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Introduction

®0
A statistical description of turbulence

A picture of turbulence

The Navier-Stokes equations :

Vu=0
otu+u-Vu= —%VP—H/VZU

Non-linear and non-local PDE

Simulation computationally expensive:

e Large range of scales
e Chaotic system — several realizations
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A statistical description of turbulence

Statistical description

Turbulence can be statistically described with the correlation functions:

Ri. . (x,t;x',t';...) = Elui(x, t)u(x, t')...]

. . . . 1 : -
Lagrangian velocity correlation function —— Simulation
(G.1. Taylor in 1935: beginning of the mod-
ern statistical approach): RS 0.8 1

—~
o6

RE(7) = Elu(t)u(t + )] B

. .o L 2 E 0.4
The variance is given by: R;(0) = o}. =

=
Mo0.2
0

ot

0 0.1 0.2 0.3 0.4 0.
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A statistical description of turbulence

Statistical description

Turbulence can be statistically described with the correlation functions:

Ri. . (x,t;x',t';...) = Elui(x, t)u(x, t')...]

. . . . 1 : -
Lagrangian velocity correlation function —— Simulation
(G.1. Taylor in 1935: beginning of the mod-
ern statistical approach): RS 0.8 1

—~
L o6

Ry(7) = Eui(t)ui(t + 7)] +

. .o L 2 E 0.4
The variance is given by: R;(0) = o}. =

=
L . . . M 0.2
Lagrangian integral time ~ correlation time
1 [ 0 s .
TL=—> Ry (r)dr 0 01 02 03 04 05
oi Jo .
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Introduction
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Kolmogorov similarity hypothesis

The similarity hypotheses!: K41

Injection of energy Dissipation of energy

isti i i - C Ouj Ou;
Charact.erlstlc time of velocity auto Energy dissipation rate: o = 2 2Y
correlation Ox; 0x;
Largest scales: T, — Mean dissipation: ()

Smallest scales: 7, = (1//(90))1/2

/ Injection
¥
Kolmogorov 1941: Turbulence is universal = logEG)
in the inertial range. Velocity increments
Aru= u(t+7)—u(t) depend on the mean

dissipation. Viscous

Similarity hypothesis

For
T LT LT, E[(Aru)P]=f(r,p,(p)

YL > 1/n
Inertial subrange

1Kolmogorov1941.

dissipation
.

log K

4/20
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Kolmogorov similarity hypothesis

The refined similarity hypotheses?

Similarity hypothesis

For
Ty LT L T, E[[Au]P] = f(r,p, (p)

Confirmed experimentally for the
e Second-order moment:
E[[A-u]?] ~ {o)7
— —5/3 slope in the energy spectrum
e Third-order moment:
E[[A ] ~ ((p)r)*/2

— 4/5-law
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(o] lelele]
Kolmogorov similarity hypothesis

The refined similarity hypotheses?

Similarity hypothesis

For
Ty LT L T, E[[Au]P] = f(r,p, (p)

Confirmed experimentally for the

e Second-order moment: 2
2
E[[A, ] ~ (o) o0l
— —5/3 slope in the energy spectrum
e Third-order moment: _15¢
-~
E[[A-u’] ~ ((p)7)*/? 5
10+
— 4/5-law
L . 5t
BUT, no generalization to higher moments:
" T J o A AR AL A 1
Refined similarity hypotheses 00 01 0\_2 0.3 0.4 =

t
E[[A7u]?] # (<80>7')p/2 — f(7,p,¢) — Large fluctuations of ¢ = intermittency

5/29
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Kolmogorov similarity hypothesis

Objective

A first definition of Intermittency

e Strongly fluctuent, sudden and brief high activity.

e In turbulence: energy cascade with large fluctuations in the transfer of energy
between eddies of different scales

e Statistical consequences: extreme events are more likely than for a Gaussian
distribution.

6/29



Introduction
(e]e] lele]

Kolmogorov similarity hypothesis

Objective

A first definition of Intermittency

e Strongly fluctuent, sudden and brief high activity.

e In turbulence: energy cascade with large fluctuations in the transfer of energy
between eddies of different scales

e Statistical consequences: extreme events are more likely than for a Gaussian
distribution.

Turbulence models today (RANS, LES)
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Kolmogorov similarity hypothesis

Objective

A first definition of Intermittency

e Strongly fluctuent, sudden and brief high activity.

e In turbulence: energy cascade with large fluctuations in the transfer of energy
between eddies of different scales

e Statistical consequences: extreme events are more likely than for a Gaussian
distribution.

Context
Turbulence models today (RANS, LES) 107
give averaged/filtered vision of turbulence.
— Loss of information, especially the
fluctuations and intermittency.

——LES
——DNS

= -4
B 10

10°

| A

Objective

Provide a stochastic model for ¢, the
dissipation, with intermittent properties.
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Kolmogorov similarity hypothesis

Previous mathematical results in similar context

e Bacry, Delour, Muzy. A multifractal random walk. (Physical Review E, 2001).

e Chevillard, Robert, Vargas. A stochastic representation of the local structure of
turbulence. EPL (Europhysics Letters, 2010).

e Duchon, Robert, Vargas. Forecasting volatility with the multifractal random walk
model. (Mathematical Finance, 2012).
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e Vargas, Robert. Hydrodynamical turbulence and intermittent Random Fields.
(Communications in Mathematical Physics, 2018).

— More complex models: fBM, Hurst=0, adapted model, versatile, numerically
efficient.

e Abi Jaber, El Euch. Multifactor Approximation of Rough Volatility Models.
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Kolmogorov similarity hypothesis

© Introduction
@ A statistical description of turbulence
@ Kolmogorov similarity hypothesis

© Characterization and modeling of intermittency
@ Kolmogorov refined similarity hypothesis
@ Modeling intermittent pseudo-dissipation
@ Multifractal formalism

© Infinite sum of Ornstein-Uhlenbeck processes
@ Approximation of a fractional Brownian motion
@ Regularizations
@ Gaussian Multiplicative Chaos

@ Finite sum of Ornstein-Uhlenbeck processes
@ Quadrature

@ Discussion

© Conclusion
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Characterization and modeling of intermittency
[ ]

Kolmogorov refined similarity hypothesis

The refined similarity hypotheses® : K62

% @(t+T1)
E[[A,u]P] # ({(9)7)P/? = () is not the appropriate scale.
Define local scales: S
I -
Locally-averaged dissipation: ¢, (t) = ;/ p(s)ds (
t \
=)

Refined similarity hypotheses

e Local scaling:

For 7, <7< T, E[(A-u)|ps] ~ (p-7)P?
E[(Aru)f] ~ Cor Elp2/)

e Log-normal distribution of -, with:

Oing o, = a+ blog(TL/T)

3 Kolmogorov1962.
9/29



Characterization and modeling of intermittency
@000

Modeling intermittent pseudo-dissipation

Characterization of intermittency

Requirements, in the inertial range: for 7, < 7 < T

. . . T
(i) Kolmogorov 1962: ¢ is log-normal with 0’|2°ng ~ log —£
p
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@000
Modeling intermittent pseudo-dissipation

Characterization of intermittency

Requirements, in the inertial range: for 7, < 7 < T

. . . T,
(i) Kolmogorov 1962: ¢ is log-normal with 0'|2°ng ~ log —£
p

(ii) Power-law correlation for the locally-averaged dissipation:

TL K(p)
E[p?] ~ (7> , where K(p) is a non-linear, convex function.

o

Remark, in the dissipative range: for 7 < 7,

In real turbulence, there is supplementary physical interpretation with dissipation: for

$r = pr, = ¢ and

(iii) oBg ., ~ log —-
Tn
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Characterization and modeling of intermittency
@000

Characterization of intermittency

Requirements, in the inertial range: for 7, < 7 < T

. . . T,
(i) Kolmogorov 1962: ¢ is log-normal with a,zogw ~ log —£
p

(ii) Power-law correlation for the locally-averaged dissipation:

TL K(p)
E[p?] ~ (7> , where K(p) is a non-linear, convex function.

Remark, in the dissipative range: for 7 < 7,

In real turbulence, there is supplementary physical interpretation with dissipation: for

¢r = pr, = and

T
2

(III) G'|og¢ ~ |Og ;

Multifractal fields: Discrete cascade models, Continuous multiplicative cascades,
Eulerian, Lagrangian etc...

10/29
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lo] le]e}

Modeling intermittent pseudo-dissipation

Gaussian Multiplicative Cascade

We are looking for a time stochastic process

‘ o(t) = (p) exp(xt) ‘ where x; is Gaussian.

10°
1072
(-
ol
o / 3
101 \
' --N(0,1)| &
y —DNS '3
1076
-5 0 5

(Ing — (Inp))/om,
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Modeling intermittent pseudo-dissipation

Gaussian Multiplicative Cascade

We are looking for a time stochastic process

‘ o(t) = (p) exp(xt) ‘ where x; is Gaussian.

‘
Parametrization by a zero-average Gaussian process X:: xt = v/ Xt — %E[th]

With X; a (approximated) log-correlated process: E[X;:Xi+-] = log L + g(t,7)
T

0 4 . .
10 T
|- - In(Ty,/7) +0.65
3 .
1072 /: \
- s
B 32!
ny g oy
{ --N(0,1)| & 1t
y —DNS '3
1076 ?
5 0 5 0-

-2 —1
(Ing — (Ing))/on, O

11 /29
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Modeling intermittent pseudo-dissipation

Modeling intermittent pseudo-dissipation

T
(i) ¢ is log-normal with o, ~ log 7L

o(0) = (e oo (Viix: - D)) .

K(p)
(i) for 7y < 7 < Ty, E[p?] ~ (7)

T,
(iii) opg, ~ log —
T

12 /29
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lo]e] le}
Modeling intermittent pseudo-dissipation

Modeling intermittent pseudo-dissipation

T
(i) ¢ is log-normal with o, ~ log 7L

o(0) = (e oo (Viix: - D)) .

K(p)
(i) for 7y < 7 < Ty, E[pP] ~ (7)

We can show that

T,

T, (iii) opg, ~ log T—L

o E[X:Xiir] ~ log — = (ii) 1 J
T

o E[X?] ~ |og% — (il
n

“2
In that case, K(p) = ?p(p —-1)

12 /29



Characterization and modeling of intermittency
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Modeling intermittent pseudo-dissipation

Introduction to log-correlated processes

10
Ornstein-Uhlenbeck process® . )
1 o2 \ /2 8 S —?:”
dX; = ——X;dt + | 2 ZX dW; 6 7X"’
Ty pE Ty v ——
Exponential decay of the autocorrelation: oy
E[X:Xeir] ~ ™7/ Tx =
)
0
-2 ‘ ‘ ‘ ‘
104 ™ 102 107! s

1Pope1990
2Pereira2018
13 /29
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[o]ele] ]
Modeling intermittent pseudo-dissipation

Introduction to log-correlated processes

10
Ornstein-Uhlenbeck process® . @)
1 52 \ 12 8 el —x
dX = ——X; dt 2—X dw; er
t T + ( e TX) t - 6 —x!
Exponential decay of the autocorrelation: S
E[X:Xe1r] ~ e 7/ Tx al
)
Fractional Ornstein-Uhlenbeck process? 0
1 0_2 1/2 -2 . . . .
dX; = —— X, dt + (27x> dw,” ot 5o 107 1070 T
T T.
X X T

Fractional Brownian motion:

1

W )

t
/(t—s)H_l/des, H>0
0

1Pope1990

2Pereira2018
13 /29



Characterization and modeling of intermittency
[ Je]

Multifractal formalism

Fractional Brownian motion

Replace Brownian motion W; by a fractional Brownian motion W,", a non-Markovian
process.

Fractional Brownian motion

Generalization of Brownian Motion: increments are not
independent.

4

5

e Continuous Gaussian process of zero mean

e Covariance function:

T

1 -2
E[WtHWt:’»s = *(|t|2H + |t + S‘ZH = ‘s|2H) :Hi(l,z
2 4 H=05
H=09
wi = _ 1 /t(t _ ) 12w, I e e—
‘ Fr(H+1/2) Jo t

— fractional Ornstein-Uhlenbeck: dX; = 8(X: — p)dt + dW/!

14 /29



Characterization and modeling of intermittency
oe

Multifractal formalism

Fractional Brownian motion

Regularized fractional Brownian motion, H > 0, 7, > 0:

H
wWe = F(H+1/2)/ =)

— Regularized fractional Brownian motion with stationary increments

W= ltl/z) ([ Te=oymae— o aw s e oy 12am)

1 t
H 1/des, or W:" :7/ (t*S+T17)71/2dWs7
T Jo

+ Y
— 1
WTW = — pa— 71/2 — / dW
=g (e s ) an
thTO = Eﬁ oo(t_s+Tn)—3/2dWsdt+(ﬂ,Tn)—l/Zth
2.1)
Pereira et al.® define: Schmitt* defines:
1 — t
X = = X de+ Y dW,” xf:/ (t— s+ )2 dW,
t+7y—Ty

3Pereira2018
A 1NN 15 /29
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Multifractal formalism

Fractional Brownian motion

Regularized fractional Brownian motion, H > 0, 7, > 0:

H
wWe = F(H+1/2)/ =)

— Regularized fractional Brownian motion with stationary increments

W= ltl/z) ([ Te=oymae— o aw s e oy 12am)

1 t
H 1/des, or W:" :7/ (t*S+T17)71/2dWs7
T Jo

+ Y
— 1
WTW = — pa— 71/2 — / dW
=g (e s ) an
thTO = Eﬁ oo(t_s+Tn)—3/2dWsdt+(ﬂ,Tn)—l/Zth
2.1)
Pereira et al.® define: Schmitt* defines:
1 — t
X = = X de+ Y dW,” xf:/ (t— s+ )2 dW,
t+7y—Ty

Main ingredient for X;

Regularized fractional Gaussian Noise of Hurst H = 0

. But simulation of W,™ is computationally expensive.

3Pereira2018
A 1N 15 /29



Infinite sum of Ornstein-Uhlenbeck processes

© Infinite sum of Ornstein-Uhlenbeck processes
@ Approximation of a fractional Brownian motion
@ Regularizations
@ Gaussian Multiplicative Chaos
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Infinite sum of Ornstein-Uhlenbeck processes
e0

Approximation of a fractional Brownian motion

Approximation of a fBM by Ornstein-Uhlenbeck processes

Introduce a generic representation of all these processes in a unified framework:
Remark that the Laplace Transform of x~*/2 is given by :

’ 1 (5) = +oo ieistX:\/Esil/2
Vx 0 X

T 1 ! —1/2 1 Y AR G
W= —= [ (t=—s+m) " dWszf/ / ——e TN dx AW
\/7?/0 VTlo Jo  Vmx

But, using stochastic Fubini theorem, we can write for all 7,, > 0

wn = . 71 - t =) qw, ) dx = ' 71 Y: d
TnX —x(t—s a —TnX \/X
t /0 m/X € </0 € ) x /0 m/X € £

where (Y{)xer is a family of Ornstein-Uhlenbeck processes, such that for all x € R
YS =0
Ay = —xy¥dt+dw,

17 /29



Infinite sum of Ornstein-Uhlenbeck processes
o] ]

Approximation of a fractional Brownian motion

A Framework encompassing existing processes

We can show that : -
Wi = [ oWk, () dx
0

1 t _ © e
wn —/ t—s+7) Y2aw, / T
t \/E 0( "7) o
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Infinite sum of Ornstein-Uhlenbeck processes
o] ]

Approximation of a fractional Brownian motion

A Framework encompassing existing processes

We can show that : -
Wi = [ oWk, () dx
0

- 1 t —1/2 oo e~ X
wn — [ (t- 2 qw, |

m o= / (t—s+7) / H
— © g7 TX
dw, dYy dx
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Infinite sum of Ornstein-Uhlenbeck processes

oe

Approximation of a fractional Brownian motion

A Framework encompassing existing processes

We can show that :

W — /0 " ben(W)ks, (x) dx

1 t 1 (e} e—r,,x
w,n — [ (t- 2aw, / |, |
! ﬁ/o (t=s+m) o | myx X
AW, AV dx
0 7r\/>?
1 t H_1/2 © ccos(mH)
wH | ——— [ (t— 24w, / Y ST g
© I T(HT1/2) /0( s) o P xAx
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o] ]
Approximation of a fractional Brownian motion

A Framework encompassing existing processes

We can show that : -
Wi = [ oWk, () dx
0

1 t 1 oo e—T,,x
w,n — [ (t- 2aw, / Y ————d
! ﬁ/o ( S+Tn) 0 ‘ 7T\/;( X
AW / AvFe " dx
0 71'\/;
1 t _ °° _xcos(mH)
WH | ——— [ (t—s)"2aw, / v =g
N ), o i
dW / dyitxw dx
0 wxH\/x

18 /29



Infinite sum of Ornstein-Uhlenbeck processes
@000

Regularizations

How to define X;

There exists models based on regularized versions of fractional Brownian motion whose
auto-correlation is close to a logarithmic one but without satisfying variance. We
suggest two possibilities to construct X;:

19 /29
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Regularizations

How to define X;

There exists models based on regularized versions of fractional Brownian motion whose
auto-correlation is close to a logarithmic one but without satisfying variance. We
suggest two possibilities to construct X;:

Use the increments of the fractional
Brownian motion in a SDE:

Pereira et al.:
1 —
dX; = _?Xt dt + /7T dW,”
L
Uses other kernels:

1 -
dXe = —= Xedt + V/m dW/
L

19 /29
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Regularizations

[ Jele]e]

How to define X;

There exists models based on regularized versions of fractional Brownian motion whose
auto-correlation is close to a logarithmic one but without satisfying variance. We

suggest two possibilities to construct X;:

Use the increments of the fractional
Brownian motion in a SDE:

Pereira et al.:
1 —
dX; = _?Xt dt + /7T dW,”
L
Uses other kernels:

1 -
dXe = —= Xedt + V/m dW/
L

Assume X; = / ¢t x(W)ks, (x)dx and
0
find a regularization that ensures:
e Existence of X;

®tx(W) is almost surely k-, (x) dx in-
tegrable

e Logarithmic autocorrelation
E[X:X¢4-] in inertial subrange:
— kfn(x) ~ x /2

e Bounded variance of X;

— SUPer, E[X?] < o0

19/29



Infinite sum of Ornstein-Uhlenbeck processes
(o] le]e}

Regularizations

A Framework encompassing existing processes

e existence;

X — /oo b (Wks, (x) dx Regularization for: e logarithmic behavior;
0 e bounded variance

t oo
Pope : X2V / we = T quy, / Yiwd(x — T ) dx
0 0

20/ 29
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(o] le]e}

Regularizations

A Framework encompassing existing processes

e existence;

Regularization for: e logarithmic behavior;

X: = /00 Gt x(W)ks, (x) dx

0 e bounded variance

Pope : X2V

t
/ wo— /T g
0

/ Yiwd(x — T ) dx
0

Schmitt : X

(t—s+7,) " Y2dW.

+mn—TL

t —TnX
—(t—s)x e

e dWs | ——— dx
/H»7'77 —T ) VX

Pereira : XF

t _
ﬁ/ e—(f—s)/TLd W;'n
—00

[es} t —(t—s)/TLW efT,,x d
o (L) o

20/ 29



Infinite sum of Ornstein-Uhlenbeck processes
[e]e] T}

Regularizations

A new proposition for X; !

Xt - /0 ¢t,X(W)k7n (X) dx

Find a regularization that ensures: 102 ")
X
e Existence of X; L T 1(711/2 iy g
oex(W) is almost surely k-, (x)dx in- AR e e M) T
' —(H(ZE—TLI)—H(Z—T,]l))ZE1/2
tegrable 1001 - 1

e Logarithmic autocorrelation E[X;X¢i-]
in inertial subrange:

— kr, (x) ~ x~1/2 .
102} o
e Bounded variance of X; T
— sup,cp, E[X?] < oo
1072 Tt 10?2 7t 10*
xr

1L etournel R., Goudenége L, Zamansky R. et al. Revisiting the framework for intermittency in Lagrangian
stochastic models for turbulent flows: a way to an original and versatile numerical approach. Physical Review E.
(accepted in june 2021) 21/20



Infinite sum of Ornstein-Uhlenbeck processes

[e]ele] ]

Regularizations

A Framework encompassing existing processes

Xt = /(;OO (z)t,x(W)an(X) dx

Regularization for:

e existence;
e logarithmic behavior;

e bounded variance

t oo
Pope : X2V / we I T qwy, / Yiwd(x — T ) dx
0 0
t oo t 67777X
Schmitt : X / (t—s+m) Y2aw, / / e (I aw, dx
t+7n =T, 0 t+7y =T, X

¢ _ S t \—TnX
Pereira : X/ \/7?/ e =)/ Tequin / (/ e—(t—s)/TLdysx) € dx
—o0 0 —oc0 VX
t o B
Xt”eW / (t* S+Tn)71/2 / Ttxw dx
- 0

—(t—s+ T) V24w,

Jx

22/29



Infinite sum of Ornstein-Uhlenbeck processes
L 1)

Gaussian Multiplicative Chaos

Limit process as 7, — 0

Be careful that (X7, X2, X[) are all defined with regularization kernels (krp))rp>o0-

Thanks to this regularization, for all 7, > 0, the processes (Xt(T"))te[o,T] are Gaussian
and stationary. Their laws are completely determined by their covariance functions

crew P (e, s) o= BIX™ X,
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Infinite sum of Ornstein-Uhlenbeck processes
L 1)

Gaussian Multiplicative Chaos

Limit process as 7, — 0

Be careful that (X7, X2, X[) are all defined with regularization kernels (krp))rp>o0-
Thanks to this regularization, for all 7, > 0, the processes (Xt(T"))te[o,T] are Gaussian
and stationary. Their laws are completely determined by their covariance functions

crew P (e, s) o= BIX™ X,

The family of processes ((Xt(T”))tE[O,T])TT,>O converges weakly in law to Gaussian
log-correlated processes (Xto)te[o,T] with covariance functions

. new,S,P 1
CO(ta 5) = T!,:TO Crn (t7 5) |Og+ |t | + g(t S)

new

with bounded function g € {g"",g°,g"}.
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Infinite sum of Ornstein-Uhlenbeck processes
oe

Gaussian Multiplicative Chaos

Limit process as 7, — 0

Finally the solution of the SDE du!™ = f%uf") dt + ¢, (t) dt driven by

prs(0) = (herpln™) = (g) p (Vi) = BBl

converges in law (in the distributional sense (u{™), ¢)p/ p —ry—0 (U, ¢)pr p) to a
distributional process u such that

t (=9 t (=9
Uy = / e Tu ['(ds) (w lim / e Tu 5, (s) ds)
0 Tn—0 0

with I the universal Gaussian Multiplicative Chaos.
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Quadrature

Finite sum of Ornstein-Uhlenbeck processes

oo N
new __ X new,N __ X}
¢ :/ Y{ ke, (x)dx = X{ = E wi Y{
0 )
i=1
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Quadrature

Finite sum of Ornstein-Uhlenbeck processes

oo N
new __ X new,N __ X}
¢ :/ Y{ ke, (x)dx = X{ = E wi Y{
0 )
i=1

i—1/2
. . 1 [T N 1 .
Geometric partition: x; = — (—L) , wi= ——=Ax, for i=1,..,N

T\ /X
107
- - k(z) =212
—k(z) = (H(z 7TL’1) —H(z— Trl’l)) z 12
E Quadrature N = 10
100} ™
\\\
\\
~N
1072 T
1072 ! 10?2 7t 10t
x
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Quadrature

Finite sum of Ornstein-Uhlenbeck processes

oo N
new __ X new,N __ X}
¢ :/ Y{ ke, (x)dx = X{ = E wi Y{
0 )
i=1

i—1/2
. . 1 (/T N 1 .
Geometric partition: x; = — -t , wi= ——=Ax, for i=1,..,N
T\ /X
107 [ —
- - k(z) =212
—k(z) = (H(z 7TL’1) —H(z— Trl’l)) z 12
Quadrature N = 10
1001 T~ ?
\\\ %
= o
. =
1072 T
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x
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Finite sum of Ornste

®0

Discussion

Discussion

%) N
X = / Yik(x)dx o X7 = 3w vy
0

Physical interpretation 12

e Adaptation of Pope's process for high

T .
Rex ~ —=: extend the covering of the
Tn
inertial range with evenly-distributed
time-scales

e X/ "continuous" process, no scale

!

N .
X/ "discrete" cascade,
representative scales

106 7, 10* 1077 Ty
t
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Discussion

Discussion

N
N -
X, = E w,'ytx'
i=1

Computational benefits 10
)

8| — X0
Vi=1,.,N dYJ = —xY5dt+dW, - —x
'_i 6 _X:\':z
VS ">i 4
1 [t _ lad
W:nzi/(t—S—FTn) 1/2dW5 |9
VT Jo
e Computational efficiency (Few 0 I
Ornstein-Uhlenbeck processes) 9
. 107 ™ 102 Ty,
e Low calculation memory .
e Versatile )
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Conclusion

e Intermittency is missing in classical turbulence models

e Characterization of intermittency and modeling with Gaussian Multiplicative
Chaos

e General framework to build stochastic processes with logarithmic correlation
e Quasi explicit computation of approximated covariance function
e Exploitation of these singular processes in SDEs

e Numerical simulation of these processes with finite sum of Ornstein-Uhlenbeck

e Perspectives: computation of (approximated) power law function K, more complex
SDEs using these singular processes, speed of convergence of sum of OU...
Goudenége, Letournel, Richard. Intermittency in a stochastic modelling of turbulence (In
preparation)
Letournel et al. Revisiting the framework for intermittency in Lagrangian stochastic models for
turbulent flows: a way to an original and versatile numerical approach. (Physical Review E).
2021.
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