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Quasiperiodic media

Physical definition

Quasiperiodic media are ordered structures which are not necessarily periodic.

A physical example: the quasicrystal

First quasicrystal formation observed in 1982 by D. Shechtman

Figure: Periodic tiling Figure: Quasiperiodic tiling Figure: Random tiling
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1D quasiperiodic functions

Definition (Quasiperiodic medium)

Medium whose physical or geometrical properties can be represented as quasiperiodic
functions

Definition (Quasiperiodic function of one real variable)

A function f : R→ C is said to be quasiperiodic of order n > 0 if there exist real constants
δ1, . . . , δn and a continuous function F : Rn → C, 1–periodic in each variable, such that

∀ x ∈ R, f(x) = F (δ1 x, . . . , δn x).

Remarks

• F is a periodic extension of f and (δ1, . . . , δn) is called a cut direction
• The pair (F, (δ1, . . . , δn)) is not unique
• One can also define quasiperiodic functions of several real variables
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1D quasiperiodic functions of order 2

Convention

There exists θ ∈ (0, π/2) and µp ∈ C 0
per((0, 1)2) such that

µθ(x) = µp(x ~eθ), ~eθ = (cos θ, sin θ).

• If cot θ is irrational, then µθ is periodic
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per((0, 1)2) such that
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Figure: Trace of a periodic function along ~eθ with cot θ = 1/3 – Rational case
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PDE with quasiperiodic coefficients

Numerous theoretical studies in the context of homogenization

• The medium is submitted to external forces whose length scale are far larger than
the characteristic length of the microstructure.

• PDE with rapidly oscillating coefficients such as− divA(x/ε)∇uε = f , where the
parameter ε is expected to be small.

Approach for general heterogeneous media

Two-scale and Γ-convergence, almost-periodicity
• Only in the context of homogenization

Braides, 1992
Nguetseng, 2003

Zhikov, Kozlov, Oleinik, 2012

Cut and project approach

Extend the PDE to a non-elliptic PDE with periodic
coefficients
• Can be used for problems to which the

homogenization theory does not apply

Bouchitté, Guenneau, Zolla, 2010
Gérard-Varet, Masmoudi, 2010

Blanc, Le Bris, Lions, 2015
Wellander, Guenneau, Cherkaev, 2019

Very few works in other regimes.
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The time-harmonic wave equation

Time-harmonic scalar wave equation

−
d

dx

(
µ(x)

du

dx

)
− ρ(x) ω2 u = f(x), in R. (P)

Well posedness

• Problem ill-posed in the classical framework
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The time-harmonic wave equation

Time-harmonic scalar wave equation

−
d

dx

(
µ(x)

du

dx

)
− ρ(x) ω2 u = f(x), in R. (P)

Well posedness

• Problem ill-posed in the classical framework

Computing the physical solution using the limiting absorption principle

1. Add some absorption: Im (ω) > 0

2. Study the solution of (P) as Im (ω) tends to 0.
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Time-harmonic scalar wave equation

−
d

dx

(
µ(x)

du
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)
− ρ(x) ω2 u = f(x), in R. (P)

Well posedness

• Problem ill-posed in the classical framework

Computing the physical solution using the limiting absorption principle

1. Add some absorption: Im (ω) > 0 ←− In this talk

2. Study the solution of (P) as Im (ω) tends to 0.
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The time-harmonic wave equation

Time-harmonic scalar wave equation with absorption

−
d

dx

(
µ(x)

du

dx

)
− ρ(x) ω2 u = f(x), in R. (P)

Well posedness

• Problem ill-posed in the classical framework

Numerical issue

• How to deal numerically the infinite domain?
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The time-harmonic wave equation

Time-harmonic scalar wave equation with absorption

−
d

dx

(
µ(x)

du

dx

)
− ρ(x) ω2 u = f(x), in R. (P)

Quasiperiodic medium with a local perturbation

There exist a− < a+ and quasiperiodic functions µ±θ and ρ±θ such that

µ(x) = µ−θ (x− a−), ρ(x) = ρ−θ (x− a−) if x < a−

µ(x) = µ+
θ (x− a+), ρ(x) = ρ+

θ (x− a+) if x > a+
and supp f ⊂ (a−, a+)

0.5

1

1.5

supp f

a− a+
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Restriction to a bounded domain

Computations can be restricted to (a−, a+) using DtN conditions.

•
a−

•
a+

ui

ui(a
−) u−θ (x− a−) ui(a

+) u+
θ (x− a+)

− d

dx

(
µ
dui
dx

)
− ρ ω2 ui = f

µ
dui
dx

(a−) = λ−θ ui(a
−)

− d

dx

(
µ−θ

du−θ
dx

)
− ρ−θ ω2 u−θ = 0, R∗−

u−θ (0) = 1.

•
1u−θ

λ−θ = µ−θ
du−θ
dx

(0)

µ
dui
dx

(a+) = λ+
θ ui(a

+)

− d

dx

(
µ+
θ

du+
θ

dx

)
− ρ+

θ ω
2 u+

θ = 0, R∗+

u+
θ (0) = 1.

•
1 u+

θ

λ+
θ = −µ+

θ

du+
θ

dx
(0)
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The Helmholtz equation with quasiperiodic coefficients

Helmholtz equation with absorption

−
d

dx

(
µθ(x)

duθ

dx

)
− ρθ(x) ω2 uθ = 0, in R∗+, uθ(0) = 1 (Pθ)

Quasiperiodic medium

∃ µp, ρp : R2 → R

µp, ρp ∈ C 0
per((0, 1)2)

such that
µθ(x) = µp(x ~eθ)

ρθ(x) = ρp(x ~eθ)
with ~eθ = (cos θ, sin θ).

Well-posedness

(Pθ) admits a unique solution uθ ∈ H1(R∗+) (Lax-Milgram).

How can one solve (Pθ) numerically?
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Description of the cut method

Helmholtz equation with absorption and quasiperiodic coefficients

−
d

dx

(
µθ(x)

duθ

dx

)
− ρθ(x) ω2 uθ = 0, in R∗+, uθ(0) = 1 (Pθ)

where
Im (ω) > 0, µθ(x) = µp(x ~eθ), and ρθ(x) = ρp(x ~eθ)

The cut method

Seek uθ as the trace of a two-dimensional function Uθ along the line ~eθR+ , that is,

uθ(x) = Uθ(x ~eθ).
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Description of the cut method

Helmholtz equation with absorption and quasiperiodic coefficients

−
d

dx

(
µθ(x)

duθ

dx

)
− ρθ(x) ω2 uθ = 0, in R∗+, uθ(0) = 1 (Pθ)

where
Im (ω) > 0, µθ(x) = µp(x ~eθ), and ρθ(x) = ρp(x ~eθ)

The cut method

Seek uθ as the trace of a two-dimensional function Uθ along the line ~eθR+ , that is,

uθ(x) = Uθ(x ~eθ).

Chain rule

∀ U : R2 → R,
d

dx
[U(x ~eθ)] = (~eθ · ∇)U := DθU, Dθ = cos θ ∂y1 + sin θ ∂y2
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Extension to a periodic half-plane problem

Trace along ~eθ and chain rule

uθ(x) = Uθ(x ~eθ) and
duθ

dx
(x) = DθUθ(x ~eθ)

−
d

dx

(
µθ

duθ

dx

)
− ρθ ω2 uθ = 0, in R∗+ −→ −Dθ

(
µp DθUθ

)
− ρp ω2 Uθ = 0, in R× R∗+

uθ(0) = 1 Uθ = ϕ, on R× {0}, with ϕ(0) = 1−→

y1

y2

~eθ

θ
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Extension to a periodic half-plane problem

Trace along ~eθ and chain rule
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(x) = DθUθ(x ~eθ)

−
d

dx

(
µθ

duθ

dx

)
− ρθ ω2 uθ = 0, in R∗+ −→ −Dθ

(
µp DθUθ

)
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•

~eθ

θ
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Extension to a periodic half-guide problem

Theorem (periodic boundary data)

If ϕ(y1 + 1) = ϕ(y1), then Uθ(y1 + 1, y2) = Uθ(y1, y2)

y1

y2

~eθ

θ
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The periodic half-guide problem

Periodic half-guide problem with absorption

uθ(x) = Uθ(x ~eθ)

∣∣∣∣∣∣∣∣
−Dθ

(
µp DθUθ

)
− ρp ω2 Uθ = 0, B0 := (0, 1)× R∗+

Uθ = ϕ, (0, 1)× {0}

Uθ|y1=0 = Uθ|y1=1 µpDθUθ|y1=0 = µpDθUθ|y1=1

(Pper)

• Pros Periodic coefficients
• Cons Nonelliptic principal part
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The periodic half-guide problem

Periodic half-guide problem with absorption

uθ(x) = Uθ(x ~eθ)

∣∣∣∣∣∣∣∣
−Dθ

(
µp DθUθ

)
− ρp ω2 Uθ = 0, B0 := (0, 1)× R∗+

Uθ = ϕ, (0, 1)× {0}

Uθ|y1=0 = Uθ|y1=1 µpDθUθ|y1=0 = µpDθUθ|y1=1

(Pper)

Functional framework

H1
θ (B0) =

{
V ∈ L2(B0) / DθV ∈ L

2(B0)
}

H1
per,θ(B0) =

{
V ∈ H1

θ (B0) / V |y1=0 = V |y1=1

}
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Functional framework

H1
θ (B0) =

{
V ∈ L2(B0) / DθV ∈ L

2(B0)
}

H1
per,θ(B0) =

{
V ∈ H1

θ (B0) / V |y1=0 = V |y1=1

}

Theorem (Well posedness)

For all data ϕ ∈ L2(0, 1), (Pper) admits a unique solution Uθ(ϕ) ∈ H1
per,θ(B0).
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Theorem (Regularity in all directions)

Assume that ∂y1µp, ∂y1ρp ∈ L
∞(0, 1)2 and ϕ ∈ H1(0, 1). Then Uθ(ϕ) ∈ H1(B0).

How can one solve (Pper) numerically?

Numerical resolution of elliptic periodic PDE in unbounded domains

Fliss, Joly, Li, 2006 Fliss, 2009 Fliss, Joly, Lescarret, 2020
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Structure of the solution

As the solution of a periodic half-guide problem, Uθ(ϕ) has a certain structure.

y1

y2

Σ0

B0

Σ1

C0

Σ2

C1

Σ3

C2

Σ4

C3

per per

ϕ

Σ` ≡ Σ Cn ≡ C

−Dθ
(
µp DθUθ

)
− ρp ω2 Uθ = 0, B0

Uθ = ϕ, Σ0

⊕ Periodicity conditions

• Which PDE does Uθ(ϕ)(·, ·+ 1) satisfy?

• But with a different Dirichlet boundary data
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Structure of the solution

As the solution of a periodic half-guide problem, Uθ(ϕ) has a certain structure.

y1

y2

Σ0

B0

Σ1

C0

Σ2

C1

Σ3

C2

Σ4

C3

per per

ϕ

Pϕ

Σ` ≡ Σ Cn ≡ C

−Dθ
(
µp DθUθ

)
− ρp ω2 Uθ = 0, B0 \ C0

Uθ = Pϕ, Σ1

⊕ Periodicity conditions

• U(ϕ)(·, ·+ 1) satisfies the same PDE as U(ϕ)

• But with a different Dirichlet boundary data

Pϕ = Uθ(ϕ)|Σ1

Uθ(ϕ)(·, ·+ 1) = Uθ(Pϕ)
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Structure of the solution

As the solution of a periodic half-guide problem, Uθ(ϕ) has a certain structure.

y1

y2

Σ0

B0

Σ1

C0

Σ2

C1

Σ3

C2

Σ4

C3

per per

ϕ

Pϕ

P2ϕ

Σ` ≡ Σ Cn ≡ C

−Dθ
(
µp DθUθ

)
− ρp ω2 Uθ = 0, B0 \ C0 ∪ C1

Uθ = P2ϕ, Σ2

⊕ Periodicity conditions

• U(ϕ)(·, ·+ 2) satisfies the same PDE as U(ϕ)

• But with a different Dirichlet boundary data

P2ϕ = Uθ(ϕ)|Σ2

Uθ(ϕ)(·, ·+ 2) = Uθ(Pϕ)(·, ·+ 1) = Uθ(P2ϕ)
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Structure of the solution

As the solution of a periodic half-guide problem, Uθ(ϕ) has a certain structure.

y1

y2

Σ0

B0

Σ1

C0

Σ2

C1

Σ3

C2

Σ4

C3

per per

ϕ

Pϕ

P2ϕ

P3ϕ

P4ϕ

Σ` ≡ Σ Cn ≡ C

Pϕ = Uθ(ϕ)|Σ1

By induction,

Theorem (Structure of the solution)

∀ n > 0, Uθ(ϕ)(·, ·+ n) = Uθ(Pnϕ)

P is called the propagation operator

Theorem (Properties of P when Im (ω) > 0)

• P is injective and uniquely defined
• P has a spectral radius ρ(P) < 1
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Structure of the solution

As the solution of a periodic half-guide problem, Uθ(ϕ) has a certain structure.

y1

y2

Σ0

B0

Σ1

C0

Σ2

C1

Σ3

C2

Σ4

C3

per per

ϕ

Pϕ

P2ϕ

P3ϕ

P4ϕ

Σ` ≡ Σ Cn ≡ C

Pϕ = Uθ(ϕ)|Σ1

By induction,

Theorem (Structure of the solution)

∀ n > 0, Uθ(ϕ)(·, ·+ n) = Uθ(Pnϕ)

P is called the propagation operator

Theorem (Non-compactness of P)

• P has continuous spectrum
• If cot θ is irrational, then σ(P) is a circle
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Construction of the solution

Solutions of local cell problems

Given a data ϕ, compute the solutions E0
θ (ϕ) and E1

θ (ϕ) of local cell problems

−Dθ
(
µp DθE

`
θ

)
− ρp ω2 E`θ = 0, C

E1
θ (ϕ)per per

Σ0

Σ1

0

ϕ

C

E0
θ (ϕ)per per

Σ0

Σ1

ϕ

0

C

Uθ(ϕ) perper

Σn

Σn+1

Pnϕ

Pn+1ϕ

Cn

Linearity

Uθ(ϕ)(·, ·+ n) = E0
θ (Pnϕ) + E1

θ (Pn+1ϕ)
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Construction of the solution

Solutions of local cell problems

Given a data ϕ, compute the solutions E0
θ (ϕ) and E1

θ (ϕ) of local cell problems

−Dθ
(
µp DθE

`
θ

)
− ρp ω2 E`θ = 0, C

Uθ(ϕ)per per

Σ1

Σ2

C

Uθ(ϕ)per per

Σ0

Σ1

C

E0
θ (Pϕ) + E1

θ (P2ϕ)

E0
θ (ϕ) + E1

θ (Pϕ)

Directional derivatives on Σ1 should be equal
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Construction of the solution

Local Dirichlet-to-Neumann operators

Given a data ϕ, compute the solutions E0
θ (ϕ) and E1

θ (ϕ) of local cell problems

−Dθ
(
µp DθE

`
θ

)
− ρp ω2 E`θ = 0, C

Uθ(ϕ)per per

Σ1

Σ2

C

Uθ(ϕ)per per

Σ0

Σ1

C

DθE
0
θ (Pϕ)

∣∣
Σ0

+DθE
1
θ (P2ϕ)

∣∣
Σ0

=

DθE
0
θ (ϕ)

∣∣
Σ1

+DθE
1
θ (Pϕ)

∣∣
Σ1
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Construction of the solution

Local Dirichlet-to-Neumann operators

Given a data ϕ, compute the local DtN operators T 00, T 01, T 10, T 11 ∈ L(L2(Σ))

T `jϕ = (−1)j+1 DθE
`
θ(ϕ)

∣∣∣
Σj

Uθ(ϕ)per per

Σ1

Σ2

C

Uθ(ϕ)per per

Σ0

Σ1

C

−T 00Pϕ− T 10P2ϕ = T 01ϕ+ T 11Pϕ
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Construction of the solution

Local Dirichlet-to-Neumann operators

Given a data ϕ, compute the local DtN operators T 00, T 01, T 10, T 11 ∈ L(L2(Σ))

T `jϕ = (−1)j+1 DθE
`
θ(ϕ)

∣∣∣
Σj

Theorem (Characterization of P when Im (ω) > 0)

The operator P is the unique solution of the stationary Riccati equation∣∣∣∣∣∣
Find P ∈ L(L2(Σ)) such that ρ(P) < 1 and

T 10 P2 + (T 00 + T 11) P + T 01 = 0.
(R)
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Algorithm and numerical results

Solve the periodic waveguide problem

1. Compute the solutions E0
θ (ϕ) and E1

θ (ϕ) of local cell problems

2D finite elements 1D finite elements along ~eθ

• Solve the local cell problems on an
unstructured 2D mesh

~eθ
θ

• Solve 1D quasiperiodic cell problems
along ~eθ

• Concatenate the 1D solutions
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Algorithm and numerical results

Solve the periodic waveguide problem

1. Compute the solutions E0
θ (ϕ) and E1

θ (ϕ) of local cell problems

2D finite elements 1D finite elements along ~eθ

• Solve the local cell problems on an
unstructured 2D mesh

~eθ
θ

• Solve 1D quasiperiodic cell problems
along ~eθ
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Algorithm and numerical results

Solve the periodic waveguide problem

1. Compute the solutions E0
θ (ϕ) and E1

θ (ϕ) of local cell problems

2. Compute the local DtN operators T 00, T 01, T 10, T 11

2D finite elements 1D finite elements along ~eθ

• Weak evaluation∫
Σ
T `jϕ ψ =

∫
C
µp DθE

`
θ(ϕ) DθE

j
θ(ψ)− ρp ω2 E`θ(ϕ) Ejθ(ψ)

• Interpolation

N ×N matrices
whereN is the number of DOFs associated to Σ
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Algorithm and numerical results

Solve the periodic waveguide problem

1. Compute the solutions E0
θ (ϕ) and E1

θ (ϕ) of local cell problems

2. Compute the local DtN operators T 00, T 01, T 10, T 11

3. Determine the unique solution P with a spectral radius ρ(P) < 1 of the equation

T 10 P2 + (T 00 + T 11) P + T 01 = 0

2D finite elements 1D finite elements along ~eθ

Spectral method

• N = 128 • ω = 5 + 0.5ı • θ = π/3
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Algorithm and numerical results

Solve the periodic waveguide problem

1. Compute the solutions E0
θ (ϕ) and E1

θ (ϕ) of local cell problems

2. Compute the local DtN operators T 00, T 01, T 10, T 11

3. Determine the unique solution P with a spectral radius ρ(P) < 1 of the equation

T 10 P2 + (T 00 + T 11) P + T 01 = 0

2D finite elements 1D finite elements along ~eθ

Spectral method

• N = 512 • ω = 5 + 0.5ı • θ = π/3
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Algorithm and numerical results

Solve the periodic waveguide problem

1. Compute the solutions E0
θ (ϕ) and E1

θ (ϕ) of local cell problems

2. Compute the local DtN operators T 00, T 01, T 10, T 11

3. Determine the unique solution P with a spectral radius ρ(P) < 1 of the equation

T 10 P2 + (T 00 + T 11) P + T 01 = 0

4. Construct the solution Uθ(ϕ) cell by cell

Uθ(ϕ)(·, ·+ n)|C = E0
θ (Pnϕ) + E1

θ (Pn+1ϕ)

Solve the quasiperiodic half-line problem

Compute uθ(x) = Uθ(x ~eθ)
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Algorithm and numerical results

Test case for the locally perturbed quasiperiodic problem

• ω = 5 + 3ı • θ = π/3
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Algorithm and numerical results

Test case for the locally perturbed quasiperiodic problem

• ω = 5 + 0.5ı • θ = π/3
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Algorithm and numerical results

Test case for the locally perturbed quasiperiodic problem

• ω = 20 + 0.5ı • θ = π/3
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Algorithm and numerical results

Solve the periodic waveguide problem

1. Compute the solutions E0
θ (ϕ) and E1

θ (ϕ) of local cell problems

2. Compute the local DtN operators T 00, T 01, T 10, T 11

3. Determine the unique solution P with a spectral radius ρ(P) < 1 of the equation

T 10 P2 + (T 00 + T 11) P + T 01 = 0

4. Construct the solution Uθ(ϕ) cell by cell

Solve the quasiperiodic half-line problem

Compute uθ(x) = Uθ(x ~eθ)

Solve the locally perturbed quasiperiodic problem

Construct the global solution u of the locally perturbed quasiperiodic problem (P)
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Algorithm and numerical results

Test case for the locally perturbed quasiperiodic problem

• ω = 10 + 0.5ı • θ+ = π/3 • θ− = π/6
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Passing the absorption to the limit

Observation

The numerical approximation deteriorates as Im (ω) tends to 0.

−1.02

−0.45

101 102

10−1

100

Number of DOFs associated to Σ

L
2
-e
rr
or

of
U
θ ω = 5 + 0.5ı

ω = 5 + 0.05ı

Theorem (Ill-posedness of the local cell problems without absorption)

If µp and ρp are not constant, and if cot θ is irrational, there exists ωmin ∈ R such that for

ω ∈ (ωmin,+∞),

the local cell problems with Dirichlet boundary conditions are ill-posed.
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Conclusion

Summary

Resolution of the Helmholtz equation in 1D locally perturbed quasiperiodic media
• Extend the quasiperiodic PDE to a periodic PDE through the cut approach

The case without absorption

• Non-uniqueness for the Riccati equation ←− Also true in the periodic case

• Additional condition to fully characterize P

• Ill-posedness of Dirichlet-type local cell problems ←− Specific to the quasiperiodic case

• Solve Robin-type local cell problems instead
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Conclusion

Summary

Resolution of the Helmholtz equation in 1D locally perturbed quasiperiodic media
• Extend the quasiperiodic PDE to a periodic PDE through the cut approach

The multidimensional case

• Extension to quasiperiodic functions of several variables
• Application to transmission problems
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Conclusion

Summary

Resolution of the Helmholtz equation in 1D locally perturbed quasiperiodic media
• Extend the quasiperiodic PDE to a periodic PDE through the cut approach

The multidimensional case

• Extension to quasiperiodic functions of several variables
• Application to transmission problems

Thank you for your attention!
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