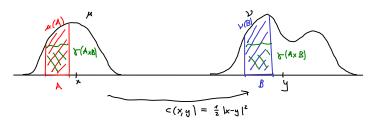
Régularisation entropique des barycentres dans l'espace Wasserstein

Katharina Eichinger¹

Joint work with Guillaume Carlier¹ and Alexey Kroshnin²

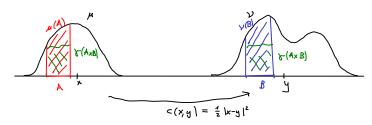
¹CEREMADE, Université Paris-Dauphine and INRIA-MOKAPLAN ²Université Claude Bernard, Lyon 1 and HSE university, Moscow

> Congrès SMAI La Grande Motte, 23/06/2021



For
$$\mu, \nu \in \mathcal{P}_2(\mathbb{R}^d) := \left\{ \rho \in \mathcal{P}(\mathbb{R}^d) : \int_{\mathbb{R}^d} |x|^2 dx < \infty \right\}$$
 one seeks to optimize among all transport plans $\Pi(\mu, \nu) := \left\{ \gamma \in \mathcal{P}(\mathbb{R}^d \times \mathbb{R}^d) : \ \pi_{1\#} \gamma = \mu, \ \pi_{2\#} \gamma = \nu \right\},$

$$W_2^2(\mu,
u) \coloneqq \inf_{\gamma \in \Pi(\mu,
u)} \int_{\mathbb{R}^d \times \mathbb{R}^d} \frac{1}{2} |x - y|^2 \, \mathrm{d}\gamma(x, y),$$



For $\mu, \nu \in \mathcal{P}_2(\mathbb{R}^d) := \left\{ \rho \in \mathcal{P}(\mathbb{R}^d) : \int_{\mathbb{R}^d} |x|^2 dx < \infty \right\}$ one seeks to optimize among all transport plans

$$\Pi(\mu,\nu) := \left\{ \gamma \in \mathcal{P}(\mathbb{R}^d \times \mathbb{R}^d) : \ \pi_{1\#}\gamma = \mu, \ \pi_{2\#}\gamma = \nu \right\},$$

$$W_2^2(\mu,\nu) := \inf_{\gamma \in \Pi(\mu,\nu)} \int_{\mathbb{R}^d \times \mathbb{R}^d} \frac{1}{2} |x-y|^2 \, \mathrm{d}\gamma(x,y),$$

Kantorovich duality:

$$W_2^2(\mu,\nu) = \sup_{u(x)+v(y) \le \frac{1}{2}|x-y|^2} \int u(x) \, \mathrm{d}\mu(x) + \int v(y) \, \mathrm{d}\nu(y)$$

Brenier's theorem:

If $\mu \in \mathcal{P}_{ac}(\mathbb{R}^d)$, then there is a μ -a.e. **unique** transport map T, in the sense that the optimal transport plan $\bar{\gamma}$ is of the form

$$\bar{\gamma} = (\operatorname{Id}, T)_{\#}\mu,$$

and it is the gradient of a convex function φ_{μ}^{ν} , which we call Brenier potential.

Brenier's theorem:

If $\mu \in \mathcal{P}_{ac}(\mathbb{R}^d)$, then there is a μ -a.e. **unique** transport map T, in the sense that the optimal transport plan $\bar{\gamma}$ is of the form

$$\bar{\gamma} = (\operatorname{Id}, T)_{\#}\mu,$$

and it is the gradient of a convex function φ_μ^ν , which we call Brenier potential. Equivalently we have

$$\nabla \varphi^{\nu}_{\mu_{\#}} \mu = \nu,$$

or in the form of Monge-Ampère equation

$$\det(D^2\varphi_\mu^\nu)\nu(\nabla\varphi_\mu^\nu)=\mu,\ \nabla\varphi_\mu^\nu(\mathrm{supp}\mu)\subset\mathrm{supp}\nu.$$

Brenier's theorem:

If $\mu \in \mathcal{P}_{ac}(\mathbb{R}^d)$, then there is a μ -a.e. **unique** transport map T, in the sense that the optimal transport plan $\bar{\gamma}$ is of the form

$$\bar{\gamma} = (\operatorname{Id}, T)_{\#}\mu,$$

and it is the gradient of a convex function φ_μ^ν , which we call Brenier potential. Equivalently we have

$$\nabla \varphi^{\nu}_{\mu_{\#}} \mu = \nu,$$

or in the form of Monge-Ampère equation

$$\det(D^2\varphi_\mu^\nu)\nu(\nabla\varphi_\mu^\nu)=\mu,\ \nabla\varphi_\mu^\nu(\mathrm{supp}\mu)\subset\mathrm{supp}\nu.$$

In this case

$$\int_{\mathbb{R}^d\times\mathbb{R}^d}\frac{1}{2}|x-y|^2\,\mathrm{d}\bar{\gamma}\big(x,y\big)=\int_{\mathbb{R}^d}\frac{1}{2}|x-T(x)|^2\,\mathrm{d}\mu(x).$$

Note that the right hand sind corresponds to the original formulation by Monge.

Brenier's theorem:

If $\mu \in \mathcal{P}_{ac}(\mathbb{R}^d)$, then there is a μ -a.e. **unique** transport map T, in the sense that the optimal transport plan $\bar{\gamma}$ is of the form

$$\bar{\gamma} = (\mathrm{Id}, T)_{\#}\mu,$$

and it is the gradient of a convex function φ^{ν}_{μ} , which we call Brenier potential. Equivalently we have

$$\nabla \varphi^{\nu}_{\mu_{\#}} \mu = \nu,$$

or in the form of Monge-Ampère equation

$$\det(D^2\varphi_{\mu}^{\nu})\nu(\nabla\varphi_{\mu}^{\nu})=\mu,\ \nabla\varphi_{\mu}^{\nu}(\operatorname{supp}\mu)\subset\operatorname{supp}\nu.$$

In this case

$$\int_{\mathbb{D}_d \times \mathbb{D}_d} \frac{1}{2} |x - y|^2 d\bar{\gamma}(x, y) = \int_{\mathbb{D}_d} \frac{1}{2} |x - T(x)|^2 d\mu(x).$$

Note that the right hand sind corresponds to the original formulation by Monge.

Another important property is that $W_2: \mathcal{P}_2(\mathbb{R}^d) \times \mathcal{P}_2(\mathbb{R}^d) \to \mathbb{R}$ is a metric on $\mathcal{P}_2(\mathbb{R}^d)$, which makes $\mathcal{P}_2(\mathbb{R}^d)$ Polish.

On the Fréchet mean

A probabilistic perspective:

• For a random variable X in a Hilbert space H (with finite second moment) distributed according to $P \in \mathcal{P}(H)$ its expectation $\mathbb{E}[X]$ solves the following optimization problem

$$\inf_{c \in H} \mathbb{E}[||X - c||^2], \text{ respectively } \inf_{c \in H} \int_H ||x - c||^2 dP(x).$$

On the Fréchet mean

A probabilistic perspective:

• For a random variable X in a Hilbert space H (with finite second moment) distributed according to $P \in \mathcal{P}(H)$ its expectation $\mathbb{E}[X]$ solves the following optimization problem

$$\inf_{c \in H} \mathbb{E}[||X - c||^2], \text{ respectively } \inf_{c \in H} \int_H ||x - c||^2 dP(x).$$

• This motivates the definition of Fréchet mean, which generalizes the notion of mean for metric spaces. In particular, on $(\mathcal{P}_2(\mathbb{R}^d), W_2)$ a Fréchet mean of $P \in \mathcal{P}_2(\mathcal{P}_2(\mathbb{R}^d))$ is a minimizer of

$$\inf_{\rho\in\mathcal{P}_2(\mathbb{R}^d)}\int_{\mathcal{P}_2(\mathbb{R}^d)}W_2^2(\rho,\nu)\,\mathrm{d}P(\nu).$$

On the Fréchet mean

A probabilistic perspective:

• For a random variable X in a Hilbert space H (with finite second moment) distributed according to $P \in \mathcal{P}(H)$ its expectation $\mathbb{E}[X]$ solves the following optimization problem

$$\inf_{c \in H} \mathbb{E}[||X - c||^2], \text{ respectively } \inf_{c \in H} \int_H ||x - c||^2 dP(x).$$

• This motivates the definition of Fréchet mean, which generalizes the notion of mean for metric spaces. In particular, on $(\mathcal{P}_2(\mathbb{R}^d), W_2)$ a Fréchet mean of $P \in \mathcal{P}_2(\mathcal{P}_2(\mathbb{R}^d))$ is a minimizer of

$$\inf_{\rho\in\mathcal{P}_2(\mathbb{R}^d)}\int_{\mathcal{P}_2(\mathbb{R}^d)}W_2^2(\rho,\nu)\,\mathrm{d}P(\nu).$$

• In particular for $P = \sum_{i=1}^{N} p_i \delta_{\nu_i}$

$$\inf_{\rho\in\mathcal{P}_2(\mathbb{R}^d)}\sum_{i=1}^N p_iW_2^2(\rho,\nu_i),$$

which coincides with the Wasserstein barycenter introduced by Agueh and Carlier.

Some motivation

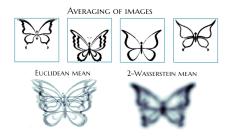


Figure: Taken from J. Ebert, V. Spokoiny and A. Suvorikova

Some motivation

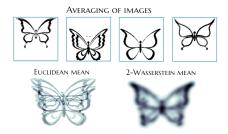


Figure: Taken from J. Ebert, V. Spokoiny and A. Suvorikova

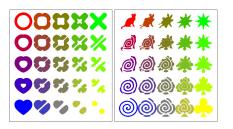


Figure: Taken from G. Peyré

Entropically regularized Wasserstein barycenter

Problem: Discretization phenomena

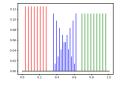


Figure: Taken from H. Lavenant

Entropically regularized Wasserstein barycenter

Problem: Discretization phenomena

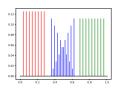


Figure: Taken from H. Lavenant

A way to fix this is to add a regularizing term, as introduced by Bigot, Cazelles and Papadakis.

For $P \in \mathcal{P}_2\left(\mathcal{P}_2(\mathbb{R}^d)\right)$, Ω convex consider

$$\inf_{\rho \in \mathcal{P}_2(\mathbb{R}^d)} \int_{\mathcal{P}_2(\mathbb{R}^d)} W_2^2(\rho, \nu) \, \mathrm{d}P(\nu) + \lambda \operatorname{Ent}_{\Omega}(\rho) \tag{1}$$

where $\operatorname{Ent}_{\Omega}$ is defined for every $\mu \in \mathcal{P}_2(\mathbb{R}^d)$ by

$$\mathsf{Ent}_\Omega(\mu) = \begin{cases} \int_\Omega \rho \log \rho, & \text{if } \mu = \rho \mathsf{d} x \text{ and } \int_\Omega \rho = 1, \\ +\infty, & \text{otherwise.} \end{cases}$$

• Existence and Uniqueness of (1): $bar_{\lambda,\Omega}(P) := argmin(1)$

- Existence and Uniqueness of (1): $bar_{\lambda,\Omega}(P) := argmin(1)$
- $\mathsf{bar}_{\lambda,\Omega}(P)$ is absolutely continuous and $\mathrm{supp}(\mathsf{bar}_{\lambda,\Omega}(P)) = \overline{\Omega}$

- Existence and Uniqueness of (1): $bar_{\lambda,\Omega}(P) := argmin(1)$
- $\mathsf{bar}_{\lambda,\Omega}(P)$ is absolutely continuous and $\mathrm{supp}(\mathsf{bar}_{\lambda,\Omega}(P)) = \overline{\Omega}$
- Characterization: $\overline{\rho} = \mathsf{bar}_{\lambda,\Omega}(P)$ if and only if $\overline{\rho}$ has a continuous density given by

$$\overline{\rho}(x) := \exp\left(-\frac{1}{2\lambda}|x|^2 + \frac{1}{\lambda} \int_{\mathcal{P}_2(\mathbb{R}^d)} \varphi_{\overline{\rho}}^{\nu}(x) \, \mathrm{d}P(\nu)\right),\tag{2}$$

where $\varphi^{\nu}_{\overline{\rho}}$ denote the Brenier potentials from $\overline{\rho}$ to ν (properly normalized).

- Existence and Uniqueness of (1): $bar_{\lambda,\Omega}(P) := argmin(1)$
- $\mathsf{bar}_{\lambda,\Omega}(P)$ is absolutely continuous and $\mathrm{supp}(\mathsf{bar}_{\lambda,\Omega}(P)) = \overline{\Omega}$
- Characterization: $\overline{\rho}=\mathsf{bar}_{\lambda,\Omega}(P)$ if and only if $\overline{\rho}$ has a continuous density given by

$$\overline{\rho}(x) := \exp\left(-\frac{1}{2\lambda}|x|^2 + \frac{1}{\lambda} \int_{\mathcal{P}_2(\mathbb{R}^d)} \varphi_{\overline{\rho}}^{\nu}(x) \, \mathrm{d}P(\nu)\right), \tag{2}$$

where $\varphi^{\nu}_{\overline{\rho}}$ denote the Brenier potentials from $\overline{\rho}$ to ν (properly normalized).

• Regularity of $\overline{\rho} := bar_{\lambda,\Omega}(P)$ from this representation:

$$\log(\overline{\rho}) \in L^{\infty}_{\mathrm{loc}}(\Omega), \ \overline{\rho} \in W^{1,\infty}_{\mathrm{loc}}(\Omega) \ \text{and} \ \nabla \overline{\rho} \in \mathsf{BV}_{\mathrm{loc}}(\Omega, \mathbb{R}^d).$$

- Existence and Uniqueness of (1): $bar_{\lambda,\Omega}(P) := argmin(1)$
- $\mathsf{bar}_{\lambda,\Omega}(P)$ is absolutely continuous and $\mathrm{supp}(\mathsf{bar}_{\lambda,\Omega}(P)) = \overline{\Omega}$
- Characterization: $\overline{\rho}=\mathsf{bar}_{\lambda,\Omega}(P)$ if and only if $\overline{\rho}$ has a continuous density given by

$$\overline{\rho}(x) := \exp\left(-\frac{1}{2\lambda}|x|^2 + \frac{1}{\lambda} \int_{\mathcal{P}_2(\mathbb{R}^d)} \varphi_{\overline{\rho}}^{\nu}(x) \, \mathrm{d}P(\nu)\right), \tag{2}$$

where $\varphi^{\nu}_{\overline{\rho}}$ denote the Brenier potentials from $\overline{\rho}$ to ν (properly normalized).

• Regularity of $\overline{\rho} := \mathsf{bar}_{\lambda,\Omega}(P)$ from this representation:

$$\log(\overline{\rho}) \in L^\infty_{\mathrm{loc}}(\Omega), \ \overline{\rho} \in W^{1,\infty}_{\mathrm{loc}}(\Omega) \ \text{and} \ \nabla \overline{\rho} \in \mathsf{BV}_{\mathrm{loc}}(\Omega, \mathbb{R}^d).$$

- Compare to (unregularized) barycenter:
 - Uniqueness only if $P(\mathcal{P}_{ac}(\mathbb{R}^d)) > 0$,
 - Characterization by obstacle problem

$$\frac{1}{\lambda} \int_{\mathcal{P}_2(\mathbb{R}^d)} \varphi_{\overline{\rho}}^{\underline{\nu}}(x) \, \mathrm{d}P(\nu) \leq \frac{1}{2\lambda} |x|^2 + C \text{ with equality } \overline{\rho}\text{-a.e.}$$

Bound on Fisher information:

$$\int_{\Omega} |\nabla \log(\overline{\rho})|^2 \overline{\rho} \leq \frac{1}{\lambda^2} \int_{\mathcal{P}_2(\mathbb{R}^d)} W^2(\overline{\rho}, \nu) \, \mathrm{d}P(\nu).$$

Immediate consequence: $\sqrt{\overline{\rho}} \in H^1(\Omega)$.

Bound on Fisher information:

$$\int_{\Omega} |\nabla \log(\overline{\rho})|^2 \overline{\rho} \leq \frac{1}{\lambda^2} \int_{\mathcal{P}_2(\mathbb{R}^d)} W^2(\overline{\rho}, \nu) \, \mathrm{d}P(\nu).$$

Immediate consequence: $\sqrt{\overline{\rho}} \in H^1(\Omega)$.

• Further moment estimates: For $p \ge 2$ assume that

$$\int_{\mathcal{P}_2(\mathbb{R}^d)} m_p(\nu) \, \mathrm{d}P(\nu) < +\infty$$

(where $m_p(\nu) \coloneqq \int_{\mathbb{R}^d} |x|^p d\nu(x)$). Then

$$m_p(\overline{\rho}) \leq C(p) \left(\int_{\mathcal{P}_2(\mathbb{R}^d)} m_p(\nu) dP(\nu) \right) + C(d,p)(\lambda)^{(d+p)/2}.$$

Immediate consequence: $\overline{
ho}^{\frac{1}{p}}\in W^{1,p}(\Omega)$.

Bound on Fisher information:

$$\int_{\Omega} |\nabla \log(\overline{\rho})|^2 \overline{\rho} \leq \frac{1}{\lambda^2} \int_{\mathcal{P}_2(\mathbb{R}^d)} W^2(\overline{\rho}, \nu) \, \mathrm{d} P(\nu).$$

Immediate consequence: $\sqrt{\overline{\rho}} \in H^1(\Omega)$.

• Further moment estimates: For $p \ge 2$ assume that

$$\int_{\mathcal{P}_2(\mathbb{R}^d)} m_p(\nu) \,\mathrm{d}P(\nu) < +\infty$$

(where $m_p(\nu) := \int_{\mathbb{R}^d} |x|^p d\nu(x)$). Then

$$m_p(\overline{\rho}) \leq C(p) \left(\int_{\mathcal{P}_2(\mathbb{R}^d)} m_p(\nu) dP(\nu) \right) + C(d,p)(\lambda)^{(d+p)/2}.$$

Immediate consequence: $\overline{\rho}^{\frac{1}{p}} \in W^{1,p}(\Omega)$.

• If Ω contains the support of P-a.e. $\nu,$ then $\overline{\rho}$ satisfies a maximum principle.

Bound on Fisher information:

$$\int_{\Omega} |\nabla \log(\overline{\rho})|^2 \overline{\rho} \leq \frac{1}{\lambda^2} \int_{\mathcal{P}_2(\mathbb{R}^d)} W^2(\overline{\rho}, \nu) \, \mathrm{d}P(\nu).$$

Immediate consequence: $\sqrt{\overline{\rho}} \in H^1(\Omega)$.

• Further moment estimates: For $p \ge 2$ assume that

$$\int_{\mathcal{P}_2(\mathbb{R}^d)} m_p(\nu) \, \mathrm{d}P(\nu) < +\infty$$

(where $m_p(\nu) := \int_{\mathbb{R}^d} |x|^p d\nu(x)$). Then

$$m_p(\overline{
ho}) \leq C(p) \left(\int_{\mathcal{P}_2(\mathbb{R}^d)} m_p(\nu) dP(\nu) \right) + C(d,p)(\lambda)^{(d+p)/2}.$$

Immediate consequence: $\overline{\rho}^{\frac{1}{p}} \in W^{1,p}(\Omega)$.

- If Ω contains the support of P-a.e. $\nu,$ then $\overline{\rho}$ satisfies a maximum principle.
- The last two statements have also been shown for (unregularized) barycenters by Agueh & Carlier.

More regular case

Assume now $\Omega = B := B_R(0)$, R > 0

$$P\Big(\Big\{\nu\in\mathcal{P}_{\mathrm{ac}}(\overline{B}):\|\nu\|_{C^{1,\alpha}(\overline{B})}+\|\log\nu\|_{L^{\infty}(\overline{B})}\leq C\Big\}\Big)=1,$$

then

$$\varphi^{\nu}_{\overline{\rho}} \in \mathit{C}^{3,\alpha}(\overline{B}) \text{ for P-a.e. ν} \quad \text{and} \quad \overline{\rho} \in \mathit{C}^{3,\alpha}(\overline{B}),$$

and there is a constant K > 0 such that

$$\|\varphi^{\nu}_{\bar{\rho}}\|_{C^{3,\alpha}(\overline{B})} \leq K \text{ for } P\text{-a.e. } \nu.$$

More regular case

Assume now $\Omega = B := B_R(0)$, R > 0

$$P\Big(\Big\{\nu\in\mathcal{P}_{\mathrm{ac}}(\overline{B}):\|\nu\|_{C^{1,\alpha}(\overline{B})}+\|\log\nu\|_{L^{\infty}(\overline{B})}\leq C\Big\}\Big)=1,$$

then

$$\varphi^{\nu}_{\bar{\rho}} \in \mathit{C}^{3,\alpha}(\overline{B}) \text{ for P-a.e. ν} \quad \text{and} \quad \overline{\rho} \in \mathit{C}^{3,\alpha}(\overline{B}),$$

and there is a constant K > 0 such that

$$\|\varphi_{\bar{\rho}}^{\nu}\|_{C^{3,\alpha}(\overline{B})} \leq K \text{ for } P\text{-a.e. } \nu.$$

In particular, $\varphi^{\nu}_{\bar{\rho}}$ satisfies the Monge–Ampère equation in the classical sense

$$\det(D^2\varphi^{\nu}_{\bar{\rho}})\nu(\nabla\varphi^{\nu}_{\bar{\rho}}) = \bar{\rho} \text{ in } B$$
$$\nabla\varphi^{\nu}_{\bar{\rho}}(B) \subset B.$$

No higher regularity known for the (unregularized) barycenter due to free boundary aspect of optimality condition.

Stochastic setting

Let now $\nu_1, \nu_2, ...$ be a i.i.d. sequence in $\mathcal{P}_2(\mathbb{R}^d)$ distributed according to P. Define $\overline{\rho} := \mathsf{bar}_{\lambda,\Omega}(P)$ and the random variable

$$\overline{\rho}_{n} := \operatorname{argmin}_{\rho \in \mathcal{P}(\mathbb{R}^{d})} \frac{1}{n} \sum_{i=1}^{n} W_{2}^{2}(\rho, \nu_{i}) + \lambda \operatorname{Ent}_{\Omega}(\rho). \tag{3}$$

Stochastic setting

Let now $\nu_1, \nu_2, ...$ be a i.i.d. sequence in $\mathcal{P}_2(\mathbb{R}^d)$ distributed according to P. Define $\overline{\rho} := \mathsf{bar}_{\lambda,\Omega}(P)$ and the random variable

$$\overline{\boldsymbol{\rho}}_{\boldsymbol{n}} := \operatorname{argmin}_{\boldsymbol{\rho} \in \mathcal{P}(\mathbb{R}^d)} \frac{1}{n} \sum_{i=1}^n W_2^2(\boldsymbol{\rho}, \boldsymbol{\nu}_i) + \lambda \operatorname{Ent}_{\Omega}(\boldsymbol{\rho}). \tag{3}$$

We obtain a Strong Law of Large Numbers. Namely if

• $\int_{\mathcal{P}_2(\mathbb{R}^d)} m_p(\nu) \, \mathrm{d}P(\nu) < +\infty$ for $p \geq 2$, then a.s. (almost surely)

$$\begin{split} W_{p}(\overline{\rho}_{\boldsymbol{n}},\overline{\rho}) & \longrightarrow 0, \\ \overline{\rho}_{\boldsymbol{n}} & \xrightarrow{W^{1,q}_{\mathrm{loc}}(\Omega)} \overline{\rho} & \forall 1 \leq q < \infty, \\ \overline{\rho}_{\boldsymbol{n}}^{1/p} & \xrightarrow{W^{1,p}(\Omega)} \overline{\rho}^{1/p}. \end{split}$$

- $P\left(\left\{\nu \in \mathcal{P}_{\mathrm{ac}}(\overline{B}) : \|\nu\|_{C^{1,\alpha}(\overline{B})} + \|\log \nu\|_{L^{\infty}(\overline{B})} \leq C\right\}\right) = 1$, then $\overline{\rho}_{n} \xrightarrow{a.s.} \overline{\rho}$ in $C^{3,\beta}(\overline{B})$ for any $\beta \in (0,\alpha)$.
- For (unregularized) barycenter LLN only w.r.t. convergence in W_2 known.

Central Limit Theorem

If $P\Big(\Big\{\nu\in\mathcal{P}_{\mathrm{ac}}(\overline{B}):\|\nu\|_{\mathcal{C}^{1,\alpha}(\overline{B})}+\|\log\nu\|_{L^{\infty}(\overline{B})}\leq C\Big\}\Big)=1$, The empirical barycenters satisfy a CLT in $L^2_{\diamond}(B):=\big\{u\in L^2(B):\int_{B}udx=0\big\}$:

$$\sqrt{n}(\overline{\rho}_{n}-\overline{\rho})\xrightarrow{d} \boldsymbol{\xi} \sim \mathcal{N}(0,\Sigma),$$

with covariance operator $\Sigma = \mathcal{G}^{-1}\operatorname{\sf Var}_P(\varphi^{
u}_{\overline{
ho}})\mathcal{G}^{-1}$

Central Limit Theorem

If $P\left(\left\{\nu\in\mathcal{P}_{\mathrm{ac}}(\overline{B}):\|\nu\|_{\mathcal{C}^{1,\alpha}(\overline{B})}+\|\log\nu\|_{L^{\infty}(\overline{B})}\leq C\right\}\right)=1$, The empirical barycenters satisfy a CLT in $L_{\diamond}^{2}(B):=\left\{u\in L^{2}(B):\int_{B}udx=0\right\}$:

$$\sqrt{n}\left(\overline{\rho}_{n}-\overline{\rho}\right) \xrightarrow{d} \boldsymbol{\xi} \sim \mathcal{N}(0,\Sigma),$$

with covariance operator $\Sigma = G^{-1}\operatorname{Var}_P(\varphi^{
u}_{\overline{\rho}})G^{-1}$,

$$G: u \mapsto \lambda \frac{u}{\overline{\rho}} - \lambda \int_{B} \frac{u}{\overline{\rho}} - \mathbb{E}(\Phi^{\nu})'(\overline{\rho}),$$

and where

$$\begin{array}{ccc} \Phi^{\nu}: \mathcal{S} & \to & \mathcal{M}, \\ \mu & \mapsto & \varphi, \text{ where } \det \left(D^{2} \varphi\right) \nu(\nabla \varphi) = \mu, \\ \nabla \varphi(\bar{B}) = \bar{B}, \end{array}$$

with
$$S = \left\{ \varrho \in \mathcal{P}_{ac}(\bar{B}) : \|\varrho\|_{C^{1,\alpha}(\bar{B})} + \|\log \varrho\|_{L^{\infty}(\bar{B})} < \infty \right\},$$

 $\mathcal{M} = \left\{ \varphi \in C^{3,\alpha}(\bar{B}) : \|\nabla \varphi\|^2 - R^2 = 0 \text{ on } \partial B, \int_B \varphi = 0 \right\}.$

Use a delta method: In our case, CLT in Hilbert spaces gives

$$\sqrt{n}\left(\frac{1}{n}\sum_{i=1}^{n}\varphi_{\overline{\rho}}^{\nu_{i}}-\mathbb{E}_{P}[\varphi_{\overline{\rho}}^{\nu}]\right)\stackrel{d}{\to}\mathcal{N}(0,\mathsf{Var}_{P}(\varphi_{\overline{\rho}}^{\nu}))$$

Use a delta method: In our case, CLT in Hilbert spaces gives

$$\sqrt{n}\left(\frac{1}{n}\sum_{i=1}^{n}\varphi_{\overline{\rho}}^{\nu_{i}}-\mathbb{E}_{P}[\varphi_{\overline{\rho}}^{\nu}]\right)\xrightarrow{d}\mathcal{N}(0,\mathsf{Var}_{P}(\varphi_{\overline{\rho}}^{\nu}))$$

We want to rewrite this in the form $G_n(\overline{\rho}_n - \overline{\rho})$, where G_n are invertible operators which converges in a nice way to a suitable operator G

$$\frac{1}{n} \sum_{i=1}^{n} \varphi_{\overline{\rho}}^{\nu_{i}} - \mathbb{E}_{P}[\varphi_{\overline{\rho}}^{\nu}] = \frac{1}{n} \sum_{i=1}^{n} \varphi_{\overline{\rho}_{n}}^{\nu_{i}} - \mathbb{E}_{P}[\varphi_{\overline{\rho}}^{\nu}] - \frac{1}{n} \sum_{i=1}^{n} \left(\varphi_{\overline{\rho}_{n}}^{\nu_{i}} - \varphi_{\overline{\rho}}^{\nu_{i}} \right) \\
= F(\overline{\rho}_{n}) - F(\overline{\rho}) - \frac{1}{n} \sum_{i=1}^{n} \left(\Phi^{\nu_{i}}(\overline{\rho}_{n}) - \Phi^{\nu_{i}}(\overline{\rho}) \right) \\
= G_{n}(\overline{\rho}_{n} - \overline{\rho})$$

with
$$F(\rho) = \lambda \log \rho + \frac{|x|^2}{2} - \int_B \left(\lambda \log \rho + \frac{|x|^2}{2}\right)$$
,
 $G_n = \int_0^1 F'(\overline{\rho}_n^t) dt - \frac{1}{n} \sum_{i=1}^n \int_0^1 (\Phi^{\nu_i})'(\overline{\rho}_n^t) dt$ with $\overline{\rho}_n^t = (1 - t)\overline{\rho} + t\overline{\rho}_n$.

For
$$\rho \in \mathcal{S} = \left\{ \varrho \in \mathcal{P}_{\mathrm{ac}}(\bar{B}) : \|\varrho\|_{C^{1,\alpha}(\bar{B})} + \|\log \varrho\|_{L^{\infty}(\bar{B})} < \infty \right\}$$

• F is differentiable with

$$F'(\rho)$$
: $u \mapsto \lambda \frac{u}{\rho} - \lambda \int_{B} \frac{u}{\rho}$.

For
$$\rho \in \mathcal{S} = \left\{ \varrho \in \mathcal{P}_{\mathrm{ac}}(\bar{\mathcal{B}}) : \|\varrho\|_{\mathcal{C}^{1,\alpha}(\bar{\mathcal{B}})} + \|\log \varrho\|_{L^{\infty}(\bar{\mathcal{B}})} < \infty \right\}$$

• F is differentiable with

$$F'(\rho): u \mapsto \lambda \frac{u}{\rho} - \lambda \int_{\mathcal{B}} \frac{u}{\rho}.$$

• $\varphi := \Phi^{
u}(
ho)$ is given by the solution of the Monge–Ampère equation

$$\det(D^2\varphi)\nu(\nabla\varphi) = \bar{\rho} \text{ in } B$$
$$\nabla\varphi(B) \subset B.$$

So its derivative corresponds to linearizing this equation. We have enough regularity to conclude that Φ^{ν} is differentiable with $(\Phi^{\nu})'(\rho): u \mapsto h$ where

$$\operatorname{div}(A_{\nu}\nabla h) = u \text{ in } B,$$

$$\nabla \varphi \cdot \nabla h = 0 \text{ on } \partial B,$$

for
$$A_{\nu} = \nu(\nabla \varphi) \det(D^2 \varphi) (D^2 \varphi)^{-1}$$
.

Thanks to the regularity estimates

$$\overline{\boldsymbol{\rho}}_{\boldsymbol{n}}^t \in \left\{ \nu \in \mathcal{P}_{\mathrm{ac}}(\mathbb{R}^d) : \nu(\overline{B}) = 1, \|\nu\|_{C^{1,\alpha}(\overline{B})} + \|\log \nu\|_{L^{\infty}(\overline{B})} \leq \tilde{C} \right\}$$
 implying F' to be Hermitian, bounded and uniformly positive definite and $(\Phi^{\nu})'$ Hermitian, bounded and negative definite on $L^2_{\diamond}(B)$.

- Thanks to the regularity estimates $\overline{
 ho}_{m{n}}^{m{t}} \in \left\{
 u \in \mathcal{P}_{\mathrm{ac}}(\mathbb{R}^d) :
 u(\overline{B}) = 1, \|
 u\|_{C^{1,\alpha}(\overline{B})} + \|\log
 u\|_{L^{\infty}(\overline{B})} \leq \widetilde{C} \right\}$ implying F' to be Hermitian, bounded and uniformly positive definite and $(\Phi^{
 u})'$ Hermitian, bounded and negative definite on $L^2_{\circ}(B)$.
- For the interpolation operator G_n thanks to LLN, it follows that $G_n \xrightarrow{\mathrm{SOT}} G$ a.s. where

$$G: u \mapsto \lambda \frac{u}{\overline{\rho}} - \lambda \int_{B} \frac{u}{\overline{\rho}} - \mathbb{E}(\Phi^{\nu})'(\overline{\rho}).$$

- Thanks to the regularity estimates $\overline{
 ho}_{m{n}}^{m{t}} \in \left\{
 u \in \mathcal{P}_{\mathrm{ac}}(\mathbb{R}^d) :
 u(\overline{B}) = 1, \|
 u\|_{C^{1,\alpha}(\overline{B})} + \|\log
 u\|_{L^{\infty}(\overline{B})} \leq \widetilde{C} \right\}$ implying F' to be Hermitian, bounded and uniformly positive definite and $(\Phi^{
 u})'$ Hermitian, bounded and negative definite on $L^2_{\circ}(B)$.
- For the interpolation operator G_n thanks to LLN, it follows that $G_n \xrightarrow{\mathrm{SOT}} G$ a.s. where

$$G: u \mapsto \lambda \frac{u}{\overline{\rho}} - \lambda \int_{B} \frac{u}{\overline{\rho}} - \mathbb{E}(\Phi^{\nu})'(\overline{\rho}).$$

• Convergence of $G_n^{-1} \xrightarrow{\mathrm{SOT}} G^{-1}$ a.s. follows by the uniform positivity; for any $u \in L^2_{\diamond}(B)$

$$G_n^{-1}u - G^{-1}u = G_n^{-1}(G - G_n)G^{-1}u \xrightarrow{L^2(B)} 0$$
 a.s.

- Thanks to the regularity estimates $\overline{
 ho}_{m{n}}^{t} \in \left\{
 u \in \mathcal{P}_{\mathrm{ac}}(\mathbb{R}^{d}) :
 u(\overline{B}) = 1, \|
 u\|_{C^{1,\alpha}(\overline{B})} + \|\log
 u\|_{L^{\infty}(\overline{B})} \le \widetilde{C} \right\}$ implying F' to be Hermitian, bounded and uniformly positive definite and $(\Phi^{
 u})'$ Hermitian, bounded and negative definite on $L^{2}_{\circ}(B)$.
- For the interpolation operator G_n thanks to LLN, it follows that $G_n \xrightarrow{\text{SOT}} G$ a.s. where

$$G: u \mapsto \lambda \frac{u}{\overline{\rho}} - \lambda \int_{B} \frac{u}{\overline{\rho}} - \mathbb{E}(\Phi^{\nu})'(\overline{\rho}).$$

• Convergence of $G_n^{-1} \xrightarrow{\mathrm{SOT}} G^{-1}$ a.s. follows by the uniform positivity; for any $u \in L^2_{\diamond}(B)$

$$G_n^{-1}u - G^{-1}u = G_n^{-1}(G - G_n)G^{-1}u \xrightarrow{L^2(B)} 0$$
 a.s.

• A version of Słutsky's theorem guarantees then that

$$\mathbf{G_n}^{-1}\sqrt{n}\mathbf{G_n}(\overline{\rho}_n-\overline{\rho})\xrightarrow{d} \xi \sim \mathcal{N}(0,\Sigma).$$

The End

Merci pour votre attention!