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Navier-Stokes equation

@ We will study the case of a viscous fluid as well as revisit results on the
inviscid situation. And our main task is to study the spectral analysis of
the linearized system of equations.

@ The incompressible Navier-Stokes equations in the presence of
gravitational field in R® read as

Op + div(pd) = 0,
de(pd) + div(pi ® T+ p) = pAd — gpé, (1)
divid = 0.

Here, (p, i, p)(t, x1, x2, x3) are the density, the velocity, the pressure of the
fluid, respectively. p > 0 is the viscosity coefficient and g > 0 is the
gravitational constant. The initial conditions are (p, )(0, x) satisfying the
compatibility condition divi(0, x) = 0.

@ We study the linearized equation around the laminar flow

(po(x3), 0, po(x3)),

with py = —gpo. The prime here denotes the derivative in x3.



The linearized equations

Denote
o=p—po, U=0-0, g=p—po.
The linearized equations read as
Oro + pous = 0,
p00id+Vq = ulAid — goés, (2)
divii = 0.
The linear instability study amounts to looking at growing modes of Eq. (2) of
the form

(0, un, i, us, q)(t, 31, x2, x3) = TR (9 vy vy ) 1) (x3),

with (ki, k2) € R? being the horizontally spatial frequency, A = A(ki, k2) being
a complex number and ReX > 0. That A will be called the growth rate.



Growing mode solutions

We have the following system

A0+ pop =0,
Apovi + ikir = p(vi’ — (ki + k3)w1),
Apova + iker = p(vs' — (ki 4+ k3)v2), (3)

Mooy +r' = p(y" — (ki + K3)y) — g9,
ikivi + ikovo + ’l/J, =0.

We aim at seeking regular solutions in H*(R)(s > 1) of (3) satisfying that
vi, 2 and ¥ go to 0 as |x3| = co.



Growing mode solutions

Let R € SO(2) be the rotation operator such that R(ki, k2) = (k,0) with
k =+/k?+ k% > 0. k will be called the wave number. If (0, v1, v2,%,r) is a
solution of (3) with frequency (k1, k2), so that (6, R(vi1, v2), %, r) is also a
solution of (3) with frequency R(ki, k2). We move to solve

A0 + potp =0,

Apovi + ikr = p(v{ — k*wv1),

Apova = p(vs' — K*va), (4)
Apotp + ' = p(v" — K*¢) — gb,

ikvi + 4 = 0.

Multiplying (4); by V2 and then using the integration by parts, we have
ReA/po|vz\2dX3 = fu/(\v2'|2 + K| va|*)dxs < 0.
R R

That yields vo = 0. Meanwhile, 8, vi and r are determined by v as

’ /
P ezipow7 ;=

—iK \ (u(v' — K*v1) = Apowa). (5)

Vi =

1
ik



Growing mode solutions

We deduce a fourth-order ODE on ), that is

N (K potp — (pot’)') + Mu(p™® — 2k29" + k*p) = gk’ppyp,  (6)

with the limits

lim (x3) = lxlliToo P (x3) = 0.

[x3]—o00

Once we have (X, 1)), then (v, v, 0, r), we take the inverse rotation operator
R ™! to get a solution of (3).



The inviscid case

Without viscosity effect, i.e., u =0, Eq. (1) is the Euler equation,

Orp + div(pid) =0,

Oe(pid) + div(pid ® i + p) = —gpés3, (7)
divi = 0.
System (3) becomes
A + potp =0,
ApoV1 + ikir =0,
Apove + ikar =0, (8)

/\Pow + rl = 7g95
ikivi + ikovo + ¢l =0.

Eq. (6) reduces to the following second order ODE,
N (K poy — (pov)")') = gk*pib, 9)

with the limits lim ;| o ¥(x3) = 0.



Known results

N (K poy — (pot))) = gk’ppep,  with the limits  lim  ¢(x3) = 0.

[x3]| =00

@ The linear instability of (7) was first studied by Lord Rayleigh (1884) and
then by Taylor (1950) (so-called Rayleigh-Taylor instability), assuming that

po(x3) = p+lig>oy + p-Llpg<oy  (p+ > p- > 0). (10)

pr=p—

p+tp—
such that (9) has a unique family of solutions, spanned by 1o € H*(R),
with 40(0) > 0 and ||t/ (r)y = 1 as A = Xo.

o After that, the Rayleigh-Taylor instability, linear and even nonlinear one in
H?(s > 3) is given thanks to Helffer-Lafitte ('03), Guo-Hwang ('03) for
continuous profile pg satisfying

The authors prove that there is a unique growth rate \g = {/gk

po € CZ(R), po =0, (x3) = p+ € (0,400).  (11)

lim 0
x3—Fo0 P



N (K poty — (o)) + (@ — 2K2%" + k*y) = gk’ pep,
with the limits

lim  (xs) = |X||iToo P (x3) = 0.

|x3| =00

With viscosity effect, of purpose is the viscous study of the linear
Rayleigh-Taylor instability to the following cases of density profile po,

@ po is piecewise constant,
@ pj is compactly supported,

@ p; is non compactly supported and positive everywhere.



The piecewise constant profile

Let us consider a piecewise constant profile, as stated in (10),

po(x3) = p+li>0p + p-Lig<oy (o4 > p- >0).

The multiplication operator py will be seen as the Dirac measure (p+ — p—)do.
Then, Eq.

N (K poth — (o)) + (™ — 229" + k*p) = gk®pyap
rewrites as
N (K poth — (pot)) + Mu(p™® — 2k29" + k*p) = gk®(p+ — p—)(0).  (12)

We generalize the classical result of Rayleigh-Taylor by the following theorem.

Theorem (Lafitte-N., '20)

As p being sufficiently small, Eq. (12) admits a unique growth rate X\, such
that (12)>\:>\“ has a unique solution 1, € H*(R), with 1,,(0) > 0 and
[Yullmrry = 1. In addition, there holds

lim A\, = Xo, lim 4, =1y strongly in H'(R). (13)
n—0 n—0




Smooth increasing profile

While, the growth rate is approximately equal to ,/gk i:;g: for piecewise
constant.

/
For smooth increasing profile, we necessarily have 0 < X\*> < g maxg 2

Po
Po "

Two kinds of profile will be considered.
@ pj is compactly supported,
@ pj is non compactly supported and positive everywhere.

The investigation for both profile shares the same line. We divide R into three
regions (—o0o, x—), (x=, x4+) and (x4, +00). After finding solutions on each
region, we then match them.



The compactly supported profile

o We begin with the compactly supported profile, i.e. po satisfies

po € Co(R), supppo = (—a,a), po(xs) = pi(or p-) as xs > a(or x3 < —a).

(14)
e On (—oc0, —a), Eq.
N (K pov — (pots")') + (' — 2K*0" + k') = gk’ piap
becomes
N(Kp-tp = (p-9")) + (™ — 2k*0" + k*y) =0, (15)

that admits bounded solutions at —oo, that are
Go(x) = AL e + A e, T =K+ M-/,
Similarly, we have bounded solution at +oo, that are
Pi(a) =Ale ™+ ATe ™ =K+ Xy /p

@ We are left to solve (6) on (—a, a). What are the suitable boundary
conditions for (6) on (—a, a)?



The compactly supported profile

o At x3 = —a, (v,¢',¢" ") (—a) belongs to the space spanned by two
vectors (1, k, k*, k*)T and (1,7—,72,73)7 and at x3 = a,
(1,9, 9" ,4"")T(a) belongs to the space spanned by two vectors
(1, =k, k?>,—k>T and (1, -7, 72, —73)".

@ That imposes the following boundary conditions at x3 = —a,

kr_tp(—a) = (k +7-)¢'(—a) +¢"(-a) = 0, (16)
kT (k +7-)p(—a) — (K* + kr— + 72 )¢’ (—a) + ¢""(—a) = 0.
and at x3 = a,
k(@) + (k4 7 )0/ (2) + 4" (2) =0, an
—kTi(k 4+ 7)0(a) — (K 4 kry + 72)¢'(a) + 9" (a) = 0.

of Eq. (6),

N(Kpov — (por)')') + (v — 220" + k') = gk’ pi).



The compactly supported profile

We then solve (6)-(16)-(17) by using the spectral theory of a compact and
self-adjoint operator for a Sturm-Liouville problem on the finite interval (—a, a).

Theorem (Lafitte-N., '20)

There exists an infinite sequence of growth rate (\,)n>1 decreasing towards to
0 such that (6) with parameter A = \, has a solution 1, € H*(R).




The strictly increasing profile

We then consider a strictly increasing profile of density, i.e. py > 0, that
satisfies
po € C*(R), lim po(x3) = p+ are finite.
x3—F o0

The illustration follows the same line of the compactly supported profile. In the
vicinity of 0o, we rewrite (6) as a system of ODEs

U'(x3) = (L(xs, A) + po(xs)R(N)) U (), (18)
where
0 1 0 0
0 0 1 0
L0, A) = 0 0 0 1
AR po () +pk 0 >\P0(X3)+2k2 0
w W
and
0 0 0 O
0 0 0 O
RMN=10 0 0 o
KA
€\7 m 0 0



The non compactly supported profile

@ The eigenvalues of L are £k and £+/k? + Apo(x3)/u, that are separated
as A > e, > 0.

@ Since L is diagonalizable, following Coddington-Levinson, there exists
x+(A) > 0 such that we obtain two fundamental bounded solutions U;", of
(18) on (x4, +00) satisfying

10 ()l = e, U5 o)l = e ™% (14 = /K2 4 Aps /). (19)

o Similarly, there exists x_(A) < 0 such that we obtain two fundamental
bounded solutions U, of (18) on (—o0, x_) satisfying

10T ()l = €%, [|Us Ca)ll = e (= = VK2 + Ao /u).  (20)



The non compactly supported profile

@ We go back to (6) to obtain two fundamental bounded solutions 1y, of
(6) on (x4, +o0) satisfying

Ui(x) = e ™, gl () me T (21)
and two fundamental bounded solutions 11, of (6) on (—o0, x_) satisfying
Ur () e, gy () e (22)

@ The boundary conditions are then found to match with z/;f2 at x4.
Following the arguments on the case of compactly supported profile, we
obtain our third theorem.

Theorem (Lafitte-N., '20)

Let e, > 0 be given. There exists a finite number N(e.) of growth rate (An)n>1
bounded below by €. such that (6) with parameter A\ = \, has a solution
¥ € HY(R). Furthermore, N(e.) — +o0 as e, — 0.




Conclusions

N (K potp — (pot)') + Mu(p® — 2k29" + k*p) = gk’ pop,
with the limits

lim ¢(X3) = |><||IE)1Oo ¢’(X3) =0.

|x3| =00

@ There exists a unique growth rate if po is piecewise constant.

@ There exists an "infinite” sequence of growth rate decreasing towards to 0
if po € C*(R).



Perspectives

@ Reduce the condition A > e,

@ Towards to the nonlinear instability of (po(xs),0, po(xz)) in the viscous
case.

© Continue using this method to some extended cases of Navier-Stokes
equation with gravitational force field.
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