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Introduction and lattice
Boltzmann schemes



Lattice Boltzmann schemes: collide and stream

Lattice Boltzmann schemes [MCNAMARA AND ZANETTI, 1988] and [HIGUERA AND JIMENEZ, 1989]:

numerical methods for PDEs, used in particular in Computational Fluid Dynamics.

Very fast on uniform meshes but still lacking of a full mathematical understanding.

The ingredients

• Precise scaling between space and time: ∆t =∆x/λ (also ∆t ∼∆x2 is possible).

• Finite family of compatible velocities: (eα)
q−1
α=0 ⊂λZd . Call the logical velocity

cα =eα/λ ∈Zd .

• A change of basis: M ∈ GLq (R).

• A diagonal relaxation matrix: S = diag(0, . . ., s, . . . ) ∈Mq (R).

• The equilibria: meq(. . . ), functions on the conserved moments.

We denote f α the distribution of the particles moving with velocity eα.

The recipe

• Collide

m(t ,x) =Mf (t ,x)

f?(t ,x) =M−1
(
(I −S)m(t ,x)+Smeq(m0(t ,x), . . .)

)
,

• Stream
f α(t +∆t ,x) = f α,?(t ,x−cα∆x).
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How to devise the scheme and basic features of LBM

The relaxation matrixS and the equilibria are selected by Chapman-Enskog expansions

[CHAPMAN AND COWLING, 1991] or using the equivalent equations [DUBOIS, 2008].

Most important features of the lattice Boltzmann schemes are:

, Advantages

• Fully explicit.

• Cheap.

• Strongly parallelizable.

/ Disadvantages

• Rely on a uniform Cartesian mesh and a particular time discretization.

• Only formal justification and a counter-intuitive way of imposing the physics.

• Stability conditions.

• Boundary conditions.
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Why mesh adaptation . . .

Observation

In many problems, almost all the variability of the solution in

concentrated in few spots (shocks or steep zones). This could be

the solution of a lattice Boltzmann scheme.

Aims

• Reduce the computation time of the numerical methods.

• Reduce the memory foot-print.

Solution

• Spatial mesh adaptation and adaptive numerical methods.

Until now, two approaches are available:

• Fixed meshed. [FILIPPOVA AND HÄNEL, 1998], [LIN AND LAI, 2000], [KANDHAI et al., 2000], [DUPUIS AND

CHOPARD, 2003].

• Adaptive mesh refinement (AMR). [ROHDE et al., 2006], [FAKHARI AND LEE, 2014], [FAKHARI et al.,

2016].

Method Simplicity Problem independence Optimization Error control

Fixed mesh ■■ 22 22 22
AMR ■2 ■2 ■■ 22
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. . . and multiresolution

Compared to the existing techniques, we want to achieve the following:

Constraints

• Dynamically adapt to the solution as time t advances (vs. fixed meshes).

• Error control by a small factor 0 < ε¿ 1 (vs. fixed meshes and AMR).

• Problem independence (vs. fixed meshes and AMR).

• No scheme manipulation (vs. fixed meshes and – some – AMR).

4/25



Multi-level grids and
multiresolution



Spatial discretization

Spatial discretization (shared with cell-based AMR)

• A bounded domain Ω= [0,1]d ⊂Rd (for simplicity), with d = 1,2,3.

• A minimum resolution L and a maximum resolution L.

• A family of nested dyadic grids indexed by `= L, . . . ,L

L` := (C`,k)k, with C`,k :=
d∏

i=1

[
2−`ki ,2−`(ki +1)

]
,

for k= {0, . . . ,2`−1}d with space-step ∆x` := 2−`, finest step ∆x = 2−L and ∆`= L−`:

distance between the current level ` and the finest level L. x`,k := 2−`(k+1/2) is the

cell center.

5/25



Spatial discretization

Spatial discretization (shared with cell-based AMR)

• A bounded domain Ω= [0,1]d ⊂Rd (for simplicity), with d = 1,2,3.

• A minimum resolution L and a maximum resolution L.

• A family of nested dyadic grids indexed by `= L, . . . ,L

L` := (C`,k)k, with C`,k :=
d∏

i=1

[
2−`ki ,2−`(ki +1)

]
,

for k= {0, . . . ,2`−1}d with space-step ∆x` := 2−`, finest step ∆x = 2−L and ∆`= L−`:

distance between the current level ` and the finest level L. x`,k := 2−`(k+1/2) is the

cell center.

5/25



Spatial discretization

Spatial discretization (shared with cell-based AMR)

• A bounded domain Ω= [0,1]d ⊂Rd (for simplicity), with d = 1,2,3.

• A minimum resolution L and a maximum resolution L.

• A family of nested dyadic grids indexed by `= L, . . . ,L

L` := (C`,k)k, with C`,k :=
d∏

i=1

[
2−`ki ,2−`(ki +1)

]
,

for k= {0, . . . ,2`−1}d with space-step ∆x` := 2−`, finest step ∆x = 2−L and ∆`= L−`:

distance between the current level ` and the finest level L. x`,k := 2−`(k+1/2) is the

cell center.

5/25



Spatial discretization

Spatial discretization (shared with cell-based AMR)

• A bounded domain Ω= [0,1]d ⊂Rd (for simplicity), with d = 1,2,3.

• A minimum resolution L and a maximum resolution L.

• A family of nested dyadic grids indexed by `= L, . . . ,L

L` := (C`,k)k, with C`,k :=
d∏

i=1

[
2−`ki ,2−`(ki +1)

]
,

for k= {0, . . . ,2`−1}d with space-step ∆x` := 2−`, finest step ∆x = 2−L and ∆`= L−`:

distance between the current level ` and the finest level L. x`,k := 2−`(k+1/2) is the

cell center.

5/25



The fundamentals of multiresolution

From an abstract p.o.v., multiresolution, pioneered by [DAUBECHIES, 1988] and [MALLAT, 1989], is

just a decomposition of data on a wavelet basis to study the local regularity of functions.

We

adopt a more practical approach, see [HARTEN, 1995] and [COHEN et al., 2003].

Aim

Compress the mesh still controlling errors.

The crucial brick: prediction operator on the siblings C`+1,2k+δ for δ ∈ {0,1}d .

ℓ

ℓ

We use linear operators with stencil size γ of order µ= 2γ+1 (extended for d > 1 by tensor

product [BIHARI AND HARTEN, 1997])

f
∧
α
`+1,2k+δ = f

α
`,k + (−1)δQ

γ
1 (k;f`), with Q

γ
1 (k;f`) =

γ∑
π=1

wπ

(
f
α
`,k+π− f

α
`,k−π

)
.

The detail, measuring how the prediction is good vs the actual average

d
α
`,k := f

∧
α
`,k− f

α
`,k.

We have the isomorphism
(Means finest level) (Means coarsest level) + (Details each level)

f
α
L

⇐⇒
(
f
α
L ,d

α
L+1, . . . ,d

α
L

)
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The fundamentals of multiresolution

The more regular the function, the faster the details become smaller with `: we can remove

unuseful information without affecting the quality of the data.

Following [COHEN et al., 2003], let Tε such that

(f
α

L )
computes−−−−−−−→ (f

α
L ), (d

α
L+1), . . . , (d

α

L )
truncates−−−−−−−→ (f

α
L ), (d̃

α

L+1), . . . , (d̃
α

L )
computes−−−−−−−→ (f̃

α

L ), with

d̃
α

`,k =
0, if maxβ=0,...,q−1 |d

β

`,k| < ε`,

d
α
`,k, otherwise.

We can control the error

ε` = 2−d∆`ε, =⇒ ‖fαL − f̃αL ‖`p = ‖fαL −Tεf
α

L ‖`p ≤CMR(γ, p)ε.

• Less information to store: detail to zero = erase the cell.

• Reconstructing information controlling the error (not possible with AMR).
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The fundamentals of multiresolution

Issue

The previous procedure is static in time! Our problem evolves in time.

coarsen keep refine

2−d∆`ε 2−d(∆`−1)+µε

maxα |dα`,k|

Given a threshold 0 < ε¿ 1, the mesh is adapted1 at each time step using

Coarsen C`,k if max
α

|dα`,k|≤ 2−d∆`ε,

Refine C`,k if max
α

|dα`,k|≥ 2−d(∆`−1)+µε + security cells.

For hyperbolic conservation laws, two basic principles guide the procedure are:

• Propagation of information at finite speed via advection phase: security cells.

• Regularity loss by non-linearity of the collision operator: refinement.

1Bellotti, Gouarin, Graille, Massot - Multidimensional fully adaptive lattice Boltzmann methods with error control based

on multiresolution analysis - Submitted to JCP - 2021 - https://arxiv.org/abs/2103.02903.
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Adaptive lattice Boltzmann /
multiresolution method



Adaptive lattice Boltzmann method

COLLISION
ADAPTIVE MESH generated by 
MULTIRESOLUTION ANALYSIS

We have introduced2:

• Collide f
?
`,k(t ) =M−1

(
(I −S)m`,k(t )+Smeq(m0

`,k(t ), . . . )
)
.

• Stream f
α
`,k(t +∆t ) = f

α,?
`,k (t )+ 1

2d∆`

(∑
k∈Eα

`,k
f
∧∧
α,?

L,k
(t )−∑

k∈Aα
`,k

f
∧∧
α,?

L,k
(t )

)
,

where we have taken

B`,k = {k2∆`+δ : δ ∈ {0, . . . ,2∆`−1}d },

Eα
`,k = (B`,k−cα)àB`,k, A α

`,k =B`,kà (B`,k−cα).

In the figure, cα = (1,1). Why is it interesting?

2Bellotti, Gouarin, Graille, Massot - Multidimensional fully adaptive lattice Boltzmann methods with error control based

on multiresolution analysis - Submitted to JCP - 2021 - https://arxiv.org/abs/2103.02903.
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Achievements of the method

• Reduction in the computational cost, for at least three reasons:

• Collision: Less evaluations of the non-linear equilibrium functions.

• Collision: Less changes of variable to perform via M.

• Stream: Less numerical fluxes to compute. (](Eα
`,k

) ∝ 2(d−1)(L−`) ¿ 2d(L−`)).

• Less memory occupation for solutions with fronts/shocks.

• (NEWE) Error control: introducing the weighted `1 difference

E [mα](t ) =
∑
k∈{0,...,2L−1}d ∆x

∣∣∣∣m∧∧α

L,k
(t )−mREF,α

L,k
(t )

∣∣∣∣∑
k∈{0,...,2L−1}d ∆x

∣∣∣∣mREF,α
L,k

(t )

∣∣∣∣ ,

under some assumptions, we have

E [mα](T ) ≤C (T )ε.

• (NEWE) No scheme modification: everything done on the finest resolution via the

reconstructions.

• (NEWE) Works for any scheme.
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(Quick) Assessment



2D non-isothermal Euler system

We consider the non-isothermal Euler system with the well-known Lax-Liu problem [LAX AND

LIU, 1998] simulated using a vectorial D2Q4 scheme3:

Colors: mesh levels – Contours: density field – Arrows: velocity field.

Dynamic adaptation, following shocks and fronts.

3Bellotti, Gouarin, Graille, Massot - Multidimensional fully adaptive lattice Boltzmann methods with error control based

on multiresolution analysis - Submitted to JCP - 2021 - https://arxiv.org/abs/2103.02903.
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2D non-isothermal Euler system

L = 2 and L = 8
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L = 2 and L = 9
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• We effectively reach high compression rates (left) - low memory footprint.

• Error control by ε (right), showing the potetial of the multiresolution.
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Promises kept but ... Need for a finer analysis

The assessment has also been done on parabolic problems, such as on the von Kármán

vortices with the incompressible Navier-Stokes system.

What do we have

The scheme kept its promises, in particular we have small (∼ ε) controllable errors with

respect to the reference scheme, thanks to multiresolution.

Questions

Besides this nice control:

• How do we perturb the original system?

• What are the physical phenomena that we are still correctly modeling?

• Can multiresolution reduce these perturbations compared to traditional methods?

Answer

Adapt the available asymptotic analysis (equivalent equations [DUBOIS, 2008]) used to analyze

the lattice Boltzmann schemes.

To the best of our knowledge, first precise analysis of the effects of mesh adaptation on LBM

schemes.
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High accuracy and equivalent
equations



Target expansion

We want to find the maximum order of accuracy4 of our adaptive strategies according to the

size of the prediction stencil γ. We adopt the point of view of Finite Differences [LEVEQUE, 2002].

When considered at the finest level L

f α(t +∆t , xL,k ) = f α,?(t , xL,k−cα
) = f α,?(t , xL,k − cα∆x).

Thus we can apply a Taylor expansion to both sides of the equation, yielding

+∞∑
s=0

∆t s

s!
∂s

t f α(t , xL,k ) =
+∞∑
s=0

(−cα∆x)s

s!
∂s

x f α,?(t , xL,k )

= f α,?− cα∆x∂x f α,?︸ ︷︷ ︸
Inertial term
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Recursion flattening

k k +1 k +2k −1k −2
`

`+1

`+2

`+3

`+4 = L
Eα
`,k A α

`,k

With a set of weights (Cα
∆`,m )m=+2

m=−2 ⊂R

f
α
`,k (t +∆t ) = f

α,?
`,k (t )+ 1

2∆`

 ∑
k∈Eα

`,k

f
∧∧
α,?

L,k
(t )− ∑

k∈Aα
`,k

f
∧∧
α,?

L,k
(t )


= f

α,?
`,k (t )+ 1

2∆`

+2∑
m=−2

Cα
∆`,m f

α,?
`,k+m (t ),

The advantage is that the pseudo-flux term can be developed using Taylor expansions

adopting a Finite Difference point of view.
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Expansion of the LBM-MR scheme

We can do the same expansion:

+∞∑
s=0

∆t s

s!
∂s

t f α(t , x`,k ) = f α,?(t , x`,k )+
+∞∑
s=0

(
(∆x`)s

2∆`s!

( +2∑
m=−2

msCα
∆`,m

)
∂s

x f α,?(t , x`,k )

)
,

= f α,?(t , x`,k )+
+∞∑
s=0

(
2∆`(s−1)(∆x)s

s!

( +2∑
m=−2

msCα
∆`,m

)
∂s

x f α,?(t , x`,k )

)
,

=
(

1+ 1

2∆`

+2∑
m=−2

Cα
∆`,m

)
f α,?+

Inertial term︷ ︸︸ ︷( +2∑
m=−2

mCα
∆`,m

)
∆x∂x f α,?

+
(

2∆`
+2∑

m=−2
m2Cα

∆`,m

)
∆x2

2
∂xx f α,?

︸ ︷︷ ︸
Diffusive term

+
(

22∆`
+2∑

m=−2
m3Cα

∆`,m

)
∆x3

6
∂3

x f α,?

︸ ︷︷ ︸
Dispersive term

+ . . .

The goal of this game is to match as much terms as possible of the target expansion:

approximated physics and stability conditions as close as possible to that of the reference

scheme at level L for the adaptive scheme at the local level of refinement `. These

conditions are checked locally: we request them for any possible level.

+2∑
m=−2

Cα
∆`,m = 0, and

+2∑
m=−2

msCα
∆`,m = (−cα)s

2∆`(s−1)
, for s ∈ {1,2,3, . . . } =N?,

. . . of course for every α and for every ∆`!!!
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Apply the expansion to some scheme

In this presentation, we consider three schemes to adapt any lattice Boltzmann method:

• The Haar scheme: LBM-MR with γ= 0, thus

f
∧
α
`+1,2k+δ = f

α
`,k , (talis pater, qualis filius)Abælardus,

thus Cα
∆`,0 =−|cα|, Cα

∆`,−cα/|cα| = |cα|.

• The first non-trivial wavelet scheme: LBM-MR with γ= 1, thus

f
∧
α
`+1,2k+δ = f

α
`,k + (−1)δ

8

(
f
α
`,k+1 − f

α
`,k−1

)
, (talis pater ac finitimi, qualis filius),

thus



Cα
∆`,−2

Cα
∆`,−1

Cα
∆`,0

Cα
∆`,1

Cα
∆`,2

=


0 −1/8 0 0 0

2 9/8 0 −1/8 0

0 9/8 2 9/8 0

0 −1/8 0 9/8 2

0 0 0 −1/8 0





Cα
∆`−1,−2

Cα
∆`−1,−1

Cα
∆`−1,0

Cα
∆`−1,1

Cα
∆`−1,2

 .

• The Lax-Wendroff scheme by [FAKHARI et al., 2014]

Cα
∆`,0 =− |cα|2

2∆`
, Cα

∆`,−cα/|cα| =
|cα|

2

(
1+ |cα|

2∆`

)
, Cα

∆`,cα/|cα| =− |cα|
2

(
1− |cα|

2∆`

)
.

This is not a multiresolution scheme: we consider it for comparison purposes.
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What is the expected accuracy?

We can prove that:

Order 0 1 (Inertial) 2 (Diffusive) 3 (Dispersive) 4

Condition
∑
m

Cα
∆`,m

= 0
∑
m

mCα
∆`,m

=−cα
∑
m

m2Cα
∆`,m

= c2
α

2∆`
∑
m

m3Cα
∆`,m

=− c3
α

4∆`
∑
m

m4Cα
∆`,m

= c4
α

8∆`

M
et

h
o

d γ= 0 X X × × ×
γ= 1 X X X X ×

LW X X X × ×

• Original analysis exploiting the structure of the multiresolution.

• High fidelity to the desired physics, beyond the existing approaches.

• Practically, reliability of the numerical method even in extreme situations.
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Numerical simulations to assess
the accuracy analysis



Points of emphasis

The previous analysis was valid for

• Smooth solutions.

• In the limit of small ∆x` for every `= L, . . . ,L.

The aim of the following numerical simulations is to assess the previous approach by

showing that it provides a useful tool to a priori study the behavior of the adaptive

scheme.

We monitor the following `1 normalized quantities at the final time T :

• Eref: error of the reference scheme (at L) vs. exact solution. Intrinsic and sometimes

converging for ∆x → 0.

• EL
adap: error of the adaptive scheme (at L but reconstructed) vs. exact solution at level L.

• Dadap: difference between the reference (at L) and adaptive scheme (at L). Converging

as ∆`→ 0.

By triangle inequality EL
adap ≤ Eref +Dadap and the plan is to make

Dadap ¿ Eref, ⇒ EL
adap ≈ Eref,

regardless the fact that it converges or not for ∆x → 0.

We are not interested in evaluating the quality of the multiresolution adaptation with respect

to the parameter ε: we consider a uniform mesh at the lowest resolution L.

Is it reasonable? Yes, but no time to detail it.
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1D Linear advection equation

• The aim of this test case is to validate our analysis in a case where:

• Convergent reference scheme: Eref → 0 as ∆x → 0, see [DELLACHERIE, 2014], [CAETANO et al., 2019].

• Only inertial terms to model: we expect that all the schemes are suitable for this problem.

• Linear equilibria: the collision strategy does not alter the quality of the method.

• The target problem is ∂t u +∂x (V u) = 0,

u(t = 0, x) = 1
(4πνt0)1/2 exp

(
− |x|2

4νt0

)
,

• We consider a D1Q2 scheme with velocities c0 = 1,c1 =−1 with change of basis and

relaxation matrix given by

M =
(

1 1

λ −λ

)
, S = diag(0, s).

With equilibrium m1,eq =V m0.
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1D Linear advection equation: ∆`min = 2 and s = 2

We have also treated s = 1, which means linear convergence Eref =O (∆x).

Convergence of the different errors.

10−3 10−2 10−1

∆x

10−5

10−4

10−3

10−2

10−1

100

Eref

γ = 0 : ELadap

γ = 0 : Dadap

γ = 1 : ELadap

γ = 1 : Dadap

LW : ELadap

LW : Dadap

Linear

Quadratic

Cubic

• γ= 0: Dadap =O (∆x) À Eref =O (∆x2), thus EL
adap. . . . . .

≤ Eref +Dadap =O (∆x).

• γ= 1: Dadap =O (∆x3) ¿ Eref =O (∆x2), thus EL
adap. . . . . .

≤ Eref +Dadap =O (∆x2).

• Lax-Wendroff: Dadap =O (∆x2) ∼ Eref =O (∆x2), thus EL
adap. . . . . .

≤ Eref +Dadap =O (∆x2).
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1D Linear advection diffusion equation

• The aim of this test case is to validate our analysis in a case where:
• Not convergent reference scheme as ∆x → 0, but a richer structure.

• Both inertial and diffusive terms: not all the schemes are suitable.

• Linear equilibria: the collision strategy does not alter the quality of the method.

• Target problem: ∂t u +∂x (V u)−ν∂xx u = 0,

u(t = 0, x) = 1
(4πνt0)1/2 exp

(
− |x|2

4νt0

)
,

• We consider a D1Q3 scheme with velocities c0 = 0,c1 = 1 and c2 =−1 with change of

basis and relaxation matrix given by

M =

1 1 1

0 λ −λ
0 λ2/2 λ2/2

 , S = diag(0, sv , sw ).

With equilibria and relaxation parameters:

m1,eq =V m0, m2,eq = κm0

sv = (1/2+λν/(∆x(2κ−V 2)))−1, sw = 1.

• We fix the maximal level L and we decrease the minimum level L (we increase ∆`min).
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1D Linear advection diffusion equation: L = 11

Solution u(T ) at the final time for different ∆`min.
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x
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Haar wavelet γ = 0

Exact
∆`min =4
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x

γ = 1

0 1 2

x

Lax-Wendroff

• γ= 0: Wrong diffusion.

• γ= 1: Very good agreement.

• Lax-Wendroff: Spurious dispersive

effects (third order).
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Conclusions

What has been done (theoretically)

• Analysis based on the equivalent equations [DUBOIS, 2008] for the LBM-MR schemes.

• Find the maximal order of compliance of the adaptive scheme with the desired

physics, depending on the prediction stencil γ.

Conclusions

• Good agreement between the empirical behavior and the asymptotic analysis.

∂t u + ∇· (ϕ(u))︸ ︷︷ ︸
γ=0
γ=1

Lax-Wendroff

− ∇· (D∇u)︸ ︷︷ ︸
γ=1

Lax-Wendroff

= H.O.Ts︸ ︷︷ ︸
γ=1

.

• The Lax-Wendroff scheme [FAKHARI et al., 2014]: minimal setting to use most of the LBM

schemes. Unpredictable dispersive behaviors: threat to the stability.

• The Haar scheme γ= 0 is almost unusable: it modifies the diffusive terms.

• The LBM-MR scheme for γ≥ 1: most reliable of the analyzed schemes, both in terms of

consistency and stability.

• If the solution is singular: adaptive mesh adaptation needed! (not really stressed here)
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General conclusions



General conclusions

• Devised a hybrid method to solve PDEs on time-evolving adapting meshes:

Lattice Boltzmann methods ⊕ Multiresolution

It ensures

• Time dynamic mesh adaptation.

• Memory compression with shocks and fronts.

• Reduced computational cost.

E Totally problem and scheme independent.

E Error control by a threshold 0 < ε¿ 1.

E High (3rd) order accuracy w.r.t. the reference scheme: good approximation of the desired

physics.

E Realiability against mesh jumps5. Not presented here.

• Devised an analysis based on the equivalent equations [DUBOIS, 2008] for the LBM-MR
schemes. Confirming:

• Very good agreement between the empirical behavior and the asymptotic analysis.

• That the LBM-MR scheme for γ≥ 1: most reliable of the analyzed schemes.

5Bellotti, Gouarin, Graille, Massot - Does the multiresolution lattice Boltzmann method allow to deal with waves passing

through mesh jumps? - Submitted to Comptes Rendus Mathématique - 2021 - https://arxiv.org/abs/2105.12609
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Thank you for your attention!
Looking forward to receiving your questions!
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Additional and backup material! Not a part of the presentation.
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Points of emphasis

Remark

We are not interested in evaluating the quality of the multiresolution adaptation with respect

to the parameter ε: we consider a uniform mesh at the lowest resolution L.

Is it reasonable?

• Local regularity:

• Smooth: mesh is locally coarsened. Question: are we still good?

• Singular: mesh is locally at the finest level. No problem.

• Every mesh is locally uniform and the previous analysis holds uniformly in

` ∈ {L, . . . ,L}.

• Worst case scenario to undoubtedly prove the resilience of our numerical strategy.
Similar scenarios can happen

• when the mesh is updated using some stiff variable [FAKHARI et al., 2016] and [N’GUESSAN et al.,

2019] but we still want to achieve a good accuracy in the coarsely meshed areas for the

non-stiff variables.

• a fixed adapted mesh is used: [FILIPPOVA AND HÄNEL, 1998] and many others.
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Mesh adaptation: when is it needed?

Burgers equation: large diffusion.
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Mesh adaptation: when is it needed?

Burgers equation: large diffusion.

Multiresolution with ε= 0.0001 and µ= 1.
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Mesh adaptation: when is it needed?

Burgers equation: small diffusion.
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Mesh adaptation: when is it needed?

Burgers equation: small diffusion.

Multiresolution with ε= 0.0001 and µ= 1.
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