$

with
$$S(s) := \frac{(s+\sigma)^2}{1+\kappa(s+\sigma)^2}$$

2 Exact ABCs for the 1D GN system

Obscretization of the 1D GN system with exact semi-discrete ABC

4 Fast evaluation of the boundary discrete convolution $(\mathcal{T}*\gamma^{\pm}v_2)^n$

5 Numerical example

6 Conclusion - perspectives

We have
$$v_i^n(x) \approx v_i(x, t_n)$$
, for $i = 1, 2$

$$\begin{split} (D_{\tau} + \sigma E)v_1^n(x) + \partial_x Ev_2^n(x) &= 0, \\ (D_{\tau} + \sigma E)v_2^n(x) + \partial_x Ev_1^n(x) \\ &= \kappa \partial_{xx} (D_{\tau} + \sigma E)v_2^n(x), \qquad \forall x \in \mathbb{R}, \ \forall n \ge 0, \\ v_1^0(x) &= u_1(x), v_2^0(x) = u_2(x), \qquad \forall x \in \mathbb{R}, \\ &\lim_{|x| \to +\infty} v_1^n(x) = 0, \lim_{|x| \to +\infty} v_2^n(x) = 0, \quad \forall n \ge 1, \end{split}$$

- $\tau > 0$ is the uniform time step, $t_n = n\tau$, $0 \le n \le N$.
- $N\tau = T = t_N$, with T = maximal time of computation.
- The operator S is: $Su = \{u^{n+1}\}_{n=0}^{\infty}$, for $u = \{u^n\}_{n=0}^{\infty}$.
- E = (S + I)/2 and $D_{\tau} = (S I)/\tau$.
- $Su^n = (Su)^n$, $Eu^n = (Eu)^n$ and $D_\tau u^n = (D_\tau u)^n$.

ABC for this semi-discrete scheme (1/2)

How to achieve this?

- Basically you try to follow a similar path as in the time continuous case
- Replace the Laplace transform by the $\mathcal{Z}\text{-transform}$
- You can mimic the continuous approach to get ABCs
- \rightarrow semi-discrete version of the time convolution operator T as

$$(\mathcal{T} * v_2)^n = \sum_{j=0}^n \mathcal{T}_j v_2^{n-j},$$
 (3.1)

with the power series expansion

$$\widetilde{\mathcal{T}}(z) := -\sqrt{s(z)} = \sum_{j=0}^{\infty} \mathcal{T}_j z^j, \quad \forall z \in \mathbb{D}$$

$$s(z) = S(\frac{2(1-z)}{\tau(1+z)}).$$
 (3.2)

What you get: semi-discrete problem with ABC

$$\begin{aligned} &(D_{\tau} + \sigma E)v_{1}^{n}(x) + \partial_{x}Ev_{2}^{n}(x) = 0, \\ &(D_{\tau} + \sigma E)v_{2}^{n}(x) + \partial_{x}Ev_{1}^{n}(x) \\ &= \kappa \partial_{xx}(D_{\tau} + \sigma E)v_{2}^{n}(x), \quad \forall x \in (x_{-}, x_{+}), \; \forall n \ge 0, \\ &(\mathcal{T} * v_{2})^{n}(x_{\pm}) = \partial_{\nu}v_{2}^{n}(x_{\pm}), \quad \forall n \ge 0, \\ &(D_{\tau} + \sigma E)v_{1}^{n}(x_{\pm}) = \mp \partial_{\nu}v_{2}^{n}(x_{\pm}), \quad \forall n \ge 0, \\ &v_{1}^{0}(x) = u_{1}(x), v_{2}^{0}(x) = u_{2}(x), \quad \forall x \in [x_{-}, x_{+}]. \end{aligned}$$
(3.3)

◆□ > ◆□ > ◆三 > ◆三 > ・三 のへの

Spatial discretization (1/3)

• Let M be a positive integer, $h = (x_+ - x_-)/M$ uniform mesh size. We define the mesh points:

$$x_k = x_- + (k - 1/2) h$$
, for $k = 0, 1, \dots, M + 1$,
 $x_{k+1/2} = x_0 + (k + 1/2) h$, for $k = 0, 1, \dots, M$,

where x_0 and x_{M+1} are two ghost points.

• In (3.3), we use $(v_2)_k^n$ to denote the numerical approximation of $v_2^n(x_k)$, with $0 \le k \le M + 1$, and $(v_1)_k^n$ to define that of $v_1^n(x_{k-1/2})$, with $1 \le k \le M + 1$.

Let

$$(v_2)^n = ((v_2)_0^n, \cdots, (v_2)_{M+1}^n)$$

and

$$(v_1)^n = ((v_1)_1^n, \cdots, (v_1)_{M+1}^n).$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

17/32

Spatial discretization (2/3)

- The linear operator which maps the (M + 2)-dimensional vector ω = (ω₀, · · · , ω_{M+1}) to the M-dimensional vector (ω₁, · · · , ω_M) will be denoted by P.
- Being given a vector $\chi = (\chi_1, \cdots, \chi_{M+1}) \in \mathbb{R}^{M+1}$ or $\omega = (\omega_0, \cdots, \omega_{M+1}) \in \mathbb{R}^{M+2}$, we introduce the discrete gradients $\nabla_h \chi$ and $\nabla_h w$ such that

$$\nabla_h \chi = \Big(\frac{\chi_2 - \chi_1}{h}, \frac{\chi_3 - \chi_2}{h}, \cdots, \frac{\chi_{M+1} - \chi_M}{h}\Big),$$

$$abla_h \omega = \Big(\frac{\omega_1 - \omega_0}{h}, \frac{\omega_2 - \omega_1}{h}, \cdots, \frac{\omega_{M+1} - \omega_M}{h} \Big),$$

respectively.

◆□▶ ◆□▶ ◆目▶ ▲目▶ ▲□▶ ◆○♥

Now, in (3.3), replacing the function $v_1^n(x)$ by the vector $v_1^n = ((v_1)_1^n, \cdots, (v_1)_{M+1}^n)$, $v_2^n(x)$ by $v_2^n = ((v_2)_0^n, \cdots, (v_2)_{M+1}^n)$ and changing $\partial_{xx} \to \Delta_h$, we obtain

the semi-discrete problem with ABC

$$\begin{aligned} (D_{\tau} + \sigma E)v_1^n + \nabla_h^n Ev_2^n &= 0, \\ (D_{\tau} + \sigma E)\mathcal{P}v_2^n + \nabla_h Ev_1^n &= \kappa \triangle_h (D_{\tau} + \sigma E)v_2^n, \quad \forall n \ge 0, \\ (\mathcal{T} * \gamma^{\pm}v_2)^n - \partial_{\nu}^{\pm}v_2^n &= 0, \qquad \forall n \ge 0, \end{aligned}$$

 $v_1^0 = (u_1(x_{1/2}), \cdots, u_1(x_{M+1/2})), v_2^0 = (u_2(x_0), \cdots, u_2(x_{M+1})).$

As it can be seen, the ABC is defined by a nonlocal time operator which is costly to evaluate. We now focus on its stable and efficient evaluation.

- 2 Exact ABCs for the 1D GN system
- 3 Discretization of the 1D GN system with exact semi-discrete ABC
- 4 Fast evaluation of the boundary discrete convolution $(\mathcal{T}*\gamma^{\pm}v_2)^n$
- 5 Numerical example
- 6 Conclusion perspectives

Rational approximation of the convolution quadrature 1/2

Padé approximation R_m of order m

The Padé approximation of the square-root function \sqrt{s} on the closed right half complex plane can be written as

$$\sqrt{s} = \sqrt{1+s-1} \approx 1 + \sum_{j=1}^{m} \frac{\alpha_j(s-1)}{1+\beta_j(s-1)} \equiv R_m(s), \quad \text{Re}(s) \ge 0.$$

and after some manipulations, It can be shown that:

$$R_m(s) = \lambda - \sum_{j=1}^m \frac{1}{g_j s + h_j}, \quad \lambda = 1 + \sum_{j=1}^m \alpha_j \beta_j^{-1},$$

$$h_j = \alpha_j^{-1} \beta_j (1 - \beta_j), \quad g_j = \alpha_j^{-1} \beta_j^2, \quad j = 1, \cdots, m.$$

$$\alpha_j = \frac{2}{2m+1} \sin^2(\frac{j\pi}{2m+1}), \beta_j = \cos^2(\frac{j\pi}{2m+1}), \quad j = 1, \cdots, m.$$

Padé approximation R_m of order m

For all $\tau > 0$, $\sigma > 0$, and for s(z) defined by (3.2), we can introduce the rational approximation $\widetilde{T}^{(m)}(z)$ of the symbol $\widetilde{T}(z)$ as

$$\widetilde{\mathcal{T}}^{(m)}(z) := -R_m(s(z)), \quad \forall \, m \ge 0.$$

We denote by $\mathcal{T}^{(m)}$ * the convolution operator analogously defined as (3.1) by replacing the convolution coefficients with the series expansion coefficients of the function $\tilde{\mathcal{T}}^{(m)}(z)$.

After some manipulations, we obtain

$$(\mathcal{T}^{(m)} * \gamma^{\pm} v_2)^n = \sum_{j=0}^n \mathcal{T}_j^{(m)} (\gamma^{\pm} v_2)^{n-j}$$

where $\mathcal{T}_{j}^{(m)} = \sum_{k=1}^{2m+1} C_k(\gamma_k)^j$, with

$$C_{2k-1} = \frac{A_k}{b_k + d_k}, C_{2k} = \frac{B_k}{b_k - d_k}$$

$$\gamma_{2k-1} = -\frac{a_k + c_k}{b_k + d_k}, \gamma_{2k} = -\frac{-a_k + c_k}{b_k - d_k},$$
 for $1 \le k \le m$. (We can fix $\gamma_{2m+1} = 0$ and C_{2m+1} .)

 \rightarrow we have a fast implementation with $\mathcal{O}(mn)$ operations.

Adaptive error control of the fast evaluation with \boldsymbol{m}

Let us assume that the condition $\sigma \geq \frac{1}{\sqrt{2\kappa}}$ is satisfied, the time step τ is small enough and m is sufficiently large, i.e. it fulfills

$$2m+1 \ge \frac{\ln \epsilon}{\ln(1-\delta)}, \quad \text{for some } \epsilon \in \left(0, \frac{\mu\sqrt{\kappa}\tau^3}{8}\right],$$

with $\mu(\kappa,\sigma)=\frac{\sqrt{2}\sigma}{2\sqrt{1+\kappa\sigma^2}}$ and

$$\delta(\kappa,\sigma) = \frac{\sqrt{2}\sigma\sqrt{1+\kappa\sigma^2}}{\sigma^2 + \sqrt{2}\sigma\sqrt{1+\kappa\sigma^2} + 1 + \kappa\sigma^2}.$$
 (4.1)

Then, the following inequality holds

$$\max_{z \in \partial \mathbb{D}} |\widetilde{\mathcal{T}}^{(m)}(z) - \widetilde{\mathcal{T}}(z)| \le \mu \frac{\tau^3}{2}.$$

In addition, the full scheme can be proved to be 2nd order accurate both in space and time (too long).

24/32

- 2 Exact ABCs for the 1D GN system
- 3 Discretization of the 1D GN system with exact semi-discrete ABC
- 4 Fast evaluation of the boundary discrete convolution $(\mathcal{T}*\gamma^{\pm}v_2)^n$
- 5 Numerical example
- 6 Conclusion perspectives

Configuration

• We take $\sigma = 1/\sqrt{2\kappa}$ and adapt the number of Padé expansion terms following the rule (with μ and δ given by (4.1))

$$m = \frac{\ln \epsilon}{2\ln(1-\delta)}, \quad \epsilon = \frac{\mu\sqrt{\kappa}\tau^3}{8}.$$

For N fixed (with $N\tau=T$), the total computational cost to efficiently evaluate the convolution is $\mathcal{O}(mN) = \mathcal{O}(N\log(N)).$

• The initial distribution for the free-surface elevation is

$$u_1(x,0) = \exp(-400(x-0.5))\sin(20\pi x),$$

and set $u_2(x,0) = 0$. The data u_1 can be considered as compactly supported in $[x_-, x_+] = [0, 1]$.

• We fix $\kappa = 10^{-3}$, T = 1 and N = M = 1280.

Numerical results 1/4

Figure: Left: surface elevation u_1 ; Right: velocity u_2

・ロト・日本・日本・日本・日本・日本

Numerical results 2/4

Figure: Error $\log_{10}(|u_j^{\text{ref}} - u_j|)$ for j = 1, 2

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Numerical results 3/4

Figure: $\max_{x \in [0,1]} |u_j(x,T) - u_j^{\text{ref}}(x,T)|$ vs. N (log scale), for j = 1,2

Numerical results 4/4

Figure: Computational time for the evaluation of the convolution by the fast algorithm vs N (for M = 160). The total number of time steps N increases from $N = 1.2 \times 10^5$ to $N = 7.2 \times 10^5$, with step 1.2×10^5 . We observe a slope equal to 1, showing that the cost is linear according to $\log(1/N)$, i.e. as $\mathcal{O}(N \log N)$ for the computational time.

- 2 Exact ABCs for the 1D GN system
- 3 Discretization of the 1D GN system with exact semi-discrete ABC
- 4 Fast evaluation of the boundary discrete convolution $(\mathcal{T}*\gamma^{\pm}v_2)^n$
- 5 Numerical example

Conclusion - perspectives

- Solution of the 1D GN system with ABCs, efficient algorithm, second-order scheme*
- A remaining problem is that the damping term $e^{-\sigma t}$ should satisfies the stability condition $\sigma \geq \frac{1}{\sqrt{2\kappa}}$. For a small dispersion κ , the damping term $e^{-\sigma t}$ which decays too fast may bring some numerical errors.
- Extensions to higher-dimensional problems still need further investigations.
- The variable coefficients and nonlinear cases of the Green-Naghdi system remain open problems as well as the case of the two-layer Green-Naghdi system.
- and thank you for your attention