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Optimal transport in a nutshell

For µ, ν ∈ P2(Rd) :=
{
ρ ∈ P(Rd) :

´
Rd |x |2dx <∞

}
one seeks to

optimize among all transport plans
Π(µ, ν) :=

{
γ ∈ P(Rd × Rd) : π1#γ = µ, π2#γ = ν

}
,

W 2
2 (µ, ν) := inf

γ∈Π(µ,ν)

ˆ
Rd×Rd

1

2
|x − y |2 dγ(x , y),

Kantorovich duality:

W 2
2 (µ, ν) = sup

u(x)+v(y)≤ 1
2 |x−y |2

ˆ
u(x)dµ(x) +

ˆ
v(y)dν(y)
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Optimal transport in a nutshell

Brenier’s theorem:
If µ ∈ Pac(Rd), then there is a µ-a.e. unique transport map T , in the
sense that the optimal transport plan γ̄ is of the form

γ̄ = (Id,T )#µ,

and it is the gradient of a convex function ϕνµ, which we call Brenier
potential.

Equivalently we have

∇ϕνµ#
µ = ν,

or in the form of Monge-Ampère equation

det(D2ϕνµ)ν(∇ϕνµ) = µ, ∇ϕνµ(suppµ) ⊂ suppν.

In this caseˆ
Rd×Rd

1

2
|x − y |2 dγ̄(x , y) =

ˆ
Rd

1

2
|x − T (x)|2 dµ(x).

Note that the right hand sind corresponds to the original formulation by
Monge.
Another important property is that W2 : P2(Rd)× P2(Rd)→ R is a
metric on P2(Rd), which makes P2(Rd) Polish.
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On the Fréchet mean

A probabilistic perspective:
• For a random variable X in a Hilbert space H (with finite second

moment) distributed according to P ∈ P(H) its expectation E[X ]
solves the following optimization problem

inf
c∈H

E[||X − c ||2], respectively inf
c∈H

ˆ
H

||x − c ||2 dP(x).

• This motivates the definition of Fréchet mean, which generalizes the
notion of mean for metric spaces. In particular, on (P2(Rd),W2) a
Fréchet mean of P ∈ P2(P2(Rd)) is a minimizer of

inf
ρ∈P2(Rd )

ˆ
P2(Rd )

W 2
2 (ρ, ν)dP(ν).

• In particular for P =
∑N

i=1 piδνi

inf
ρ∈P2(Rd )

N∑
i=1

piW
2
2 (ρ, νi ),

which coincides with the Wasserstein barycenter introduced by
Agueh and Carlier.
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Fréchet mean of P ∈ P2(P2(Rd)) is a minimizer of

inf
ρ∈P2(Rd )

ˆ
P2(Rd )

W 2
2 (ρ, ν)dP(ν).

• In particular for P =
∑N

i=1 piδνi

inf
ρ∈P2(Rd )

N∑
i=1

piW
2
2 (ρ, νi ),

which coincides with the Wasserstein barycenter introduced by
Agueh and Carlier.



Some motivation

Figure: Taken from J. Ebert, V. Spokoiny and A. Suvorikova

Figure: Taken from G. Peyré

A short (non exhaustive) time line
• Introduced by Agueh and Carlier for finitely supported measures P

(2011), analogy to barycenter in Euclidian space
• Generalizations to Riemannian manifolds by Kim and Pass (2017);

to more general measures by Bigot and Klein (2017)
• Regularization first introduced by Bigot, Cazalles and Papadakis

(2019) to compensate numerical errors and stability issues; e.g.
when discrete supports of measures have different cardinality

• This regularization also has a lot of analytical benefits, as we will see
(today)
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Entropically regularized Wasserstein barycenter

Problem: Discretization phenomena
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Figure: Taken from H. Lavenant

A way to fix this is to add a regularizing term, as introduced by Bigot,
Cazelles and Papadakis.
For P ∈ P2

(
P2(Rd)

)
, Ω convex consider

inf
ρ∈P2(Rd )

ˆ
P2(Rd )

W 2
2 (ρ, ν)dP(ν) + λEntΩ(ρ) (1)

where EntΩ is defined for every µ ∈ P2(Rd) by

EntΩ(µ) =

{´
Ω
ρ log ρ, if µ = ρdx and

´
Ω
ρ = 1,

+∞, otherwise.
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First properties

• Existence and Uniqueness of (1): barλ,Ω(P) := argmin (1)

• barλ,Ω(P) is absolutely continuous and supp(barλ,Ω(P)) = Ω
• Characterization: ρ = barλ,Ω(P) if and only if ρ has a continuous

density given by

ρ(x) := exp
(
− 1

2λ
|x |2 +

1

λ

ˆ
P2(Rd )

ϕνρ(x)dP(ν)
)
, (2)

where ϕνρ denote the Brenier potentials from ρ to ν (properly
normalized).

• Regularity of ρ := barλ,Ω(P) from this representation:

log(ρ) ∈ L∞loc(Ω), ρ ∈W 1,∞
loc (Ω) and ∇ρ ∈ BVloc(Ω,Rd).

• Compare to (unregularized) barycenter:
• Uniqueness only if P(Pac(Rd)) > 0,
• Characterization by obstacle problem

1

λ

ˆ
P2(Rd )

ϕν
ρ(x) dP(ν) ≤ 1

2λ
|x |2 + C with equality ρ-a.e.
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Further regularity estimates

• Bound on Fisher information:ˆ
Ω

|∇ log(ρ)|2ρ ≤ 1

λ2

ˆ
P2(Rd )

W 2(ρ, ν)dP(ν).

Immediate consequence:
√
ρ ∈ H1(Ω).

• Further moment estimates: For p ≥ 2 assume thatˆ
P2(Rd )

mp(ν)dP(ν) < +∞

(where mp(ν) :=
´
Rd |x |p dν(x)). Then

mp(ρ) ≤ C (p)

(ˆ
P2(Rd )

mp(ν)dP(ν)

)
+ C (d , p)(λ)(d+p)/2.

Immediate consequence: ρ
1
p ∈W 1,p(Ω).

• If Ω contains the support of P-a.e. ν, then ρ satisfies a maximum
principle.

• The last two statements have also been shown for (unregularized)
barycenters by Agueh & Carlier.
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More regular case

Assume now Ω = B := BR(0), R > 0

P
({
ν ∈ Pac(B) : ‖ν‖C 1,α(B) + ‖log ν‖L∞(B) ≤ C

})
= 1,

then
ϕνρ̄ ∈ C 3,α(B) for P-a.e. ν and ρ ∈ C 3,α(B),

and there is a constant K > 0 such that∥∥ϕνρ̄∥∥C 3,α(B)
≤ K for P-a.e. ν.

In particular, ϕνρ̄ satisfies the Monge–Ampère equation in the classical
sense

det(D2ϕνρ̄)ν(∇ϕνρ̄) = ρ̄ in B

∇ϕνρ(B) ⊂ B.

No higher regularity known for the (unregularized) barycenter due to free
boundary aspect of optimality condition.
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Stochastic setting

Let now ν1,ν2, ... be a i.i.d. sequence in P2(Rd) distributed according to
P. Define ρ := barλ,Ω(P) and the random variable

ρn := argminρ∈P(Rd )

1

n

n∑
i=1

W 2
2 (ρ,νi ) + λEntΩ(ρ). (3)

We obtain a Strong Law of Large Numbers. Namely if

• ´
P2(Rd )

mp(ν)dP(ν) < +∞ for p ≥ 2, then a.s. (almost surely)

Wp(ρn, ρ)
W 1,q

loc (Ω)
−−−−−→ 0,

ρn
W 1,q

loc (Ω)
−−−−−→ ρ ∀1 ≤ q <∞,

ρn
1/p W 1,p(Ω)−−−−−→ ρ1/p.

• P
({
ν ∈ Pac(B) : ‖ν‖C 1,α(B) + ‖log ν‖L∞(B) ≤ C

})
= 1, then

ρn
a.s.−−→ ρ in C 3,β(B) for any β ∈ (0, α).

• For (unregularized) barycenter LLN only w.r.t. convergence in W2

known.
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Central Limit Theorem

If P
({
ν ∈ Pac(B) : ‖ν‖C 1,α(B) + ‖log ν‖L∞(B) ≤ C

})
= 1, The

empirical barycenters satisfy a CLT in
L2
�(B) :=

{
u ∈ L2(B) :

´
B
udx = 0

}
:

√
n (ρn − ρ)

d−→ ξ ∼ N (0,Σ),

with covariance operator Σ = G−1 VarP(ϕνρ)G−1

,

G : u 7→ λ
u

ρ
− λ

 
B

u

ρ
− E(Φν)′(ρ),

and where

Φν : S → M,
µ 7→ ϕ, where det

(
D2ϕ

)
ν(∇ϕ) = µ,
∇ϕ(B̄) = B̄,

with S =
{
% ∈ Pac(B̄) : ‖%‖C 1,α(B̄) + ‖log %‖L∞(B̄) <∞

}
,

M =
{
ϕ ∈ C 3,α(B̄) : ‖∇ϕ‖2 − R2 = 0 on ∂B,

´
B
ϕ = 0

}
.
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{
ϕ ∈ C 3,α(B̄) : ‖∇ϕ‖2 − R2 = 0 on ∂B,

´
B
ϕ = 0

}
.



Central Limit Theorem: Idea of proof

Use a delta method: In our case, CLT in Hilbert spaces gives

√
n

(
1

n

n∑
i=1

ϕνi
ρ − EP [ϕνρ]

)
d−→ N (0,VarP(ϕνρ))

We want to rewrite this in the form Gn(ρn − ρ), where Gn are invertible
operators which converges in a nice way to a suitable operator G

1

n

n∑
i=1

ϕνi
ρ − EP [ϕνρ] =

1

n

n∑
i=1

ϕνi
ρn
− EP [ϕνρ]− 1

n

n∑
i=1

(
ϕνi
ρn
− ϕνi

ρ

)
= F (ρn)− F (ρ)− 1

n

n∑
i=1

(Φνi (ρn)− Φνi (ρ))

= Gn(ρn − ρ)

with F (ρ) = λ log ρ+ |x|2
2 −

ffl
B

(
λ log ρ+ |x|2

2

)
,

Gn =
´ 1

0
F ′(ρt

n)dt − 1
n

∑n
i=1

´ 1

0
(Φνi )′(ρt

n)dt with ρt
n = (1− t)ρ+ tρn.
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Central Limit Theorem: Idea of proof

For ρ ∈ S =
{
% ∈ Pac(B̄) : ‖%‖C 1,α(B̄) + ‖log %‖L∞(B̄) <∞

}
• F is differentiable with

F ′(ρ) : u 7→ λ
u

ρ
− λ

 
B

u

ρ
.

• ϕ := Φν(ρ) is given by the solution of the Monge–Ampère equation

det(D2ϕ)ν(∇ϕ) = ρ̄ in B

∇ϕ(B) ⊂ B.

So its derivative corresponds to linearizing this equation. We have
enough regularity to conclude that Φν is differentiable with
(Φν)′(ρ) : u 7→ h where

div(Aν∇h) = u in B,

∇ϕ · ∇h = 0 on ∂B,

for Aν = ν(∇ϕ) det(D2ϕ)
(
D2ϕ

)−1
.
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Central Limit Theorem: Idea of proof

• Thanks to the regularity estimates

ρt
n ∈

{
ν ∈ Pac(Rd) : ν(B) = 1, ‖ν‖C 1,α(B) + ‖log ν‖L∞(B) ≤ C̃

}
implying F ′ to be Hermitian, bounded and uniformly positive definite
and (Φν)′ Hermitian, bounded and negative definite on L2

�(B).

• For the interpolation operator Gn thanks to LLN, it follows that

Gn
SOT−−−→ G a.s. where

G : u 7→ λ
u

ρ
− λ

 
B

u

ρ
− E(Φν)′(ρ).

• Convergence of Gn
−1 SOT−−−→ G−1 a.s. follows by the uniform

positivity; for any u ∈ L2
�(B)

Gn
−1u − G−1u = Gn

−1(G − Gn)G−1u
L2(B)−−−→ 0 a.s.

• A version of S lutsky’s theorem guarantees then that

Gn
−1√nGn (ρn − ρ)

d−→ ξ ∼ N (0,Σ).
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The End

Merci pour votre attention!


