Régularisation entropique des barycentres dans
I'espace Wasserstein

Katharina Eichinger?

Bauphine IPsLx CEREMADE  rzzia —

INIVERSITE PARIS UMR 7534

Joint work with Guillaume Carlier! and Alexey Kroshnin?

LCEREMADE, Université Paris-Dauphine and INRIA-MOKAPLAN
2Université Claude Bernard, Lyon 1 and HSE university, Moscow

Congres SMAI
La Grande Motte, 23/06/2021



Optimal transport in a nutshell

@R\@(\

<<w\ = 3Tyl

For p1,v € Po(RY) :={p € P(RY) : [r4|x|?dx < oo} one seeks to
optimize among all transport plans
N(p,v) = {y € PR x RY) : myy =p, mpuy=vr},

Wi (u,v) = inf / Lx = yPda(x,y),
veN(u,v) Jrdxrd 2



Optimal transport in a nutshell

@%\

C(Y,'\ﬂ = % -yl

For p1,v € Po(RY) :={p € P(RY) : [r4|x|?dx < oo} one seeks to
optimize among all transport plans
N(p,v) = {v € PR xRY) : mpy =p, mpuy=r},

Wi (u,v) = inf / Lx = yPda(x,y),
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Kantorovich duality:

W2()=  sup / u(x) dpa(x) + / v(y) duy)

u(x)+v(y)<3x—y|?
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Optimal transport in a nutshell

Brenier's theorem:
If 4 € Pac(R?), then there is a p-a.e. unique transport map T, in the
sense that the optimal transport plan 7 is of the form

’7 = (|d7 T)#Mu
and it is the gradient of a convex function ¢, which we call Brenier
potential. Equivalently we have
Vb = v,
or in the form of Monge-Ampére equation
det(D*¢)v(Vl) = 1, Vil (suppp) C suppy.

In this case

[ xyPaitan) = [ Six= TGP duo).
RY xR R

Note that the right hand sind corresponds to the original formulation by
Monge.

Another important property is that W, : P2(RY) x Po(R?) — R is a
metric on Po(R9), which makes P»(R9) Polish.
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® This motivates the definition of Fréchet mean, which generalizes the
notion of mean for metric spaces. In particular, on (P2(R?), W,) a
Fréchet mean of P € P,(P>(RY)) is a minimizer of

inf / W2(p,v)dP(v).
P2(R?)

PEP2(RY)

® In particular for P = Ef\/ﬂ Pidy,
inf W3 (p, vi)
ey Rd) Z piVVvy p, i

which coincides with the Wassersteln barycenter introduced by
Agueh and Carlier.
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Entropically regularized Wasserstein barycenter

Problem: Discretization phenomena

Figure: Taken from H. Lavenant

A way to fix this is to add a regularizing term, as introduced by Bigot,
Cazelles and Papadakis.

For P € P, (P2(R?)), Q convex consider

inf W2(p,v)dP(v) + A Ent 1
it | PR a6+ AEntaly) 1)

where Entg is defined for every i € Po(R?) by

Ento(n) = Joplogp, ifp=pdxand [p=1,
o= +00, otherwise.
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® Compare to (unregularized) barycenter:
® Uniqueness only if P(Pac(R?)) > 0,
® Characterization by obstacle problem

1 /
A Jpy(rd)

1
P

©

) 1 . o
(x)dP(v) < ﬁ\x\z + C with equality p-a.e.
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® Bound on Fisher information:
| Ivie@n< 55 [ wie)apw).
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Immediate consequence: /p € H(Q).
® Further moment estimates: For p > 2 assume that

/ mp(v)dP(v) < 400
P(RY)
(where mpy(v) == [5o |x|P dr(x)). Then

my(p) < C(p) (/79 = m,,(u)dP(y)) + C(d’p)(/\)(d+P)/2

Immediate consequence: ﬁ% € Whr(Q).

® |f Q contains the support of P-a.e. v, then p satisfies a maximum
principle.

® The last two statements have also been shown for (unregularized)
barycenters by Agueh & Carlier.
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More regular case

Assume now Q = B := Bg(0), R >0

P({V c ’paC(E) : ”I/HCLO‘(E) + |||Ogl/HLoc(§) S C}) = 17
then o _
¢4 € C¥*(B) for P-ae. v and pe C>*(B),

and there is a constant K > 0 such that

H<‘0g||c3,a(§) < K for P-a.e. v.

In particular, 7 satisfies the Monge—Ampere equation in the classical

sense
det(D>@%)v(V4) = pin B

Ves(B) C B.

No higher regularity known for the (unregularized) barycenter due to free
boundary aspect of optimality condition.
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Stochastic setting

Let now 11,3, ... be a i.i.d. sequence in P>(R9) distributed according to

P. Define p := bary o(P) and the random variable
_ : 1 2
Pp 1= ATgMIN cp(ra) Z W5 (p,vi) + AEnta(p).
i=1

We obtain a Strong Law of Large Numbers. Namely if
o sz(Rd) mp(v)dP(v) < 400 for p > 2, then a.s. (almost surely)

Wo(Pn: ) — 0,

Wied(Q)

P, 25 V1< q< oo,

l,p
ﬁnl/P (Q)> pl/P'

. P({u € Pac(B) : [Vl crog) + Nlog vl (g < c}) — 1, then
Pn 225 pin CB(B) for any 3 € (0, ).

® For (unregularized) barycenter LLN only w.r.t. convergence in W,

known.
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If P({V € Pac(B) : IVl croz) + 08 vl gy < c}) —1, The
empirical barycenters satisfy a CLT in
L2(B) = {u e [}B): [yudx=0}:

_ .\ d
\/E(pn - p) - £ NN(O,Z),
with covariance operator ¥ = G~ Varp(p%)G 1,
u u
G: UHA:—)\][:—E ¢Vlﬁ7
5 3 () (p)

and where

- M,
— ¢, where det (D*¢) ¥(V) = p
Ve(B) = B,

Y : S
I

with S = {0 € Puc(B) : llellcr(s) + 108 el (3 < o},
M= {apEC3”( ) [Vel? = R?=00n 0B, [;0=0}.
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Central Limit Theorem: Idea of proof

Use a delta method: In our case, CLT in Hilbert spaces gives
¢~ o, v\ v
vn <n > ¥ —Epley ) < N(0, Varp(¢%))
i=1

We want to rewrite this in the form G,(p, — p), where G, are invertible
operators which converges in a nice way to a suitable operator G

n

I DR 1 v W
o o —Eelel = 3o~ Relieh] = 1 3 (o, — o)
i=1 i=1 i=1
n

= F(B,) ~ F() ~ - 3 (6" (py) — #¥(7)

i=1
= Gﬂ(ﬁn - p)
with F(p) = Alogp + % — 15 ()\Iogp+ %) )
Gn = [y F'(pL)dt — 2 1 [(®%)(pL) dt with pf, = (1 — )5 + tP,,
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Central Limit Theorem: Idea of proof

For p € S = {0 € Pac(B) : |10l cro(s) + 08 0l (8 < o0}
® F s differentiable with

F'(p):u»—>)\ﬂf)\7[
P JB

u
.
® o= ®¥(p) is given by the solution of the Monge-Ampére equation

det(D?¢)v(Vy) =pin B
Ve(B) C B.

So its derivative corresponds to linearizing this equation. We have
enough regularity to conclude that ®¥ is differentiable with
(®¥)(p) : u— h where

div(A,Vh) = u in B,
Ve -Vh=0 on 0B,

for A, = v(V) det(D?yp) (ngp)_l :



Central Limit Theorem: Idea of proof

® Thanks to the regularity estimates
Pn € {V € Pac(R?) : v(B) = 1, HVHCM(E) + HlOgVHLoo(E) < C}
implying F’ to be Hermitian, bounded and uniformly positive definite
and (®¥)’ Hermitian, bounded and negative definite on L2(B).
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Central Limit Theorem: Idea of proof

® Thanks to the regularity estimates
Pt e {y € Pac(RY) : (B) = 1, [V cro(gy + log vl gy < c}
implying F’ to be Hermitian, bounded and uniformly positive definite
and (®¥)’ Hermitian, bounded and negative definite on L2(B).

® For the interpolation operator G, thanks to LLN, it follows that

SOT
G, —— G a.s. where

u "u
G:UHA:*A%:*Eq)Vli.
p 3 (") (p)

_ T :
e Convergence of G, * 50T, G-1 as. follows by the uniform

positivity; for any u € L2(B)

Gy lu— 6 lu=G, Y6 - GG tu £ 0 as.

® A version of Stutsky’s theorem guarantees then that

Gn VG (5, — P) & € ~ N(0,5).



Merci pour votre attention!



