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Quasiperiodic media

Physical definition

Quasiperiodic media are ordered structures which are not necessarily periodic.
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Quasiperiodic media

Physical definition

Quasiperiodic media are ordered structures which are not necessarily periodic.

Figure: Periodic tiling Figure: Random tiling
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Physical definition
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Quasiperiodic media

Physical definition

Quasiperiodic media are ordered structures which are not necessarily periodic.

A physical example: the quasicrystal

First quasicrystal formation observed in 1982 by D. Shechtman

Figure: Quasiperiodic tiling
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1D quasiperiodic functions

Definition (Quasiperiodic medium)

Medium whose physical or geometrical properties can be represented as quasiperiodic
functions

Definition (Quasiperiodic function of one real variable)

A function f : R — C is said to be quasiperiodic of order n > 0 if there exist real constants
41, ... ,0n and a continuous function F' : R” — C, 1—periodic in each variable, such that

Ve eR, f(z)=F(@12,...,0nT).
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1D quasiperiodic functions

Definition (Quasiperiodic medium)

Medium whose physical or geometrical properties can be represented as quasiperiodic
functions

Definition (Quasiperiodic function of one real variable)

A function f : R — C is said to be quasiperiodic of order n > 0 if there exist real constants
41, ... ,0n and a continuous function F' : R” — C, 1—periodic in each variable, such that

Ve eR, f(z)=F(@12,...,0nT).

Remarks

e F'is a periodic extension of f and (41, ...,0,) is called a cut direction
e The pair (F, (1,...,05)) is not unique
e One can also define quasiperiodic functions of several real variables
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1D quasiperiodic functions of order 2

Convention
There exists 6 € (0,7/2) and i, € 62.,.((0,1)?) such that

po(x) = pp(z €g), €p = (cosb,sinh).
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1D quasiperiodic functions of order 2

There exists 6 € (0,7/2) and u, € 2.,.((0,1)2) such that

“per

po(x) = pp(z €g), €p = (cosb,sinh).

e If cot 0 is rational, then 1, is periodic
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Figure: Trace of a periodic function along &y with cot # = 1/3 — Rational case
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1D quasiperiodic functions of order 2

Convention

There exists 6 € (0,7/2) and u, € 2.,.((0,1)2) such that

“per

po(x) = pp(z €g), €p = (cosb,sinh).

e If cot @ is irrational, then yg is not necessarily periodic
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Figure: Trace of a periodic function along &y with cot # = v/2 — Irrational case
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1D quasiperiodic functions of order 2

Convention

There exists 6 € (0,7/2) and u, € 2.,.((0,1)2) such that

“per

po(x) = pp(z €g), €p = (cosb,sinh).

e If cot @ is irrational, then yg is not necessarily periodic

Figure: Trace of a periodic function along &y with cot # = v/2 — Irrational case

© Pierre Amenoagbadiji  Sonia Fliss  Patrick Joly



1D quasiperiodic functions of order 2

Convention

There exists 6 € (0,7/2) and u, € 2.,.((0,1)2) such that

“per

po(x) = pp(z €g), €p = (cosb,sinh).

e If cot @ is irrational, then yg is not necessarily periodic
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Figure: Trace of a periodic function along &y with cot # = v/2 — Irrational case
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PDE with quasiperiodic coefficients

Numerous theoretical studies in the context of homogenization

e The medium is submitted to external forces whose length scale are far larger than
the characteristic length of the microstructure.

o PDE with rapidly oscillating coefficients such as — div A(z/e)Vu. = f, where the
parameter ¢ is expected to be small.

Approach for general heterogeneous media

Two-scale and I'-convergence, almost-periodicity Braides, 1992
. o Nguetseng, 2003
e Only in the context of homogenization Zhikov, Kozlov, Oleinik, 2012

Very few works in other regimes.
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PDE with quasiperiodic coefficients

Numerous theoretical studies in the context of homogenization

e The medium is submitted to external forces whose length scale are far larger than
the characteristic length of the microstructure.

o PDE with rapidly oscillating coefficients such as — div A(z/e)Vu. = f, where the
parameter ¢ is expected to be small.

Approach for general heterogeneous media

Two-scale and I'-convergence, almost-periodicity Braides, 1992
. o Nguetseng, 2003
e Only in the context of homogenization Zhikov, Kozlov, Oleinik, 2012

Cut and project approach

Extend the PDE to a non-elliptic PDE with periodic

coefficients Bouchitté, Guenneau, Zolla, 2010
e Can be used for problems to which the Geral;%\;acritél\gzznﬁ:ndsl, gglg
homogenization theory does not apply Wellander, Guenneau, Cherkaev, 2019

Very few works in other regimes.
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The time-harmonic wave equation
Time-harmonic scalar wave equation

d du

2 (ule) ) = pla) w2 u = f(@), R ()

Well posedness

e Problem ill-posed in the classical framework
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The time-harmonic wave equation

Time-harmonic scalar wave equation

_% (u(z) Z—Z) —p(@) w?u=f(z), inR. ()

Well posedness

e Problem ill-posed in the classical framework

Computing the physical solution using the limiting absorption principle

1. Add some absorption: Im (w) > 0

2. Study the solution of (?) as Im (w) tends to 0.
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The time-harmonic wave equation

Time-harmonic scalar wave equation

_% (u(z) Z—Z) —p(@) w?u=f(z), inR. ()

Well posedness

e Problem ill-posed in the classical framework

Computing the physical solution using the limiting absorption principle

1. ‘ Add some absorption: Im (w) > 0 ‘ +— Inthis talk

2. Study the solution of (?) as Im (w) tends to 0.

© Pierre Amenoagbadji  Sonia Fliss  Patrick Joly 7



The time-harmonic wave equation

Time-harmonic scalar wave equation with absorption

2 (ule) ) = pla) w2 u = f(@), R ()

Well posedness

e Problem ill-posed in the classical framework

Numerical issue

e How to deal numerically the infinite domain?

© Pierre Amenoagbadji  Sonia Fliss  Patrick Joly 7



The time-harmonic wave equation

Time-harmonic scalar wave equation with absorption

de (#(w) @) —p(@) W’ u=f(z), inR ()

Quasiperiodic medium with a local perturbation

There exist a~ < o+ and quasiperiodic functions ;i and p such that

p@) =y @ —a0), P =gy @—a) fr<a o
bE) = ui @ —at), ol@) =pfla—at) Hamar o0 PPl C@nel)

1.5 F 1 Ia+\

0.5
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Restriction to a bounded domain

Computations can be restricted to (a~, a™) using DtN conditions.

Ui

_4d dui ) wui=f
de \" dz & o
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Restriction to a bounded domain

Computations can be restricted to (a~, a™) using DtN conditions.

Ui

_4d dui ) wui=f
de \" dz & o

d du 2 4 i
- (HUJr J) - P W’ ug =0, RY

dx dz
ugf (0) = 1.
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Restriction to a bounded domain

Computations can be restricted to (a~, a™) using DtN conditions.

Ui

_4d dui ) wui=f
de \" dz & o

d duf 2 4 .
i (#; Taf) —pg W’ ug =0, Ry
ugf (0) = 1.

)\(j = —Ho 7(0)
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Restriction to a bounded domain

Computations can be restricted to (a~, a™) using DtN conditions.

ui(a™) ug (x — a+)‘

Ui

4 e
dx - dx . !

Il
-

d du 2 + i
i (#; Taf) —pg wug =0, R}
ugf (0) = 1.

+
et du,

)\(j: Ho dr (0)

1 +
Ug
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The Helmholtz equation with quasiperiodic coefficients

Helmholtz equation with absorption

d du R
== (Me(ﬂf) 7:) —po(x) w?ug =0, INRY, up(0)=1 (%)

Quasiperiodic medium

3 ppspp :R? =R 1o (z) = pp(a &)

such that =

) with €y = (cos 6, sin6).
Hp, pp € (fger((Q 1)%) po(x) = pp(x €p)
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The Helmholtz equation with quasiperiodic coefficients

Helmholtz equation with absorption

du . *
— ot (0@ G2 ) = po(@) o ua =0, INRL, ua(0) =1 (Z5)

Quasiperiodic medium

3 pp,pp : RZ =R 7)) = €
HKps Pp sl (g e (z) = pp(z €p)

0 5 = with €y = (cos 6, sin6).
Hp, Pp € (gper (07 1) ) pG(‘L) = pp(a/ 60)

Well-posedness

(Z) admits a unique solution ug € H'(R%) (Lax-Milgram).

How can one solve (#2,) numerically?
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© The cut method
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Description of the cut method

Helmholtz equation with absorption and quasiperiodic coefficients

d du A p
-2 (uem d—;) (@) P up =0, INRL, ug(0) =1 ()

where
Im (w) >0, pg(z) = pp(zep), and pg(z) = pp(z &)

The cut method

Seek uy as the trace of a two-dimensional function Uy along the line e3R ., that is,

ug(z) = Ug(x €).
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Description of the cut method

Helmholtz equation with absorption and quasiperiodic coefficients

d du R _
2 (b0 %)~ @) P wa =0, R, @ =1 ()

where
Im (w) >0, pg(z) = pp(zep), and pg(z) = pp(z &)

The cut method

Seek uy as the trace of a two-dimensional function Uy along the line éyR, that is,

ug(z) = Ug(x €).

d
VU:R? >R, d—[U(m€9)]:(€9-V)U::D9U, Dy = cos6 8, +sin6 0,
X

Y1 Y2
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Extension to a periodic half-plane problem

Trace along €y and chain rule

dug S
E(.’L‘) = DyUy(x é€p)

ug(x) = Uy(x €p) and

dx

d d: . . . .
- (,u,(.) ﬂ) — po w?up =0, in R% — | —Dy (pp Del»"e) — Pp w? Ug =0, inRx Rfr
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Extension to a periodic half-plane problem

Trace along €y and chain rule

dug S
E(‘L) = DyUy(x é€p)

ug(x) = Uy(x €p) and

dx

d d: . . . .
- (,u,(.) ﬂ) — po w?up =0, in R% — | —Dy (pp De“e) — Pp w? Ug =0, inRx Rfr

’ ug(0) = 1 ‘ — ’ U, =@, onRx {0}, withe(0)=1

Y2
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Extension to a periodic half-guide problem

Theorem (periodic boundary data)

If o(y1 +1) = p(y1), then Uy (y1 + 1,y2) = Up(y1,y2)
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Extension to a periodic half-guide problem

Theorem (periodic boundary data)

If o(y1 +1) = p(y1), then Uy (y1 + 1,y2) = Up(y1,y2)

4 (ll() @) —ppwlug=0, R* ~Dy (up DgUy) — pp w” Uy =0, (0,1) x Ry,
dx dx ’ ki .
ug(0) = 1. 7 Up =9 (0.1) x {0}
Us(y1 + 1, y2) = Ug(y1,y2)
Y2
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Extension to a periodic half-guide problem

Theorem (periodic boundary data)

If o(y1 +1) = p(y1), then Uy (y1 + 1,y2) = Up(y1,y2)

4 (ll() @) —ppwlug=0, R* ~Dy (up DgUy) — pp w” Uy =0, (0,1) x Ry,
dx dx ’ ki .
ug(0) = 1. 7 Up =9 (0.1) x {0}
Us(y1 + 1, y2) = Ug(y1,y2)
Y2
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The periodic half-guide problem

Periodic half-guide problem with absorption

—Dy (up DyUy) — pp w? Uy =0, Bo :=(0,1) x R%
ug(z) = Ug(x €p) Ug=¢, (0,1)x {0} (Pper)

Ue\ylzo = Ue|y1:1 HpD9U9|y1:o = NPDGL“YG‘M:1

e Pros Periodic coefficients
e Cons Nonelliptic principal part
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The periodic half-guide problem
Periodic half-guide problem with absorption

—Dy (pp DoUy) — pp w? Uy =0, Bo:=(0,1) x R%.
ug(z) = Ug(x €p) Ug=¢, (0,1)x {0} (Pper)

Uy Ugly, =1 HpDoUgl,, —o = tpDyUs

y1=0 — y1=1

Functional framework

HE(Bo) = {v € L2(By) / D,V € L2(30)}

H;}er,e(BO) = {V € Hy(Bo) / V=0 = V‘yl:1}
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The periodic half-guide problem

Periodic half-guide problem with absorption

—Dy (up DyUy) — pp w? Uy =0, Bo :=(0,1) x R%
ug(z) = Ug(x €p) Ug=¢, (0,1)x {0} (Pper)

Ugly,—0 = Usly, =1 #pDeUsl,, o = mpDeUsl,, 4

Functional framework

HE(Bo) = {v € L2(By) / D,V € LQ(B())}

H;}er,e(BO) = {V € Hy(Bo) / V=0 = V‘ylzl}

Theorem (Well posedness)

For all data ¢ € L?(0, 1), (Zper) admits a unique solution Uy (¢) € H;er,H(BO)'
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The periodic half-guide problem

Periodic half-guide problem with absorption

—Dy (up DyUy) — pp w? Uy =0, Bo :=(0,1) x R%
ug(z) = Ug(x €p) Ug=¢, (0,1)x {0} (Pper)

Ue\ylzo = Ue|y1:1 HpDeUeL,,l:o = NpDeL‘ye\;,,lﬁ

Theorem (Regularity in all directions)

Assume that 9, pp, 9, pp € L>(0,1)? and ¢ € H'(0,1). Then Uy () € H (Bo).
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The periodic half-guide problem

Periodic half-guide problem with absorption

—Dy (up DyUy) — pp w? Uy =0, Bo :=(0,1) x R%
ug(z) = Ug(x €p) Ug=¢, (0,1)x {0} (Pper)
Uyl Uyl

y1=0 — y1=1 HpD9U9|y1:o = #pD9U9|y1:1

Theorem (Regularity in all directions)

Assume that 9, pp, 9, pp € L>(0,1)? and ¢ € H'(0,1). Then Uy () € H (Bo).

How can one solve (%) numerically?

Numerical resolution of elliptic periodic PDE in unbounded domains

Fliss, Joly, Li,2006  Fliss, 2009 Fliss, Joly, Lescarret, 2020
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e Resolution of the waveguide problem
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Structure of the solution

As the solution of a periodic half-guide problem, Uy () has a certain structure.

Bo
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=Dy (up DyUp) — pp w? Uy =0, Bo
Ug=o, 3o

@ Periodicity conditions

e Which PDE does Uy ()(+,- + 1) satisfy?



Structure of the solution

As the solution of a periodic half-guide problem, Uy () has a certain structure.

Bo
C3
per| ¢,
C1
Py
Y1 N
L ok
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P = Up (@)l

—Dy (pp DgUp) — pp w? Uy =0, Bo \ Co
Up=Pp, =1

@ Periodicity conditions

Up()(,- + 1) = Up(Py)

e U(p)(+, -+ 1) satisfies the same PDE as U(y)
e But with a different Dirichlet boundary data



Structure of the solution

As the solution of a periodic half-guide problem, Uy () has a certain structure.

Bo Yp=% Ch=C
pI7}
P2 =Up(#)ls,
Cs3
X3 D - B
—Dy (1p DgUy) — pp w* Uy =0, Bo \ Co UCh
per Co per Uy =P2p, o
P2y @ Periodicity conditions
< Up(9)(-,- 4 2) = Ug(Pp)(:,- + 1) = Up(P?o)

e U(p)(+, -+ 2) satisfies the same PDE as U(y)
e But with a different Dirichlet boundary data

Y1 N
L ol
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Structure of the solution

As the solution of a periodic half-guide problem, Uy () has a certain structure.

Bo
Plo

C3
P3p

per T
P2
P

Y2 < Co

L Y1
P
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Py =Ug(p)lx,

Theorem (Structure of the solution)

Vn >0,

By induction,

Up(#)(,- +n) = Us(P"¢)

‘P is called the propagation operator

Theorem (Properties of P when Im (w) > 0)

e P is injective and uniquely defined
e P has a spectral radius p(P) < 1



Structure of the solution

As the solution of a periodic half-guide problem, Uy () has a certain structure.

Bo
Plo

C3
P3p

per T
P2
P

Y2 < Co

L Y1
P
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Py =Ug(p)lx,

Theorem (Structure of the solution)

Vn >0,

By induction,

Up(#)(,- +n) = Us(P"¢)

‘P is called the propagation operator

Theorem (Non-compactness of P)

e P has continuous spectrum

e If cot @ is irrational, then o(P) is a circle



Construction of the solution

Solutions of local cell problems

Given a data ¢, compute the solutions £ () and Ej () of local cell problems

© Pierre Amenoagbadji  Sonia Fliss
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Construction of the solution

Solutions of local cell problems

Given a data ¢, compute the solutions £ () and Ej () of local cell problems

—Dy (pp DeEg) —ppw?EG=0, C

PP
perf  Us(p) |Per E§(Py) + Es(P?p)
T s,
Directional derivatives on X; should be equal
1 o
per| TUs(p) |per Eq(0) + E5(Pe)
@ o
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Construction of the solution

Local Dirichlet-to-Neumann operators

Given a data ¢, compute the solutions £ () and Ej () of local cell problems

—Dy (pp DeEg) —ppw?EG=0, C

PP

per| Us(p) |per

—4, Dy E§(Pe)|,+DoEy (P
Il

1~
%1 DoE(¢)|y,, +De B3 (Pe)] 5,

o

o
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Construction of the solution

Local Dirichlet-to-Neumann operators

Given a data ¢, compute the local DtN operators 700, 701 710 711 ¢ £(L2(%))

Thp = (1% DyEf(e)|

)

PP

per| Us(p) |per

T
—TPp — TOP2p = Ty + TPy

o
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Construction of the solution

Local Dirichlet-to-Neumann operators

Given a data ¢, compute the local DtN operators 700, 70 710 711 ¢ £(L2(%))

Thp = (1% DyEf(e)|

J

Theorem (Characterization of 2 when Im (w) > 0)

The operator P is the unique solution of the stationary Riccati equation

Find P € L(L?(X)) such that p(P) < 1 and
(%)
TP +(TO+ TP+ T =0.
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Algorithm and numerical results

Solve the periodic waveguide problem

1. Compute the solutions EJ (o) and E} (¢) of local cell problems

| 2D finite elements | | 1D finite elements alo

ng ép |

/

/

€p
A

e Solve the local cell problems on an e Solve 1D quasiperiodic cell problems

unstructured 2D mesh along €y
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Algorithm and numerical results

Solve the periodic waveguide problem

1. Compute the solutions EJ (o) and E} (¢) of local cell problems

| 2D finite elements | | 1D finite elements along &y |
1
/ 2,
A A,
0
e Solve the local cell problems on an e Solve 1D quasiperiodic cell problems
unstructured 2D mesh along €y
e Concatenate the 1D solutions
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Algorithm and numerical results

Solve the periodic waveguide problem

1. Compute the solutions EJ (o) and E} (¢) of local cell problems

| 2D finite elements | 1D finite elements along &y |
S 1
‘ Ey |€9(0,1) al
|
1
! |
Esl.
i 9}.39(0,1) ]
O —
[~ |
0 0.5 1
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Algorithm and numerical results

Solve the periodic waveguide problem

1. Compute the solutions EJ (o) and E} (¢) of local cell problems

2. Compute the local DtN operators 700, 701, 7710 711

| 2D finite elements |

e Weak evaluation

/ T = /u,, DyEj() Do E)(v) — pp w? Ef(0) E) (%
JE JC
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Algorithm and numerical results

Solve the periodic waveguide problem

1. Compute the solutions EJ (o) and E} (¢) of local cell problems

2. Compute the local DtN operators 700, 701, 7710 711

| 2D finite elements |

e Weak evaluation

/ T = /u,, DyE$(p) Do E) (%) — pp w? E§ () E} (%)
JE JC

| 1D finite elements along ¢y

e Interpolation

N x N

matrices

where N is the number of DOFs associated to
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Algorithm and numerical results

Solve the periodic waveguide problem

1. Compute the solutions EJ (o) and E} (¢) of local cell problems

2. Compute the local DtN operators 700, 701, 7710 711

3. Determine the unique solution P with a spectral radius p(P) < 1 of the equation

7—1(] 732 + (7-()(] 4 7—11) P+ 7—[)1 =@

| 2D finite elements | | 1D finite elements along €y
1 ‘ 1
D
0 ( / Spectral method 0
19 (‘) 1 13

| e N=128 o w=5+05 e 0=m/3 |
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Algorithm and numerical results
Solve the periodic waveguide problem

1. Compute the solutions EJ (o) and E} (¢) of local cell problems

2. Compute the local DtN operators 700, 701, 7710 711

3. Determine the unique solution P with a spectral radius p(P) < 1 of the equation

7—1(] 732 + (7-()(] 4 7—11) P+ 7—[)1 =@

| 2D finite elements | | 1D finite elements along €y |
1 1
\ \
2 ’°u3h~
o ¥ KO Spectral method U ]
QLC’/ /
. | . |
-1 0 1 —1 0 1

e N=512 e w=5+05 e 6=7/3
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Algorithm and numerical results
Solve the periodic waveguide problem

1. Compute the solutions EJ (o) and E} (¢) of local cell problems

2. Compute the local DtN operators 700, 701 7710 711

3. Determine the unique solution P with a spectral radius p(P) < 1 of the equation
TP+ (TP +TH)P+T =0

4. Construct the solution Uy (¢) cell by cell

Us(#)(,- + )l = Eg(P"p) + Eg(P" )

Solve the quasiperiodic half-line problem

Compute ug(z) = Ug(x €p)
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Algorithm and numerical results

Test case for the locally perturbed quasiperiodic problem
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Algorithm and numerical results

Test case for the locally perturbed quasiperiodic problem

ew=5+05 e 0=m/3

4 2.5 : :
n‘l : | i \e/ iV |
3 1.5
Hp
1 -
054 2 1 ; 3
2
! I I
1 ‘ Up
5‘ | |
l\ - -c \ \ \
0 0.4 08 0 2 4 6 8
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Algorithm and numerical results

Test case for the locally perturbed quasiperiodic problem

e w=20+052 e 6=m/3

2.5

2

1.5

17

0.5 ‘ ‘
0
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Algorithm and numerical results

Solve the periodic waveguide problem

1. Compute the solutions EJ (o) and E} (¢) of local cell problems

2. Compute the local DtN operators 700, 701 7710 711

3. Determine the unique solution P with a spectral radius p(P) < 1 of the equation
TP+ (TP +TH)P+T =0

4. Construct the solution Uy (¢) cell by cell

Solve the quasiperiodic half-line problem

Compute ug(z) = Up(z ép)

Solve the locally perturbed quasiperiodic problem

Construct the global solution u of the locally perturbed quasiperiodic problem (<)
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Algorithm and numerical results

Test case for the locally perturbed quasiperiodic problem

e w=10+0.52 e 9+:7r/3 e 0~ =7/6

0

2 0 2

© Pierre Amenoagbadji  Sonia Fliss  Patrick Joly 18



Passing the absorption to the limit

The numerical approximation deteriorates as Im (w) tends to 0.

o O.th\\\ T TTTT] o
10| — ﬂ—]\ _04§ @ W= .0
‘c = ‘\\. — =3 ® w=5+0.05
o — ~ |
5 10-1 = T —1.02]
o = =
~ | L oLt rrtntl >
10! 102

Number of DOFs associated to
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Passing the absorption to the limit

The numerical approximation deteriorates as Im (w) tends to 0.

FT— &7 [ T T 11T
- e

® w=5+05

>

5 100 ——1 4 0.45

o - ~ 0 — =3| ® w=5+0.05
o — ~ |

5 10-1 = T —1.02]

o = =

~ | L oLt rrtntl >

10t 102

Number of DOFs associated to

Theorem (lll-posedness of the local cell problems without absorption)

If up and p,, are not constant, and if cot @ is irrational, there exists wmin € R such that for
w e (wIIliIh +OO)1

the local cell problems with Dirichlet boundary conditions are ill-posed.
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Conclusion

Summary

Resolution of the Helmholtz equation in 1D locally perturbed quasiperiodic media
e Extend the quasiperiodic PDE to a periodic PDE through the cut approach

The case without absorption

e Non-uniqueness for the Riccati equation — ’ Also true in the periodic case ‘

e Additional condition to fully characterize P

e lll-posedness of Dirichlet-type local cell problems +— ’ Specific to the quasiperiodic case ‘

e Solve Robin-type local cell problems instead
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Conclusion

Summary

Resolution of the Helmholtz equation in 1D locally perturbed quasiperiodic media
e Extend the quasiperiodic PDE to a periodic PDE through the cut approach

The multidimensional case

e Extension to quasiperiodic functions of several variables

e Application to transmission problems
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Conclusion

Summary

Resolution of the Helmholtz equation in 1D locally perturbed quasiperiodic media
e Extend the quasiperiodic PDE to a periodic PDE through the cut approach

The multidimensional case

e Extension to quasiperiodic functions of several variables

e Application to transmission problems

Thank you for your attention!
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