

Adaptive parareal algorithms for molecular dynamics problems

Olga Gorynina, Frédéric Legoll, Tony Lelièvre

MATHerials

This work is motivated by molecular simulation, where we often have to simulate long trajectories of complex systems.

Typical dynamics: the Langevin equation

$$dq_t = p_t dt, \qquad dp_t = -\nabla V(q_t) dt - \gamma p_t dt + \sqrt{2\gamma \beta^{-1}} dW_t$$

- Since we have to simulate long-time trajectories, it seems attractive to use the parareal algorithm, which solves initial value problems by parallel-in-time computations (domain-decomposition fashion)
- It turns out that this algorithm is **not stable** for MD problems when the time horizon is too large
- We therefore work with adaptive parareal algorithm, which performs simulations on shorter time slabs and paste them together, thereby allowing for a significant CPU gain (Legoll, Lelièvre and Sharma, HAL preprint 03189428, 2021)

Our goal is to apply the approach for realistic physical systems

- Since we have to simulate long-time trajectories, it seems attractive to use the parareal algorithm, which solves initial value problems by parallel-in-time computations (domain-decomposition fashion)
- It turns out that this algorithm is **not stable** for MD problems when the time horizon is too large
- We therefore work with adaptive parareal algorithm, which performs simulations on shorter time slabs and paste them together, thereby allowing for a significant CPU gain (Legoll, Lelièvre and Sharma, HAL preprint 03189428, 2021)

Our goal is to apply the approach for realistic physical systems

- Since we have to simulate long-time trajectories, it seems attractive to use the parareal algorithm, which solves initial value problems by parallel-in-time computations (domain-decomposition fashion)
- It turns out that this algorithm is **not stable** for MD problems when the time horizon is too large
- We therefore work with adaptive parareal algorithm, which performs simulations on shorter time slabs and paste them together, thereby allowing for a significant CPU gain (Legoll, Lelièvre and Sharma, HAL preprint 03189428, 2021)

Our goal is to apply the approach for realistic physical systems

Parallel in time algorithm for ODEs

$$\frac{dx}{dt} = f(x), \qquad x \in \mathbb{R}^d$$

The parareal algorithm (Lions, Maday and Turinici, 2001) is based upon two integrators to propagate the system over a time ΔT :

- \cdot a fine, accurate integrator $\mathcal{F}_{\Delta T}$
- \cdot a coarse, cheap integrator $\mathcal{C}_{\Delta \mathcal{T}}$

For instance,

$$\mathcal{F}_{\Delta T} = (\Phi_{\delta t_F})^{\Delta T/\delta t_F}$$
 and $\mathcal{C}_{\Delta T} = (\Phi_{\delta t_C})^{\Delta T/\delta t_C}$ with $\delta t_F \ll \delta t_C$

where $\Phi_{\delta t}$ is a one time step propagator

24/06/2021

Parallel in time algorithm for ODEs

$$\frac{dx}{dt} = f(x), \qquad x \in \mathbb{R}^d$$

The parareal algorithm (Lions, Maday and Turinici, 2001) is based upon two integrators to propagate the system over a time ΔT :

- \cdot a fine, accurate integrator $\mathcal{F}_{\Delta T}$
- $\cdot\,$ a coarse, cheap integrator $\mathcal{C}_{\Delta \mathcal{T}}$

For instance,

$$\mathcal{F}_{\Delta T} = (\Phi_{\delta t_F})^{\Delta T / \delta t_F}$$
 and $\mathcal{C}_{\Delta T} = (\Phi_{\delta t_C})^{\Delta T / \delta t_C}$ with $\delta t_F \ll \delta t_C$

where $\Phi_{\delta t}$ is a one time step propagator

24/06/2021

• Initialization: coarse propagation that yields $\{x_n^{k=0}\}_n$:

$$\forall n, \quad x_{n+1}^{k=0} = \mathcal{C}_{\Delta T}(x_n^{k=0})$$

• Initialization: coarse propagation that yields $\{x_n^{k=0}\}_n$:

$$\forall n, \quad x_{n+1}^{k=0} = \mathcal{C}_{\Delta T}(x_n^{k=0})$$

• Iterate over $k \ge 0$:

24/06/2021

• Initialization: coarse propagation that yields $\{x_n^{k=0}\}_n$:

$$\forall n, \quad x_{n+1}^{k=0} = \mathcal{C}_{\Delta T}(x_n^{k=0})$$

- Iterate over $k \ge 0$:
 - compute jumps (in parallel): $J_n^k = \mathcal{F}_{\Delta T}(x_n^k) \mathcal{C}_{\Delta T}(x_n^k)$

• Initialization: coarse propagation that yields $\{x_n^{k=0}\}_n$:

$$\forall n, \quad x_{n+1}^{k=0} = \mathcal{C}_{\Delta T}(x_n^{k=0})$$

- Iterate over $k \ge 0$:
 - compute jumps (in parallel): $J_n^k = \mathcal{F}_{\Delta T}(x_n^k) \mathcal{C}_{\Delta T}(x_n^k)$
 - sequential update to obtain $\{x_n^{k+1}\}_n$: $\forall n$, $x_{n+1}^{k+1} = \mathcal{C}_{\Delta T}(x_n^{k+1}) + J_n^k$

! The fine solver is called only in the parallel part of the algorithm !

24/06/2021

• Initialization: coarse propagation that yields $\{x_n^{k=0}\}_n$:

$$\forall n, \quad x_{n+1}^{k=0} = \mathcal{C}_{\Delta T}(x_n^{k=0})$$

- Iterate over $k \ge 0$:
 - compute jumps (in parallel): $J_n^k = \mathcal{F}_{\Delta T}(x_n^k) \mathcal{C}_{\Delta T}(x_n^k)$
 - sequential update to obtain $\{x_n^{k+1}\}_n$: $\forall n$, $x_{n+1}^{k+1} = \mathcal{C}_{\Delta T}(x_n^{k+1}) + J_n^k$

! The fine solver is called only in the parallel part of the algorithm !

Parareal algorithm for MD simulations

- Fundamental property : $x_n^k = \mathcal{F}_{\Delta T}^n(x_0)$ for any $n \le k$. In practice, convergence is observed in many cases over long times in a few iterations.
- In MD, we often run simulations with time steps chosen just below the stability limit (this often provides sufficient accuracy on the quantities of interest). There is hence no room for choosing $\delta t_C \gg \delta t_F$
- We thus turn to a different paradigm where $C_{\Delta T}$ integrates a simpler dynamics than $\mathcal{F}_{\Delta T}$ (say with the same time step):
 - \cdot $\mathcal{F}_{\Delta T}$ integrates the original Langevin dynamics (with the reference potential V_f)
 - $C_{\Delta T}$ integrates a Langevin dynamics run on a simplified, cheaper to compute potential V_c .

Parareal algorithm for MD simulations

- Fundamental property : $x_n^k = \mathcal{F}_{\Delta T}^n(x_0)$ for any $n \le k$. In practice, convergence is observed in many cases over long times in a few iterations.
- In MD, we often run simulations with time steps chosen just below the stability limit (this often provides sufficient accuracy on the quantities of interest). There is hence no room for choosing $\delta t_C \gg \delta t_F$
- We thus turn to a different paradigm where $C_{\Delta T}$ integrates a simpler dynamics than $\mathcal{F}_{\Delta T}$ (say with the same time step):
 - $\mathcal{F}_{\Delta T}$ integrates the original Langevin dynamics (with the reference potential V_f)
 - $C_{\Delta T}$ integrates a Langevin dynamics run on a simplified, cheaper to compute potential V_c .

Convergence criteria

Relative error between consecutive parareal trajectories:

$$E(k,N) = \frac{\sum_{n=1}^{N} |q_n^k - q_n^{k-1}|}{\sum_{n=1}^{N} |q_n^{k-1}|}.$$

• We stop the algorithm at the first parareal iteration \overline{k} for which

 $E(\overline{k},N) < \delta_{\rm conv}$

• Theoretical gain $\Gamma = \frac{N}{\overline{h}} = \frac{\#}{\#}$ fine propagations for a sequential algorithm

Convergence criteria

Relative error between consecutive parareal trajectories:

$$E(k,N) = \frac{\sum_{n=1}^{N} |q_n^k - q_n^{k-1}|}{\sum_{n=1}^{N} |q_n^{k-1}|}.$$

• We stop the algorithm at the first parareal iteration \overline{k} for which

 $E(\overline{k}, N) < \delta_{\mathrm{conv}}$

• Theoretical gain $\Gamma = \frac{N}{\overline{h}} = \frac{\# \text{ fine propagations for a sequential algorithm}}{\# \text{ fine propagations for the parareal algorithm}}$

Settings

- 128 tungsten atoms
- BCC lattice + periodic boundary conditions
- Langevin dynamics
- $\beta^{-1} = T = 300$ Kelvin (+ we have to revisit the time integrator)
- V_F fine machine-learning interatomic potentials SNAP-56 (spectral neighbor analysis potentials): Wood, Cusentino, Wirth, Thompson, Physical Review B (2019)
- \cdot V_C coarse SNAP-15 potential

24/06/2021

Settings

- 128 tungsten atoms
- BCC lattice + periodic boundary conditions
- Langevin dynamics
- $\beta^{-1} = T = 300$ Kelvin (+ we have to revisit the time integrator)
- V_F fine machine-learning interatomic potentials SNAP-56 (spectral neighbor analysis potentials): Wood, Cusentino, Wirth, Thompson, Physical Review B (2019)
- + $V_{\mathcal{C}}$ coarse SNAP-15 potential

LAMMPS

We use LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator) - a popular molecular dynamics software with a focus on materials modeling.

The parareal algorithm is written in Python and we use the following three LAMMPS include files

- **in.snap.WBe.simulation.box** defines units, MD parameters, initial configuration of the atoms and simulation cell
- in.snap.WBe.fine defines fine potential
- in.snap.WBe.coarse defines coarse potential

It is important to provide the same white noise for both potentials

LAMMPS

We use LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator) - a popular molecular dynamics software with a focus on materials modeling.

The parareal algorithm is written in Python and we use the following three LAMMPS include files

- **in.snap.WBe.simulation.box** defines units, MD parameters, initial configuration of the atoms and simulation cell
- in.snap.WBe.fine defines fine potential
- in.snap.WBe.coarse defines coarse potential

It is important to provide the same white noise for both potentials

LAMMPS

We use LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator) - a popular molecular dynamics software with a focus on materials modeling.

The parareal algorithm is written in Python and we use the following three LAMMPS include files

- **in.snap.WBe.simulation.box** defines units, MD parameters, initial configuration of the atoms and simulation cell
- in.snap.WBe.fine defines fine potential
- · in.snap.WBe.coarse defines coarse potential

It is important to provide the same white noise for both potentials

Plot of consecutive error for N = 297, $\Delta T = 0.005$

The gain $\Gamma = 5.4$. But for $N \ge 298$ it is not possible to work on the complete interval [0, N] since, along the parareal iterations, the trajectory blows up Remedy? Adaptive algorithm

Plot of consecutive error for N = 297, $\Delta T = 0.005$

The gain $\Gamma = 5.4$. But for $N \ge 298$ it is not possible to work on the complete interval [0, N] since, along the parareal iterations, the trajectory blows up Remedy? Adaptive algorithm

- On the time-slab [0, N], we run the parareal algorithm until E is
 - $\cdot\,$ either smaller than the convergence threshold $\delta_{
 m conv}$
 - or larger than an explosion threshold δ_{expl} (attained at parareal iteration # k_{cur})
- In the blow-up case, for the iteration k_{cur} , we find the first time iteration $1 + \tilde{m}_1 \leq N$ for which *E* exceeds δ_{expl} , and we shorten the slab to $[0, \tilde{m}_1]$.
- We then proceed with the parareal on the slab $[0, \tilde{m}_1]$, that we possibly further shorten, until the relative error (on $[0, \tilde{m}_1]$) is smaller than δ_{conv} .
- Once we have converged on $[0, \tilde{m}_1]$ (δ_{conv}), we proceed with the next part of the time range and define the new (tentative) time-slab as $[\tilde{m}_1, N]$.

- On the time-slab [0, N], we run the parareal algorithm until E is
 - + either smaller than the convergence threshold $\delta_{
 m conv}$
 - or larger than an explosion threshold δ_{expl} (attained at parareal iteration # k_{cur})
- In the blow-up case, for the iteration k_{cur} , we find the first time iteration $1 + \tilde{m}_1 \leq N$ for which *E* exceeds δ_{expl} , and we shorten the slab to $[0, \tilde{m}_1]$.
- We then proceed with the parareal on the slab $[0, \tilde{m}_1]$, that we possibly further shorten, until the relative error (on $[0, \tilde{m}_1]$) is smaller than δ_{conv} .
- Once we have converged on $[0, \tilde{m}_1]$ (δ_{conv}), we proceed with the next part of the time range and define the new (tentative) time-slab as $[\tilde{m}_1, N]$.

- On the time-slab [0, N], we run the parareal algorithm until E is
 - + either smaller than the convergence threshold $\delta_{
 m conv}$
 - or larger than an explosion threshold δ_{expl} (attained at parareal iteration # k_{cur})
- In the blow-up case, for the iteration k_{cur} , we find the first time iteration $1 + \tilde{m}_1 \leq N$ for which *E* exceeds δ_{expl} , and we shorten the slab to $[0, \tilde{m}_1]$.
- We then proceed with the parareal on the slab $[0, \tilde{m}_1]$, that we possibly further shorten, until the relative error (on $[0, \tilde{m}_1]$) is smaller than δ_{conv} .
- Once we have converged on $[0, \tilde{m}_1]$ (δ_{conv}), we proceed with the next part of the time range and define the new (tentative) time-slab as $[\tilde{m}_1, N]$.

- On the time-slab [0, N], we run the parareal algorithm until E is
 - + either smaller than the convergence threshold $\delta_{
 m conv}$
 - or larger than an explosion threshold δ_{expl} (attained at parareal iteration # k_{cur})
- In the blow-up case, for the iteration k_{cur} , we find the first time iteration $1 + \tilde{m}_1 \leq N$ for which *E* exceeds δ_{expl} , and we shorten the slab to $[0, \tilde{m}_1]$.
- We then proceed with the parareal on the slab $[0, \tilde{m}_1]$, that we possibly further shorten, until the relative error (on $[0, \tilde{m}_1]$) is smaller than δ_{conv} .
- Once we have converged on $[0, \tilde{m}_1]$ (δ_{conv}), we proceed with the next part of the time range and define the new (tentative) time-slab as $[\tilde{m}_1, N]$.

Gain for adaptive parareal

- We remind that the classical parareal algorithm blows up when $N \ge 298$.
- For N > 500, the gain seems to be almost independent of N

Gain for adaptive parareal

- We remind that the classical parareal algorithm blows up when $N \ge 298$.
- For N > 500, the gain seems to be almost independent of N

Explosion threshold

The slab sizes are such that $E \leq \delta_{expl}$:

- if δ_{expl} is chosen large, there is no adaptation: classical parareal
- if δ_{expl} is chosen small, the slabs are short: no parallelism anymore
- the optimal choice of δ_{expl} is somewhere in-between

Perspectives (all in progress)

Investigate the feasibility of the adaptive algorithm for realistic problems in the high performance computing context:

- Efficiency of the algorithm for computation of material properties:
 - elastic constants
 - dynamical quantities (diffusion coefficients of vacancies)
- Further comparison of the adaptive algorithm and the classical parareal
- Computational gain using different couples of SNAP potentials

