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Navier-Stokes equation

We will study the case of a viscous fluid as well as revisit results on the
inviscid situation. And our main task is to study the spectral analysis of
the linearized system of equations.

The incompressible Navier-Stokes equations in the presence of
gravitational field in R3 read as

∂tρ+ div(ρ~u) = 0,

∂t(ρ~u) + div(ρ~u ⊗ ~u + p) = µ∆~u − gρ~e3,

div~u = 0.

(1)

Here, (ρ, ~u, p)(t, x1, x2, x3) are the density, the velocity, the pressure of the
fluid, respectively. µ > 0 is the viscosity coefficient and g > 0 is the
gravitational constant. The initial conditions are (ρ, ~u)(0, x) satisfying the
compatibility condition div~u(0, x) = 0.

We study the linearized equation around the laminar flow

(ρ0(x3),~0, p0(x3)),

with p′0 = −gρ0. The prime here denotes the derivative in x3.



The linearized equations

Denote
σ = ρ− ρ0, ~u = ~u −~0, q = p − p0.

The linearized equations read as
∂tσ + ρ′0u3 = 0,

ρ0∂t~u +∇q = µ∆~u − gσ~e3,

div~u = 0.

(2)

The linear instability study amounts to looking at growing modes of Eq. (2) of
the form

(σ, u1, u2, u3, q)(t, x1, x2, x3) = eλt+i(k1x1+k2x2)(θ, v1, v2, ψ, r)(x3),

with (k1, k2) ∈ R2 being the horizontally spatial frequency, λ = λ(k1, k2) being
a complex number and Reλ > 0. That λ will be called the growth rate.



Growing mode solutions

We have the following system

λθ + ρ′0ψ = 0,

λρ0v1 + ik1r = µ(v ′′1 − (k2
1 + k2

2 )v1),

λρ0v2 + ik2r = µ(v ′′2 − (k2
1 + k2

2 )v2),

λρ0ψ + r ′ = µ(ψ′′ − (k2
1 + k2

2 )ψ)− gθ,

ik1v1 + ik2v2 + ψ′ = 0.

(3)

We aim at seeking regular solutions in Hs(R)(s > 1) of (3) satisfying that
v1, v2 and ψ go to 0 as |x3| → ∞.



Growing mode solutions

Let R ∈ SO(2) be the rotation operator such that R(k1, k2) = (k, 0) with
k =

√
k2

1 + k2
2 > 0. k will be called the wave number. If (θ, v1, v2, ψ, r) is a

solution of (3) with frequency (k1, k2), so that (θ,R(v1, v2), ψ, r) is also a
solution of (3) with frequency R(k1, k2). We move to solve

λθ + ρ′0ψ = 0,

λρ0v1 + ikr = µ(v ′′1 − k2v1),

λρ0v2 = µ(v ′′2 − k2v2),

λρ0ψ + r ′ = µ(ψ′′ − k2ψ)− gθ,

ikv1 + ψ′ = 0.

(4)

Multiplying (4)3 by v 2 and then using the integration by parts, we have

Reλ

∫
R

ρ0|v2|2dx3 = −µ
∫

R

(|v ′2|2 + k2|v2|2)dx3 6 0.

That yields v2 ≡ 0. Meanwhile, θ, v1 and r are determined by ψ as

v1 = −ψ
′

ik
, θ = −ρ

′
0ψ

λ
, r =

1

ik
(µ(v ′′1 − k2v1)− λρ0v1). (5)



Growing mode solutions

We deduce a fourth-order ODE on ψ, that is

λ2(k2ρ0ψ − (ρ0ψ
′)′) + λµ(ψ(4) − 2k2ψ′′ + k4ψ) = gk2ρ′0ψ, (6)

with the limits

lim
|x3|→∞

ψ(x3) = lim
|x3|→∞

ψ′(x3) = 0.

Once we have (λ, ψ), then (v1, v2, θ, r), we take the inverse rotation operator
R−1 to get a solution of (3).



The inviscid case

Without viscosity effect, i.e., µ = 0, Eq. (1) is the Euler equation,
∂tρ+ div(ρ~u) = 0,

∂t(ρ~u) + div(ρ~u ⊗ ~u + p) = −gρ~e3,

div~u = 0.

(7)

System (3) becomes 

λθ + ρ′0ψ = 0,

λρ0v1 + ik1r = 0,

λρ0v2 + ik2r = 0,

λρ0ψ + r ′ = −gθ,
ik1v1 + ik2v2 + ψ′ = 0.

(8)

Eq. (6) reduces to the following second order ODE,

λ2(k2ρ0ψ − (ρ0ψ
′)′) = gk2ρ′0ψ, (9)

with the limits lim|x3|→∞ ψ(x3) = 0.



Known results

λ2(k2ρ0ψ − (ρ0ψ
′)′) = gk2ρ′0ψ, with the limits lim

|x3|→∞
ψ(x3) = 0.

The linear instability of (7) was first studied by Lord Rayleigh (1884) and
then by Taylor (1950) (so-called Rayleigh-Taylor instability), assuming that

ρ0(x3) = ρ+1{x3>0} + ρ−1{x3<0} (ρ+ > ρ− > 0). (10)

The authors prove that there is a unique growth rate λ0 =
√

gk
ρ+−ρ−
ρ++ρ−

such that (9) has a unique family of solutions, spanned by ψ0 ∈ H1(R),
with ψ0(0) > 0 and ‖ψ0‖H1(R) = 1 as λ = λ0.

After that, the Rayleigh-Taylor instability, linear and even nonlinear one in
Hs(s > 3) is given thanks to Helffer-Lafitte (’03), Guo-Hwang (’03) for
continuous profile ρ0 satisfying

ρ0 ∈ C∞(R), ρ′0 > 0, lim
x3→±∞

ρ0(x3) = ρ± ∈ (0,+∞). (11)



Aim

λ2(k2ρ0ψ − (ρ0ψ
′)′) + λµ(ψ(4) − 2k2ψ′′ + k4ψ) = gk2ρ′0ψ,

with the limits

lim
|x3|→∞

ψ(x3) = lim
|x3|→∞

ψ′(x3) = 0.

With viscosity effect, of purpose is the viscous study of the linear
Rayleigh-Taylor instability to the following cases of density profile ρ0,

1 ρ0 is piecewise constant,

2 ρ′0 is compactly supported,

3 ρ′0 is non compactly supported and positive everywhere.



The piecewise constant profile

Let us consider a piecewise constant profile, as stated in (10),

ρ0(x3) = ρ+1{x3>0} + ρ−1{x3<0} (ρ+ > ρ− > 0).

The multiplication operator ρ′0 will be seen as the Dirac measure (ρ+ − ρ−)δ0.
Then, Eq.

λ2(k2ρ0ψ − (ρ0ψ
′)′) + λµ(ψ(4) − 2k2ψ′′ + k4ψ) = gk2ρ′0ψ

rewrites as

λ2(k2ρ0ψ − (ρ0ψ
′)′) + λµ(ψ(4) − 2k2ψ′′ + k4ψ) = gk2(ρ+ − ρ−)ψ(0). (12)

We generalize the classical result of Rayleigh-Taylor by the following theorem.

Theorem (Lafitte-N., ’20)

As µ being sufficiently small, Eq. (12) admits a unique growth rate λµ such
that (12)λ=λµ

has a unique solution ψµ ∈ H1(R), with ψµ(0) > 0 and

‖ψµ‖H1(R) = 1. In addition, there holds

lim
µ→0

λµ = λ0, lim
µ→0

ψµ = ψ0 strongly in H1(R). (13)



Smooth increasing profile

While, the growth rate is approximately equal to
√

gk
ρ+−ρ−
ρ++ρ−

for piecewise

constant.

Lemma

For smooth increasing profile, we necessarily have 0 < λ2 6 g maxR
ρ′0
ρ0

.

Two kinds of profile will be considered.

1 ρ′0 is compactly supported,

2 ρ′0 is non compactly supported and positive everywhere.

The investigation for both profile shares the same line. We divide R into three
regions (−∞, x−), (x−, x+) and (x+,+∞). After finding solutions on each
region, we then match them.



The compactly supported profile

We begin with the compactly supported profile, i.e. ρ0 satisfies

ρ′0 ∈ C 1
0 (R), suppρ′0 = (−a, a), ρ0(x3) = ρ+(or ρ−) as x3 > a(or x3 < −a).

(14)

On (−∞,−a), Eq.

λ2(k2ρ0ψ − (ρ0ψ
′)′) + λµ(ψ(4) − 2k2ψ′′ + k4ψ) = gk2ρ′0ψ

becomes

λ2(k2ρ−ψ − (ρ−ψ
′)′) + λµ(ψ(4) − 2k2ψ′′ + k4ψ) = 0, (15)

that admits bounded solutions at −∞, that are

ψ−(x3) = A−1 ekx3 + A−2 eτ−x3 , τ− =
√

k2 + λρ−/µ,

Similarly, we have bounded solution at +∞, that are

ψ+(x3) = A+
1 e
−kx3 + A+

2 e
−τ+x3 , τ+ = −

√
k2 + λρ+/µ.

We are left to solve (6) on (−a, a). What are the suitable boundary
conditions for (6) on (−a, a)?



The compactly supported profile

At x3 = −a, (ψ,ψ′, ψ′′, ψ′′′)T (−a) belongs to the space spanned by two
vectors (1, k, k2, k3)T and (1, τ−, τ

2
−, τ

3
−)T and at x3 = a,

(ψ,ψ′, ψ′′, ψ′′′)T (a) belongs to the space spanned by two vectors
(1,−k, k2,−k3)T and (1,−τ+, τ 2

−,−τ 3
+)T .

That imposes the following boundary conditions at x3 = −a,{
kτ−ψ(−a)− (k + τ−)ψ′(−a) + ψ′′(−a) = 0,

kτ−(k + τ−)ψ(−a)− (k2 + kτ− + τ 2
−)ψ′(−a) + ψ′′′(−a) = 0.

(16)

and at x3 = a,{
kτ+ψ(a) + (k + τ+)ψ′(a) + ψ′′(a) = 0,

−kτ+(k + τ+)ψ(a)− (k2 + kτ+ + τ 2
+)ψ′(a) + ψ′′′(a) = 0.

(17)

of Eq. (6),

λ2(k2ρ0ψ − (ρ0ψ
′)′) + λµ(ψ(4) − 2k2ψ′′ + k4ψ) = gk2ρ′0ψ.



The compactly supported profile

We then solve (6)-(16)-(17) by using the spectral theory of a compact and
self-adjoint operator for a Sturm-Liouville problem on the finite interval (−a, a).

Theorem (Lafitte-N., ’20)

There exists an infinite sequence of growth rate (λn)n≥1 decreasing towards to
0 such that (6) with parameter λ = λn has a solution ψn ∈ H4(R).



The strictly increasing profile

We then consider a strictly increasing profile of density, i.e. ρ′0 > 0, that
satisfies

ρ0 ∈ C 2(R), lim
x3→±∞

ρ0(x3) = ρ± are finite.

The illustration follows the same line of the compactly supported profile. In the
vicinity of ±∞, we rewrite (6) as a system of ODEs

U ′(x3) = (L(x3, λ) + ρ′0(x3)R(λ))U(x3), (18)

where

L(x3, λ) =


0 1 0 0
0 0 1 0
0 0 0 1

−λk
2ρ0(x3)+µk

4

µ
0 λρ0(x3)

µ
+ 2k2 0


and

R(λ) =


0 0 0 0
0 0 0 0
0 0 0 0
gk2

λµ
λ
µ

0 0

 .



The non compactly supported profile

The eigenvalues of L are ±k and ±
√

k2 + λρ0(x3)/µ, that are separated
as λ > ε? > 0.

Since L is diagonalizable, following Coddington-Levinson, there exists
x+(λ) > 0 such that we obtain two fundamental bounded solutions U+

1,2 of
(18) on (x+,+∞) satisfying

‖U+
1 (x3)‖ ≈ e−kx3 , ‖U+

2 (x3)‖ ≈ e−τ+x3 (τ+ =
√

k2 + λρ+/µ). (19)

Similarly, there exists x−(λ) < 0 such that we obtain two fundamental
bounded solutions U−1,2 of (18) on (−∞, x−) satisfying

‖U−1 (x3)‖ ≈ ekx3 , ‖U−2 (x3)‖ ≈ eτ−x3 (τ− =
√

k2 + λρ−/µ). (20)



The non compactly supported profile

We go back to (6) to obtain two fundamental bounded solutions ψ+
1,2 of

(6) on (x+,+∞) satisfying

ψ+
1 (x3) ≈ e−kx3 , ψ+

2 (x3) ≈ e−τ+x3 (21)

and two fundamental bounded solutions ψ−1,2 of (6) on (−∞, x−) satisfying

ψ−1 (x3) ≈ ekx3 , ψ−2 (x3) ≈ eτ−x3 . (22)

The boundary conditions are then found to match with ψ±1,2 at x±.
Following the arguments on the case of compactly supported profile, we
obtain our third theorem.

Theorem (Lafitte-N., ’20)

Let ε? > 0 be given. There exists a finite number N(ε?) of growth rate (λn)n≥1

bounded below by ε? such that (6) with parameter λ = λn has a solution
ψn ∈ H4(R). Furthermore, N(ε?)→ +∞ as ε? → 0.



Conclusions

λ2(k2ρ0ψ − (ρ0ψ
′)′) + λµ(ψ(4) − 2k2ψ′′ + k4ψ) = gk2ρ′0ψ,

with the limits

lim
|x3|→∞

ψ(x3) = lim
|x3|→∞

ψ′(x3) = 0.

1 There exists a unique growth rate if ρ0 is piecewise constant.

2 There exists an ” infinite” sequence of growth rate decreasing towards to 0
if ρ0 ∈ C 2(R).



Perspectives

1 Reduce the condition λ > ε?,

2 Towards to the nonlinear instability of (ρ0(x3),~0, p0(x3)) in the viscous
case.

3 Continue using this method to some extended cases of Navier-Stokes
equation with gravitational force field.
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