Waves in quasiperiodic media

The one-dimensional harmonic case with absorption

Pierre Amenoagbadji Sonia Fliss Patrick Joly

POEMS - UMR 7231 CNRS - INRIA - ENSTA Paris - IPP

10ème Biennale Française des Mathématiques Appliquées et Industrielles, June 2021

Introduction and model problem

2 T<u>he cut method</u>

3 Resolution of the waveguide problem

Resolution algorithm and numerical results

Conclusion

Quasiperiodic media are ordered structures which are not necessarily periodic.

Quasiperiodic media are ordered structures which are not necessarily periodic.

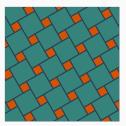


Figure: Periodic tiling

Figure: Random tiling

Quasiperiodic media are ordered structures which are not necessarily periodic.



Figure: Periodic tiling

Figure: Quasiperiodic tiling

Figure: Random tiling

Quasiperiodic media are ordered structures which are not necessarily periodic.

A physical example: the quasicrystal

First quasicrystal formation observed in 1982 by D. Shechtman

Figure: Periodic tiling

Figure: Quasiperiodic tiling

Figure: Random tiling

Definition (Quasiperiodic medium)

Medium whose physical or geometrical properties can be represented as **quasiperiodic functions**

Definition (Quasiperiodic function of one real variable)

A function $f : \mathbb{R} \to \mathbb{C}$ is said to be **quasiperiodic** of order n > 0 if there exist real constants $\delta_1, \ldots, \delta_n$ and a continuous function $F : \mathbb{R}^n \to \mathbb{C}$, 1-periodic in each variable, such that

 $\forall x \in \mathbb{R}, \quad f(x) = F(\delta_1 x, \dots, \delta_n x).$

Definition (Quasiperiodic medium)

Medium whose physical or geometrical properties can be represented as **quasiperiodic** functions

Definition (Quasiperiodic function of one real variable)

A function $f : \mathbb{R} \to \mathbb{C}$ is said to be **quasiperiodic** of order n > 0 if there exist real constants $\delta_1, \ldots, \delta_n$ and a continuous function $F : \mathbb{R}^n \to \mathbb{C}$, 1-periodic in each variable, such that

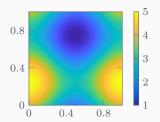
$$\forall x \in \mathbb{R}, \quad f(x) = F(\delta_1 x, \dots, \delta_n x).$$

Remarks

- *F* is a *periodic* extension of *f* and $(\delta_1, \ldots, \delta_n)$ is called a *cut* direction
- The pair $(F, (\delta_1, \ldots, \delta_n))$ is not unique
- One can also define quasiperiodic functions of several real variables

There exists $\theta \in (0, \pi/2)$ and $\mu_p \in \mathscr{C}^0_{per}((0, 1)^2)$ such that

$$\mu_{\theta}(x) = \mu_p(x \ \vec{e}_{\theta}), \quad \vec{e}_{\theta} = (\cos \theta, \sin \theta).$$



There exists $\theta \in (0,\pi/2)$ and $\mu_p \in \mathscr{C}^0_{per}((0,1)^2)$ such that

$$\mu_{\theta}(x) = \mu_p(x \ \vec{e}_{\theta}), \quad \vec{e}_{\theta} = (\cos \theta, \sin \theta).$$

• If $\cot \theta$ is rational, then μ_{θ} is periodic

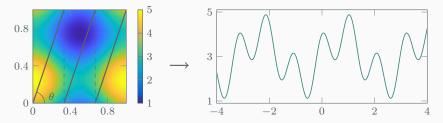


Figure: Trace of a periodic function along \vec{e}_{θ} with $\cot \theta = 1/3$ – Rational case

There exists
$$\theta \in (0, \pi/2)$$
 and $\mu_p \in \mathscr{C}^0_{per}((0, 1)^2)$ such that
 $\mu_{\theta}(x) = \mu_p(x \ \vec{e}_{\theta}), \quad \vec{e}_{\theta} = (\cos \theta, \sin \theta).$

• If $\cot \theta$ is irrational, then μ_{θ} is not necessarily periodic

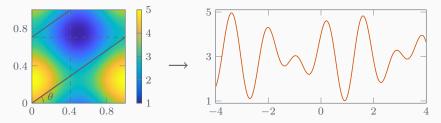


Figure: Trace of a periodic function along \vec{e}_{θ} with $\cot \theta = \sqrt{2}$ – Irrational case

There exists
$$\theta \in (0, \pi/2)$$
 and $\mu_p \in \mathscr{C}^0_{per}((0, 1)^2)$ such that

$$\mu_{\theta}(x) = \mu_p(x \ \vec{e}_{\theta}), \quad \vec{e}_{\theta} = (\cos \theta, \sin \theta).$$

• If $\cot \theta$ is irrational, then μ_{θ} is not necessarily periodic

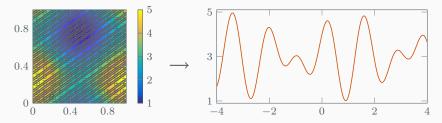


Figure: Trace of a periodic function along \vec{e}_{θ} with $\cot \theta = \sqrt{2}$ – Irrational case

There exists
$$\theta \in (0, \pi/2)$$
 and $\mu_p \in \mathscr{C}^0_{per}((0, 1)^2)$ such that

$$\mu_{\theta}(x) = \mu_p(x \ \vec{e}_{\theta}), \quad \vec{e}_{\theta} = (\cos \theta, \sin \theta).$$

• If $\cot \theta$ is irrational, then μ_{θ} is not necessarily periodic

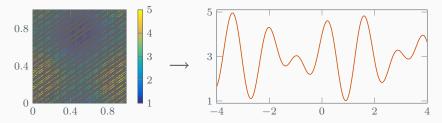


Figure: Trace of a periodic function along \vec{e}_{θ} with $\cot \theta = \sqrt{2}$ – Irrational case

Numerous theoretical studies in the context of homogenization

- The medium is submitted to external forces whose length scale are far larger than the characteristic length of the microstructure.
- PDE with rapidly oscillating coefficients such as − div A(x/ε)∇u_ε = f, where the parameter ε is expected to be small.

Approach for general heterogeneous media

Two-scale and Γ -convergence, almost-periodicity

• Only in the context of homogenization

Braides, 1992 Nguetseng, 2003 Zhikov, Kozlov, Oleinik, 2012

Very few works in other regimes.

Numerous theoretical studies in the context of homogenization

- The medium is submitted to external forces whose length scale are far larger than the characteristic length of the microstructure.
- PDE with rapidly oscillating coefficients such as − div A(x/ε)∇u_ε = f, where the parameter ε is expected to be small.

Approach for general heterogeneous media

Two-scale and Γ -convergence, almost-periodicity

Only in the context of homogenization

Braides, 1992 Nguetseng, 2003 Zhikov, Kozlov, Oleinik, 2012

Cut and project approach

Extend the PDE to a non-elliptic PDE with **periodic** coefficients

 Can be used for problems to which the homogenization theory does not apply

Very few works in other regimes.

Bouchitté, Guenneau, Zolla, 2010 Gérard-Varet, Masmoudi, 2010 Blanc, Le Bris, Lions, 2015 Wellander, Guenneau, Cherkaev, 2019

Time-harmonic scalar wave equation

$$-\frac{d}{dx}\left(\mu(x)\ \frac{du}{dx}\right) - \rho(x)\ \omega^2\ \mathbf{u} = f(x), \quad \text{in } \mathbb{R}. \tag{P}$$

Well posedness

• Problem ill-posed in the classical framework

Time-harmonic scalar wave equation

$$-\frac{d}{dx}\left(\mu(x)\ \frac{d\mathbf{u}}{dx}\right) - \rho(x)\ \omega^2\ \mathbf{u} = f(x), \quad \text{in } \mathbb{R}. \tag{P}$$

Well posedness

• Problem ill-posed in the classical framework

Computing the physical solution using the limiting absorption principle

- 1. Add some absorption: $Im(\omega) > 0$
- 2. Study the solution of (\mathscr{P}) as Im (ω) tends to 0.

Time-harmonic scalar wave equation

$$-\frac{d}{dx}\left(\mu(x)\ \frac{du}{dx}\right) - \rho(x)\ \omega^2\ \mathbf{u} = f(x), \quad \text{in } \mathbb{R}. \tag{P}$$

Well posedness

Problem ill-posed in the classical framework

Computing the physical solution using the limiting absorption principle

1. Add some absorption: $\operatorname{Im}(\omega) > 0 \quad \longleftarrow \quad \text{In this talk}$

2. Study the solution of (\mathcal{P}) as Im (ω) tends to 0.

The time-harmonic wave equation

Time-harmonic scalar wave equation with absorption

$$-\frac{d}{dx}\left(\mu(x)\ \frac{d\mathbf{u}}{dx}\right) - \rho(x)\ \omega^2\ \mathbf{u} = f(x), \quad \text{in } \mathbb{R}. \tag{P}$$

Well posedness

• Problem ill-posed in the classical framework

Numerical issue

• How to deal numerically the infinite domain?

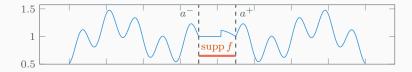
Time-harmonic scalar wave equation with absorption

$$-\frac{d}{dx}\left(\mu(x)\ \frac{d\mathbf{u}}{dx}\right) - \rho(x)\ \omega^2\ \mathbf{u} = f(x), \quad \text{in } \mathbb{R}. \tag{P}$$

Quasiperiodic medium with a local perturbation

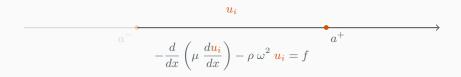
There exist $a^- < a^+$ and quasiperiodic functions μ_{θ}^{\pm} and ρ_{θ}^{\pm} such that

$$\begin{split} \mu(x) &= \mu_{\theta}^{-}(x-a^{-}), \quad \rho(x) = \rho_{\theta}^{-}(x-a^{-}) & \text{if } x < a^{-} \\ \mu(x) &= \mu_{\theta}^{+}(x-a^{+}), \quad \rho(x) = \rho_{\theta}^{+}(x-a^{+}) & \text{if } x > a^{+} \end{split} \qquad \text{and} \quad \mathrm{supp} \, f \subset (a^{-},a^{+}) \end{split}$$



Restriction to a bounded domain

Computations can be restricted to (a^-, a^+) using DtN conditions.



Restriction to a bounded domain

Computations can be restricted to (a^-, a^+) using DtN conditions.

$$\frac{u_i}{-\frac{d}{dx}\left(\mu \frac{du_i}{dx}\right) - \rho \,\omega^2 \,u_i = f} \xrightarrow{a^+}$$

$$-\frac{d}{dx}\left(\mu_{\theta}^{-} \frac{du_{\theta}^{-}}{dx}\right) - \rho_{\theta}^{-} \omega^{2} u_{\theta}^{-} = 0, \quad \mathbb{R}^{*}_{-}$$
$$u_{\theta}^{-}(0) = 1.$$

$$-\frac{d}{dx}\left(\mu_{\theta}^{+}\frac{du_{\theta}^{+}}{dx}\right) - \rho_{\theta}^{+}\omega^{2}u_{\theta}^{+} = 0, \quad \mathbb{R}_{+}^{*}$$
$$u_{\theta}^{+}(0) = 1.$$

8

Restriction to a bounded domain

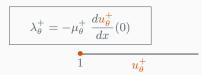
Computations can be restricted to (a^-, a^+) using DtN conditions.

$$\begin{array}{c} u_{i} \\ & \\ a^{-} \\ -\frac{d}{dx} \left(\mu \ \frac{du_{i}}{dx} \right) - \rho \ \omega^{2} \ u_{i} = f \end{array} \xrightarrow{a^{+}}$$

$$-\frac{d}{dx}\left(\mu_{\theta}^{-} \frac{du_{\theta}^{-}}{dx}\right) - \rho_{\theta}^{-} \omega^{2} u_{\theta}^{-} = 0, \quad \mathbb{R}_{-}^{*}$$
$$u_{\theta}^{-}(0) = 1.$$

$$\lambda_{\theta}^{-} = \mu_{\theta}^{-} \frac{du_{\theta}^{-}}{dx}(0)$$

 $-\frac{d}{dx}\left(\mu_{\theta}^{+} \frac{du_{\theta}^{+}}{dx}\right) - \rho_{\theta}^{+} \omega^{2} \frac{u_{\theta}^{+}}{u_{\theta}^{+}} = 0, \quad \mathbb{R}_{+}^{*}$ $\frac{u_{\theta}^{+}(0)}{u_{\theta}^{+}(0)} = 1.$



Computations can be restricted to (a^-, a^+) using DtN conditions.

$$\begin{array}{c|c}
 u_{i}(a^{-}) u_{\theta}^{-}(x-a^{-}) & u_{i} & u_{i}(a^{+}) u_{\theta}^{+}(x-a^{+}) \\ \hline \\
 a^{-} & -\frac{d}{dx} \left(\mu \frac{du_{i}}{dx} \right) - \rho \omega^{2} u_{i} = f \\ \hline \\
 \mu \frac{du_{i}}{dx}(a^{-}) = \lambda_{\theta}^{-} u_{i}(a^{-}) & \mu \frac{du_{i}}{dx}(a^{+}) = \lambda_{\theta}^{+} u_{i}(a^{+}) \\ \hline \\
 -\frac{d}{dx} \left(\mu_{\theta}^{-} \frac{du_{\theta}^{-}}{dx} \right) - \rho_{\theta}^{-} \omega^{2} u_{\theta}^{-} = 0, \quad \mathbb{R}^{*}_{-} \\ u_{\theta}^{-}(0) = 1. & -\frac{d}{dx} \left(\mu_{\theta}^{+} \frac{du_{\theta}^{+}}{dx} \right) - \rho_{\theta}^{+} \omega^{2} u_{\theta}^{+} = 0, \quad \mathbb{R}^{*}_{+} \\ u_{\theta}^{+}(0) = 1. & u_{\theta}^{+}(0) = 1. \\ \hline \\
 \lambda_{\theta}^{-} = \mu_{\theta}^{-} \frac{du_{\theta}^{-}}{dx}(0) & \lambda_{\theta}^{+} = -\mu_{\theta}^{+} \frac{du_{\theta}^{+}}{dx}(0) \\ \hline \\
 u_{\theta}^{-} & 1 & u_{\theta}^{+} \\ \hline \end{array}$$

© Pierre Amenoagbadji Sonia Fliss Patrick Joly

Helmholtz equation with absorption

$$-\frac{d}{dx}\left(\mu_{\theta}(x) \ \frac{d\boldsymbol{u}_{\theta}}{dx}\right) - \rho_{\theta}(x) \ \omega^{2} \ \boldsymbol{u}_{\theta} = 0, \quad \text{in } \mathbb{R}^{*}_{+}, \quad \boldsymbol{u}_{\theta}(0) = 1$$
 (\mathscr{P}_{θ})

Quasiperiodic medium

$$\exists \ \mu_p, \rho_p : \mathbb{R}^2 \to \mathbb{R} \\ \mu_p, \rho_p \in \mathscr{C}^0_{per}((0,1)^2)$$
 such that
$$\begin{array}{c} \mu_{\theta}(x) = \mu_p(x \ \vec{e}_{\theta}) \\ \rho_{\theta}(x) = \rho_p(x \ \vec{e}_{\theta}) \end{array}$$
 with $\vec{e}_{\theta} = (\cos \theta, \sin \theta).$

Helmholtz equation with absorption

$$-\frac{d}{dx}\left(\mu_{\theta}(x)\ \frac{d\boldsymbol{u}_{\theta}}{dx}\right) - \rho_{\theta}(x)\ \omega^{2}\ \boldsymbol{u}_{\theta} = 0, \quad \text{in } \mathbb{R}^{*}_{+}, \quad \boldsymbol{u}_{\theta}(0) = 1 \qquad (\mathscr{P}_{\theta})$$

Quasiperiodic medium

 $\exists \ \mu_p, \rho_p : \mathbb{R}^2 \to \mathbb{R} \\ \mu_p, \rho_p \in \mathscr{C}_{per}^0((0,1)^2) \qquad \text{such that} \qquad \begin{array}{l} \mu_\theta(x) = \mu_p(x \ \vec{e}_\theta) \\ \rho_\theta(x) = \rho_p(x \ \vec{e}_\theta) \end{array} \text{ with } \vec{e}_\theta = (\cos \theta, \sin \theta).$

Well-posedness

 (\mathscr{P}_{θ}) admits a unique solution $u_{\theta} \in H^1(\mathbb{R}^*_+)$ (Lax-Milgram).

How can one solve (\mathscr{P}_{θ}) numerically?

Introduction and model problem

2 The cut method

3 Resolution of the waveguide problem

4 Resolution algorithm and numerical results

Conclusion

Description of the cut method

Helmholtz equation with absorption and quasiperiodic coefficients

$$-\frac{d}{dx}\left(\mu_{\theta}(x)\,\frac{du_{\theta}}{dx}\right) - \rho_{\theta}(x)\,\omega^{2}\,\,\boldsymbol{u}_{\theta} = 0, \quad \text{in } \mathbb{R}^{*}_{+}, \quad \boldsymbol{u}_{\theta}(0) = 1 \tag{P}_{\theta})$$

where

$$\mathrm{Im}\,(\omega)>0,\quad \mu_\theta(x)=\mu_p(x\;\vec{e_\theta}),\quad \text{and}\quad \rho_\theta(x)=\rho_p(x\;\vec{e_\theta})$$

The cut method

Seek u_{θ} as the trace of a two-dimensional function U_{θ} along the line $\vec{e}_{\theta} \mathbb{R}_+$, that is,

 $\boldsymbol{u}_{\boldsymbol{\theta}}(\boldsymbol{x}) = \boldsymbol{U}_{\boldsymbol{\theta}}(\boldsymbol{x} \; \vec{e}_{\boldsymbol{\theta}}).$

Description of the cut method

Helmholtz equation with absorption and quasiperiodic coefficients

$$-\frac{d}{dx}\left(\mu_{\theta}(x)\,\frac{du_{\theta}}{dx}\right) - \rho_{\theta}(x)\,\omega^{2}\,\,\boldsymbol{u}_{\theta} = 0, \quad \text{in } \mathbb{R}^{*}_{+}, \quad \boldsymbol{u}_{\theta}(0) = 1 \tag{P}_{\theta})$$

where

$$\mathrm{Im}\,(\omega) > 0, \quad \mu_{\theta}(x) = \mu_p(x \ \vec{e_{\theta}}), \quad \text{and} \quad \rho_{\theta}(x) = \rho_p(x \ \vec{e_{\theta}})$$

The cut method

Seek u_{θ} as the trace of a two-dimensional function U_{θ} along the line $\vec{e}_{\theta} \mathbb{R}_+$, that is,

 $\boldsymbol{u}_{\boldsymbol{\theta}}(\boldsymbol{x}) = \boldsymbol{U}_{\boldsymbol{\theta}}(\boldsymbol{x} \ \vec{e}_{\boldsymbol{\theta}}).$

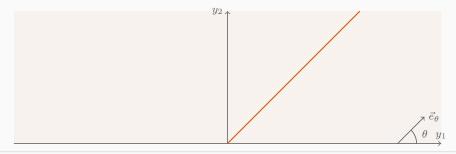
Chain rule

$$\forall \ U: \mathbb{R}^2 \to \mathbb{R}, \quad \frac{d}{dx} [U(x \ \vec{e_\theta})] = (\vec{e_\theta} \cdot \nabla) U := D_\theta U, \quad D_\theta = \cos \theta \ \partial_{y_1} + \sin \theta \ \partial_{y_2} = \frac{1}{2} \left(-\frac{1}{2} \left(-\frac{1}{2} \right) \right) \left(-\frac{1}{2} \left(-\frac{1}{2} \left(-\frac{1}{2} \left(-\frac{1}{2} \right) \right) \right) \left(-\frac{1}{2} \left(-\frac{1}{2} \left(-\frac{1}{2} \left($$

Trace along \vec{e}_{θ} and chain rule

$$u_{\theta}(x) = U_{\theta}(x \ \vec{e}_{\theta})$$
 and $\frac{du_{\theta}}{dx}(x) = D_{\theta}U_{\theta}(x \ \vec{e}_{\theta})$

$$-\frac{d}{dx}\left(\mu_{\theta} \ \frac{d\boldsymbol{u}_{\theta}}{dx}\right) - \rho_{\theta} \ \omega^{2} \ \boldsymbol{u}_{\theta} = 0, \quad \text{in } \mathbb{R}^{*}_{+} \qquad \longrightarrow \qquad -D_{\theta} \ \left(\mu_{p} \ D_{\theta} \boldsymbol{U}_{\theta}\right) - \rho_{p} \ \omega^{2} \ \boldsymbol{U}_{\theta} = 0, \quad \text{in } \mathbb{R} \times \mathbb{R}^{*}_{+}$$



Trace along \vec{e}_{θ} and chain rule

$$u_{\theta}(x) = U_{\theta}(x \ \vec{e}_{\theta}) \quad \text{and} \quad \frac{du_{\theta}}{dx}(x) = D_{\theta}U_{\theta}(x \ \vec{e}_{\theta})$$

$$-\frac{d}{dx}\left(\mu_{\theta} \ \frac{du_{\theta}}{dx}\right) - \rho_{\theta} \ \omega^{2} \ u_{\theta} = 0, \quad \text{in } \mathbb{R}^{*}_{+}$$

$$\underbrace{-D_{\theta} \ (\mu_{p} \ D_{\theta}U_{\theta}) - \rho_{p} \ \omega^{2} \ U_{\theta} = 0, \quad \text{in } \mathbb{R} \times \mathbb{R}^{*}_{+}$$

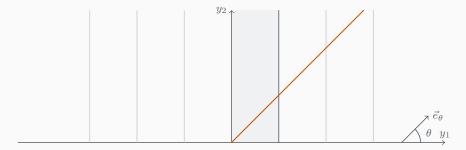
$$\underbrace{u_{\theta}(0) = 1} \qquad \longrightarrow \qquad U_{\theta} = \varphi, \quad \text{on } \mathbb{R} \times \{0\}, \quad \text{with } \varphi(0) = 1$$

$$y_{2} \uparrow$$

$$\underbrace{\vec{e}_{\theta}}{\theta \ y_{1}}$$

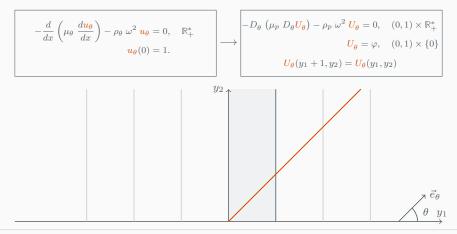
Theorem (periodic boundary data)

If $\varphi(y_1+1) = \varphi(y_1)$, then $U_{\theta}(y_1+1,y_2) = U_{\theta}(y_1,y_2)$



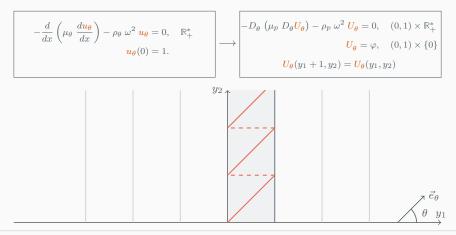
Theorem (periodic boundary data)

If $\varphi(y_1+1) = \varphi(y_1)$, then $U_{\theta}(y_1+1,y_2) = U_{\theta}(y_1,y_2)$



Theorem (periodic boundary data)

If $\varphi(y_1+1) = \varphi(y_1)$, then $U_{\theta}(y_1+1,y_2) = U_{\theta}(y_1,y_2)$



The periodic half-guide problem

Periodic half-guide problem with absorption

$$\begin{aligned} \mathbf{u}_{\boldsymbol{\theta}}(x) &= \mathbf{U}_{\boldsymbol{\theta}}(x \ \vec{e}_{\boldsymbol{\theta}}) \\ \mathbf{U}_{\boldsymbol{\theta}}(x \ \vec{e}_{\boldsymbol{\theta}}) \end{aligned} \begin{vmatrix} & -D_{\boldsymbol{\theta}} \left(\mu_p \ D_{\boldsymbol{\theta}} \mathbf{U}_{\boldsymbol{\theta}} \right) - \rho_p \ \omega^2 \ \mathbf{U}_{\boldsymbol{\theta}} = 0, & \mathcal{B}_0 := (0, 1) \times \mathbb{R}^*_+ \\ & \mathbf{U}_{\boldsymbol{\theta}} = \varphi, & (0, 1) \times \{0\} \\ & \mathbf{U}_{\boldsymbol{\theta}}|_{y_1 = 0} = \mathbf{U}_{\boldsymbol{\theta}}|_{y_1 = 1} & \mu_p D_{\boldsymbol{\theta}} \mathbf{U}_{\boldsymbol{\theta}}|_{y_1 = 0} = \mu_p D_{\boldsymbol{\theta}} \mathbf{U}_{\boldsymbol{\theta}}|_{y_1 = 1} \end{aligned}$$

- **Pros** Periodic coefficients
- Cons Nonelliptic principal part

The periodic half-guide problem

Periodic half-guide problem with absorption

$$\begin{aligned} \mathbf{u}_{\boldsymbol{\theta}}(x) &= \mathbf{U}_{\boldsymbol{\theta}}(x \ \vec{e}_{\boldsymbol{\theta}}) \\ \mathbf{U}_{\boldsymbol{\theta}}(x) &= \mathbf{U}_{\boldsymbol{\theta}}(x \ \vec{e}_{\boldsymbol{\theta}}) \end{aligned} \begin{vmatrix} -D_{\boldsymbol{\theta}} \left(\mu_p \ D_{\boldsymbol{\theta}} \mathbf{U}_{\boldsymbol{\theta}}\right) - \rho_p \ \omega^2 \ \mathbf{U}_{\boldsymbol{\theta}} &= 0, \quad \mathcal{B}_0 := (0, 1) \times \mathbb{R}^*_+ \\ \mathbf{U}_{\boldsymbol{\theta}} &= \varphi, \quad (0, 1) \times \{0\} \\ \mathbf{U}_{\boldsymbol{\theta}}|_{y_1 = 0} &= \mathbf{U}_{\boldsymbol{\theta}}|_{y_1 = 1} \quad \mu_p D_{\boldsymbol{\theta}} \mathbf{U}_{\boldsymbol{\theta}}|_{y_1 = 0} = \mu_p D_{\boldsymbol{\theta}} \mathbf{U}_{\boldsymbol{\theta}}|_{y_1 = 1} \end{aligned}$$

Functional framework

$$\begin{split} H^1_{\theta}(\mathcal{B}_0) &= \left\{ V \in L^2(\mathcal{B}_0) \ / \ D_{\theta} V \in L^2(\mathcal{B}_0) \right\} \\ H^1_{\mathrm{per},\theta}(\mathcal{B}_0) &= \left\{ V \in H^1_{\theta}(\mathcal{B}_0) \ / \ V|_{y_1=0} = V|_{y_1=1} \right\} \end{split}$$

The periodic half-guide problem

Periodic half-guide problem with absorption

$$\begin{aligned} \mathbf{u}_{\boldsymbol{\theta}}(x) &= \mathbf{U}_{\boldsymbol{\theta}}(x \ \vec{e}_{\boldsymbol{\theta}}) \\ \mathbf{U}_{\boldsymbol{\theta}}(x) &= \mathbf{U}_{\boldsymbol{\theta}}(x \ \vec{e}_{\boldsymbol{\theta}}) \end{aligned} \begin{vmatrix} & -D_{\boldsymbol{\theta}} \left(\mu_p \ D_{\boldsymbol{\theta}} \mathbf{U}_{\boldsymbol{\theta}} \right) - \rho_p \ \omega^2 \ \mathbf{U}_{\boldsymbol{\theta}} &= 0, & \mathcal{B}_0 := (0, 1) \times \mathbb{R}^*_+ \\ & \mathbf{U}_{\boldsymbol{\theta}} = \varphi, & (0, 1) \times \{0\} \\ & \mathbf{U}_{\boldsymbol{\theta}}|_{y_1 = 0} = \mathbf{U}_{\boldsymbol{\theta}}|_{y_1 = 1} & \mu_p D_{\boldsymbol{\theta}} \mathbf{U}_{\boldsymbol{\theta}}|_{y_1 = 0} = \mu_p D_{\boldsymbol{\theta}} \mathbf{U}_{\boldsymbol{\theta}}|_{y_1 = 1} \end{aligned}$$

Functional framework

$$\begin{split} H^1_{\theta}(\mathcal{B}_0) &= \left\{ V \in L^2(\mathcal{B}_0) \ / \ D_{\theta} V \in L^2(\mathcal{B}_0) \right\} \\ H^1_{\mathrm{per},\theta}(\mathcal{B}_0) &= \left\{ V \in H^1_{\theta}(\mathcal{B}_0) \ / \ V|_{y_1=0} = V|_{y_1=1} \right\} \end{split}$$

Theorem (Well posedness)

For all data $\varphi \in L^2(0,1)$, (\mathscr{P}_{per}) admits a unique solution $U_{\theta}(\varphi) \in H^1_{per,\theta}(\mathcal{B}_0)$.

The periodic half-guide problem

Periodic half-guide problem with absorption

$$\begin{aligned} \mathbf{u}_{\boldsymbol{\theta}}(x) &= \mathbf{U}_{\boldsymbol{\theta}}(x \ \vec{e}_{\boldsymbol{\theta}}) \\ \mathbf{U}_{\boldsymbol{\theta}}(x) &= \mathbf{U}_{\boldsymbol{\theta}}(x \ \vec{e}_{\boldsymbol{\theta}}) \end{aligned} \begin{vmatrix} & -D_{\boldsymbol{\theta}} \left(\mu_p \ D_{\boldsymbol{\theta}} \mathbf{U}_{\boldsymbol{\theta}} \right) - \rho_p \ \omega^2 \ \mathbf{U}_{\boldsymbol{\theta}} &= 0, & \mathcal{B}_0 := (0, 1) \times \mathbb{R}^*_+ \\ & \mathbf{U}_{\boldsymbol{\theta}} = \varphi, & (0, 1) \times \{0\} \\ & \mathbf{U}_{\boldsymbol{\theta}}|_{y_1 = 0} = \mathbf{U}_{\boldsymbol{\theta}}|_{y_1 = 1} & \mu_p D_{\boldsymbol{\theta}} \mathbf{U}_{\boldsymbol{\theta}}|_{y_1 = 0} = \mu_p D_{\boldsymbol{\theta}} \mathbf{U}_{\boldsymbol{\theta}}|_{y_1 = 1} \end{aligned}$$

Theorem (Regularity in all directions)

Assume that $\partial_{y_1}\mu_p, \ \partial_{y_1}\rho_p \in L^{\infty}(0,1)^2$ and $\varphi \in H^1(0,1)$. Then $U_{\theta}(\varphi) \in H^1(\mathcal{B}_0)$.

The periodic half-guide problem

Periodic half-guide problem with absorption

$$\begin{aligned} \mathbf{u}_{\boldsymbol{\theta}}(x) &= \mathbf{U}_{\boldsymbol{\theta}}(x \ \vec{e}_{\boldsymbol{\theta}}) \\ \mathbf{U}_{\boldsymbol{\theta}}(x) &= \mathbf{U}_{\boldsymbol{\theta}}(x \ \vec{e}_{\boldsymbol{\theta}}) \end{aligned} \begin{vmatrix} -D_{\boldsymbol{\theta}} \left(\mu_p \ D_{\boldsymbol{\theta}} \mathbf{U}_{\boldsymbol{\theta}} \right) - \rho_p \ \omega^2 \ \mathbf{U}_{\boldsymbol{\theta}} &= 0, \quad \mathcal{B}_0 := (0, 1) \times \mathbb{R}^*_+ \\ \mathbf{U}_{\boldsymbol{\theta}} &= \varphi, \quad (0, 1) \times \{0\} \\ \mathbf{U}_{\boldsymbol{\theta}}|_{y_1 = 0} &= \mathbf{U}_{\boldsymbol{\theta}}|_{y_1 = 1} \quad \mu_p D_{\boldsymbol{\theta}} \mathbf{U}_{\boldsymbol{\theta}}|_{y_1 = 0} = \mu_p D_{\boldsymbol{\theta}} \mathbf{U}_{\boldsymbol{\theta}}|_{y_1 = 1} \end{aligned}$$

Theorem (Regularity in all directions)

Assume that $\partial_{y_1} \mu_p, \ \partial_{y_1} \rho_p \in L^{\infty}(0,1)^2$ and $\varphi \in H^1(0,1)$. Then $U_{\theta}(\varphi) \in H^1(\mathcal{B}_0)$.

How can one solve (\mathcal{P}_{per}) numerically?

Numerical resolution of elliptic periodic PDE in unbounded domains

Fliss, Joly, Li, 2006 Fliss, 2009 Fliss, Joly, Lescarret, 2020

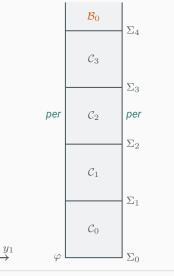
Introduction and model problem

The cut method

3 Resolution of the waveguide problem

Resolution algorithm and numerical results

Conclusion



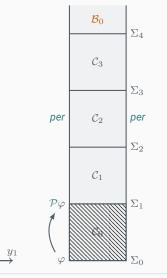
$$\Sigma_{\ell} \equiv \Sigma \quad \mathcal{C}_n \equiv \mathcal{C}$$

 $-D_{\theta} \left(\mu_{p} \ D_{\theta} U_{\theta}\right) - \rho_{p} \ \omega^{2} \ U_{\theta} = 0, \qquad \mathcal{B}_{0}$ $U_{\theta} = \varphi, \qquad \Sigma_{0}$

Periodicity conditions

• Which PDE does $U_{\theta}(\varphi)(\cdot, \cdot + 1)$ satisfy?

12



$$\Sigma_{\ell} \equiv \Sigma \quad C_n \equiv C$$
$$\mathcal{P}\varphi = \frac{U_{\theta}(\varphi)|_{\Sigma_1}}{\left. \right.}$$

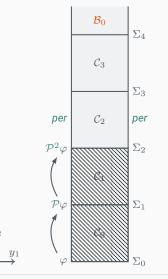
$$-D_{\theta} (\mu_{p} D_{\theta} U_{\theta}) - \rho_{p} \omega^{2} U_{\theta} = 0, \qquad \mathcal{B}_{0} \setminus \mathcal{C}_{0}$$
$$U_{\theta} = \mathcal{P}\varphi, \qquad \Sigma_{1}$$

 \oplus Periodicity conditions

$$\boldsymbol{U}_{\boldsymbol{\theta}}(\varphi)(\cdot,\cdot+1) = \boldsymbol{U}_{\boldsymbol{\theta}}(\mathcal{P}\varphi)$$

- + $U(\varphi)(\cdot,\cdot+1)$ satisfies the same PDE as $U(\varphi)$
- But with a different Dirichlet boundary data

 y_2



$$\Sigma_{\ell} \equiv \Sigma \quad C_n \equiv C$$

 $\mathcal{P}^2 \varphi = U_{\theta}(\varphi)|_{\Sigma_2}$

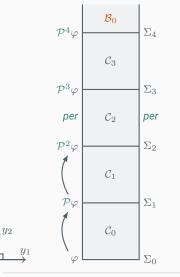
$$\begin{aligned} -D_{\theta} \left(\mu_{p} \ D_{\theta} \boldsymbol{U}_{\theta} \right) - \rho_{p} \ \omega^{2} \ \boldsymbol{U}_{\theta} &= 0, \qquad \mathcal{B}_{0} \setminus \mathcal{C}_{0} \cup \mathcal{C}_{1} \\ \\ \boldsymbol{U}_{\theta} &= \mathcal{P}^{2} \varphi, \quad \Sigma_{2} \end{aligned}$$

 \oplus Periodicity conditions

$$\boldsymbol{U}_{\boldsymbol{\theta}}(\varphi)(\cdot,\cdot+2) = \boldsymbol{U}_{\boldsymbol{\theta}}(\mathcal{P}\varphi)(\cdot,\cdot+1) = \boldsymbol{U}_{\boldsymbol{\theta}}(\mathcal{P}^{2}\varphi)$$

- + $U(\varphi)(\cdot,\cdot+2)$ satisfies the same PDE as $U(\varphi)$
- But with a different Dirichlet boundary data

42



$$\Sigma_{\ell} \equiv \Sigma \quad \mathcal{C}_n \equiv \mathcal{C}$$

$$\mathcal{P}\varphi = \frac{U_{\theta}(\varphi)|_{\Sigma_1}}{}$$

By induction,

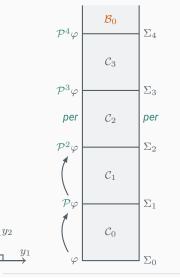
Theorem (Structure of the solution)

$$\forall n > 0, \quad U_{\theta}(\varphi)(\cdot, \cdot + n) = U_{\theta}(\mathcal{P}^{n}\varphi)$$

 $\ensuremath{\mathcal{P}}$ is called the propagation operator

Theorem (Properties of \mathcal{P} when $\operatorname{Im}(\omega) > 0$)

- \mathcal{P} is injective and uniquely defined
- \mathcal{P} has a spectral radius $\rho(\mathcal{P}) < 1$



$$\Sigma_{\ell} \equiv \Sigma \quad \mathcal{C}_n \equiv \mathcal{C}$$

$$\mathcal{P} \varphi = \frac{U_{\theta}(\varphi)|_{\Sigma_1}}{}$$

By induction,

Theorem (Structure of the solution)

$$\forall n > 0, \quad U_{\theta}(\varphi)(\cdot, \cdot + n) = U_{\theta}(\mathcal{P}^{n}\varphi)$$

 $\ensuremath{\mathcal{P}}$ is called the propagation operator

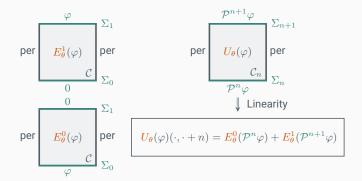
Theorem (Non-compactness of \mathcal{P})

- \mathcal{P} has continuous spectrum
- If $\cot \theta$ is irrational, then $\sigma(\mathcal{P})$ is a circle

Solutions of local cell problems

Given a data φ , compute the solutions $E^0_{\theta}(\varphi)$ and $E^1_{\theta}(\varphi)$ of local cell problems

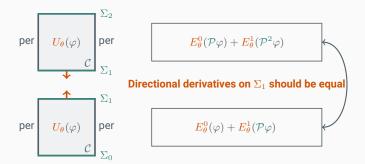
$$-D_{\theta} \left(\mu_p \ D_{\theta} \boldsymbol{E}_{\theta}^{\boldsymbol{\ell}}\right) - \rho_p \ \omega^2 \ \boldsymbol{E}_{\theta}^{\boldsymbol{\ell}} = 0, \quad \mathcal{C}$$



Solutions of local cell problems

Given a data φ , compute the solutions $E^0_{\theta}(\varphi)$ and $E^1_{\theta}(\varphi)$ of local cell problems

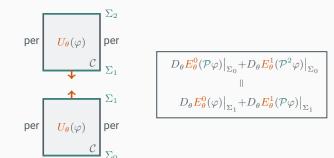
$$-D_{\theta} \left(\mu_p \ D_{\theta} \frac{\boldsymbol{E}_{\theta}^{\boldsymbol{\ell}}}{\boldsymbol{\ell}} \right) - \rho_p \ \omega^2 \ \boldsymbol{E}_{\theta}^{\boldsymbol{\ell}} = 0, \quad \mathcal{C}$$



Local Dirichlet-to-Neumann operators

Given a data φ , compute the solutions $E^0_{\theta}(\varphi)$ and $E^1_{\theta}(\varphi)$ of local cell problems

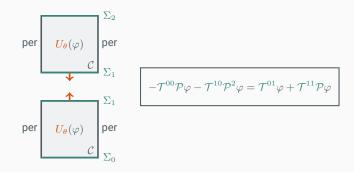
$$-D_{\theta} \left(\mu_p \ D_{\theta} E_{\theta}^{\ell}\right) - \rho_p \ \omega^2 \ E_{\theta}^{\ell} = 0, \quad \mathcal{C}$$



Local Dirichlet-to-Neumann operators

Given a data φ , compute the local DtN operators $\mathcal{T}^{00}, \mathcal{T}^{01}, \mathcal{T}^{10}, \mathcal{T}^{11} \in \mathcal{L}(L^2(\Sigma))$

$$\mathcal{T}^{\ell j}\varphi = (-1)^{j+1} \left. D_{\theta} \boldsymbol{E}_{\theta}^{\boldsymbol{\ell}}(\varphi) \right|_{\Sigma}$$



Local Dirichlet-to-Neumann operators

Given a data φ , compute the local DtN operators $\mathcal{T}^{00}, \mathcal{T}^{01}, \mathcal{T}^{10}, \mathcal{T}^{11} \in \mathcal{L}(L^2(\Sigma))$

$$\mathcal{T}^{\ell j}\varphi = (-1)^{j+1} \left. D_{\theta} \boldsymbol{E}_{\theta}^{\boldsymbol{\ell}}(\varphi) \right|_{\Sigma}$$

Theorem (Characterization of \mathcal{P} when $\text{Im}(\omega) > 0$)

The operator \mathcal{P} is the unique solution of the stationary Riccati equation

Find
$$\mathcal{P} \in \mathcal{L}(L^2(\Sigma))$$
 such that $\rho(\mathcal{P}) < 1$ and
 $\mathcal{T}^{10} \mathcal{P}^2 + (\mathcal{T}^{00} + \mathcal{T}^{11}) \mathcal{P} + \mathcal{T}^{01} = 0.$
(*R*)

Introduction and model problem

2 T<u>he cut method</u>

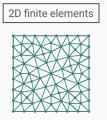
3 Resolution of the waveguide problem

4 Resolution algorithm and numerical results

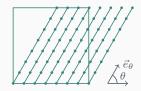
Conclusion

Solve the periodic waveguide problem

1. Compute the solutions $E^0_{\theta}(\varphi)$ and $E^1_{\theta}(\varphi)$ of local cell problems



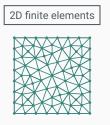
• Solve the local cell problems on an unstructured 2D mesh 1D finite elements along $ec{e}_{ heta}$



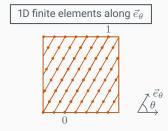
- Solve 1D quasiperiodic cell problems along \vec{e}_{θ}
- Concatenate the 1D solutions

Solve the periodic waveguide problem

1. Compute the solutions $E^0_{\theta}(\varphi)$ and $E^1_{\theta}(\varphi)$ of local cell problems



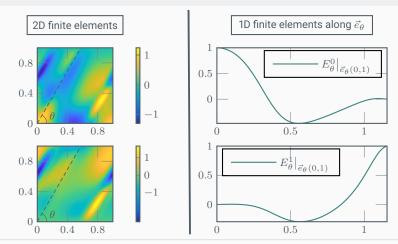
• Solve the local cell problems on an unstructured 2D mesh



- Solve 1D quasiperiodic cell problems along \vec{e}_{θ}
- Concatenate the 1D solutions

Solve the periodic waveguide problem

1. Compute the solutions $E^0_{\theta}(\varphi)$ and $E^1_{\theta}(\varphi)$ of local cell problems



[©] Pierre Amenoagbadji Sonia Fliss Patrick Joly

Solve the periodic waveguide problem

- 1. Compute the solutions $E^0_{\theta}(\varphi)$ and $E^1_{\theta}(\varphi)$ of local cell problems
- 2. Compute the local DtN operators $\mathcal{T}^{00}, \mathcal{T}^{01}, \mathcal{T}^{10}, \mathcal{T}^{11}$

2D finite elements

Weak evaluation

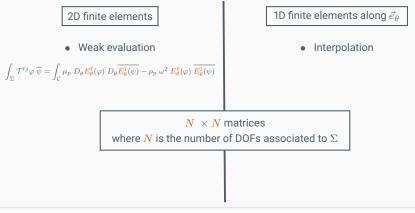
$$\int_{\Sigma} \mathcal{T}^{\ell j} \varphi \, \overline{\psi} = \int_{\mathcal{C}} \mu_p \, D_{\theta} \frac{E_{\theta}^{\ell}(\varphi)}{E_{\theta}^{\ell}(\varphi)} \, D_{\theta} \overline{E_{\theta}^{j}(\psi)} - \rho_p \, \omega^2 \, \frac{E_{\theta}^{\ell}(\varphi)}{E_{\theta}^{j}(\psi)}$$

1D finite elements along \vec{e}_{θ}

• Interpolation

Solve the periodic waveguide problem

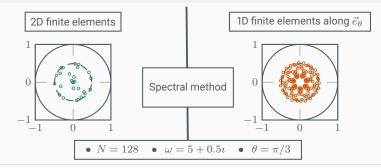
- 1. Compute the solutions $E^0_{\theta}(\varphi)$ and $E^1_{\theta}(\varphi)$ of local cell problems
- 2. Compute the local DtN operators $\mathcal{T}^{00}, \mathcal{T}^{01}, \mathcal{T}^{10}, \mathcal{T}^{11}$



Solve the periodic waveguide problem

- 1. Compute the solutions $E^0_{\theta}(\varphi)$ and $E^1_{\theta}(\varphi)$ of local cell problems
- 2. Compute the local DtN operators $\mathcal{T}^{00}, \mathcal{T}^{01}, \mathcal{T}^{10}, \mathcal{T}^{11}$
- 3. Determine the unique solution ${\cal P}$ with a spectral radius $\rho({\cal P}) < 1$ of the equation

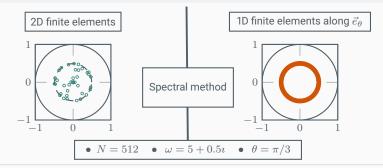
 $\mathcal{T}^{10} \ \mathcal{P}^2 + (\mathcal{T}^{00} + \mathcal{T}^{11}) \ \mathcal{P} + \mathcal{T}^{01} = 0$



Solve the periodic waveguide problem

- 1. Compute the solutions $E^0_{\theta}(\varphi)$ and $E^1_{\theta}(\varphi)$ of local cell problems
- 2. Compute the local DtN operators $\mathcal{T}^{00}, \mathcal{T}^{01}, \mathcal{T}^{10}, \mathcal{T}^{11}$
- 3. Determine the unique solution ${\mathcal P}$ with a spectral radius $\rho({\mathcal P}) < 1$ of the equation

 $\mathcal{T}^{10} \ \mathcal{P}^2 + (\mathcal{T}^{00} + \mathcal{T}^{11}) \ \mathcal{P} + \mathcal{T}^{01} = 0$



Solve the periodic waveguide problem

- 1. Compute the solutions $E^0_{\theta}(\varphi)$ and $E^1_{\theta}(\varphi)$ of local cell problems
- 2. Compute the local DtN operators $\mathcal{T}^{00}, \mathcal{T}^{01}, \mathcal{T}^{10}, \mathcal{T}^{11}$
- 3. Determine the unique solution ${\cal P}$ with a spectral radius $\rho({\cal P})<1$ of the equation

$$\mathcal{T}^{10} \mathcal{P}^2 + (\mathcal{T}^{00} + \mathcal{T}^{11}) \mathcal{P} + \mathcal{T}^{01} = 0$$

4. Construct the solution $U_{\theta}(\varphi)$ cell by cell

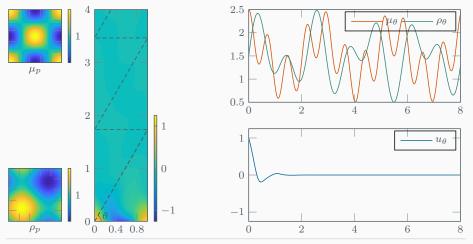
$$U_{\theta}(\varphi)(\cdot,\cdot+n)|_{\mathcal{C}} = E^{0}_{\theta}(\mathcal{P}^{n}\varphi) + E^{1}_{\theta}(\mathcal{P}^{n+1}\varphi)$$

Solve the quasiperiodic half-line problem

Compute $u_{\theta}(x) = U_{\theta}(x \ \vec{e}_{\theta})$

Test case for the locally perturbed quasiperiodic problem

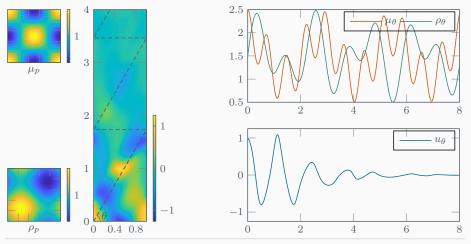
• $\omega = 5 + 3i$ • $\theta = \pi/3$



[©] Pierre Amenoagbadji Sonia Fliss Patrick Joly

Test case for the locally perturbed quasiperiodic problem

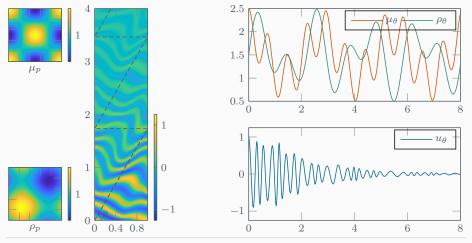
• $\omega = 5 + 0.5i$ • $\theta = \pi/3$



[©] Pierre Amenoagbadji Sonia Fliss Patrick Joly

Test case for the locally perturbed quasiperiodic problem

•
$$\omega = 20 + 0.5i$$
 • $\theta = \pi/3$



© Pierre Amenoagbadji Sonia Fliss Patrick Joly

Solve the periodic waveguide problem

- 1. Compute the solutions $E^0_{\theta}(\varphi)$ and $E^1_{\theta}(\varphi)$ of local cell problems
- 2. Compute the local DtN operators $\mathcal{T}^{00}, \mathcal{T}^{01}, \mathcal{T}^{10}, \mathcal{T}^{11}$
- 3. Determine the unique solution ${\cal P}$ with a spectral radius $\rho({\cal P})<1$ of the equation

$$\mathcal{T}^{10} \mathcal{P}^2 + (\mathcal{T}^{00} + \mathcal{T}^{11}) \mathcal{P} + \mathcal{T}^{01} = 0$$

4. Construct the solution $U_{\theta}(\varphi)$ cell by cell

Solve the quasiperiodic half-line problem

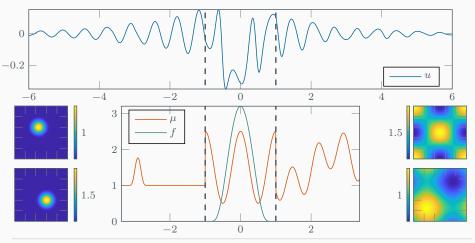
Compute $u_{\theta}(x) = U_{\theta}(x \ \vec{e}_{\theta})$

Solve the locally perturbed quasiperiodic problem

Construct the global solution u of the locally perturbed quasiperiodic problem (\mathcal{P})

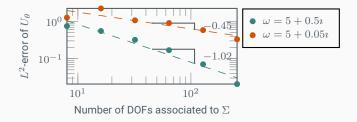
Test case for the locally perturbed quasiperiodic problem

•
$$\omega = 10 + 0.5i$$
 • $\theta^+ = \pi/3$ • $\theta^- = \pi/6$



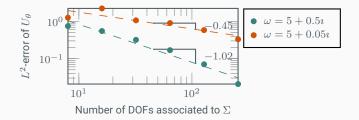
Observation

The numerical approximation deteriorates as ${\rm Im}\,(\omega)$ tends to 0.



Observation

The numerical approximation deteriorates as ${\rm Im}\,(\omega)$ tends to 0.



Theorem (III-posedness of the local cell problems without absorption)

If μ_p and ρ_p are not constant, and if $\cot \theta$ is irrational, there exists $\omega_{\min} \in \mathbb{R}$ such that for

 $\omega\in(\omega_{\min},+\infty),$

the local cell problems with Dirichlet boundary conditions are ill-posed.

Introduction and model problem

2 The cut method

3 Resolution of the waveguide problem

Resolution algorithm and numerical results

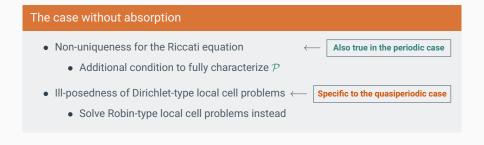
5 Conclusion

Conclusion

Summary

Resolution of the Helmholtz equation in 1D locally perturbed quasiperiodic media

• Extend the quasiperiodic PDE to a periodic PDE through the cut approach



Conclusion

Summary

Resolution of the Helmholtz equation in 1D locally perturbed quasiperiodic media

• Extend the quasiperiodic PDE to a periodic PDE through the cut approach

The multidimensional case

- Extension to quasiperiodic functions of several variables
- Application to transmission problems

Conclusion

Summary

Resolution of the Helmholtz equation in 1D locally perturbed quasiperiodic media

• Extend the quasiperiodic PDE to a periodic PDE through the cut approach

The multidimensional case

- Extension to quasiperiodic functions of several variables
- Application to transmission problems

Thank you for your attention!