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Motivation
This work is motivated by molecular simulation, where we often have to simulate
long trajectories of complex systems.

Typical dynamics: the Langevin equation

dqt = pt dt, dpt = −∇V(qt)dt − γ pt dt +
√
2γβ−1 dWt
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Motivation
• Since we have to simulate long-time trajectories, it seems attractive to use
the parareal algorithm, which solves initial value problems by
parallel-in-time computations (domain-decomposition fashion)

• It turns out that this algorithm is not stable for MD problems when the time
horizon is too large

• We therefore work with adaptive parareal algorithm, which performs
simulations on shorter time slabs and paste them together, thereby allowing
for a significant CPU gain (Legoll, Lelièvre and Sharma, HAL preprint 03189428,
2021)

Our goal is to apply the approach for realistic physical systems
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Parallel in time algorithm for ODEs

dx
dt

= f (x), x ∈ Rd

The parareal algorithm (Lions, Maday and Turinici, 2001) is based upon two
integrators to propagate the system over a time ∆T :

• a fine, accurate integrator F∆T

• a coarse, cheap integrator C∆T

For instance,

F∆T = (ΦδtF )
∆T/δtF and C∆T = (ΦδtC)

∆T/δtC with δtF � δtC

where Φδt is a one time step propagator
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The parareal iterative procedure
• Initialization: coarse propagation that yields

{
xk=0n

}
n:

∀n, xk=0n+1 = C∆T(xk=0n )
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The parareal iterative procedure
• Initialization: coarse propagation that yields

{
xk=0n

}
n:

∀n, xk=0n+1 = C∆T(xk=0n )

• Iterate over k ≥ 0:
• compute jumps (in parallel): Jkn = F∆T(xkn)− C∆T(xkn)
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The parareal iterative procedure
• Initialization: coarse propagation that yields

{
xk=0n

}
n:

∀n, xk=0n+1 = C∆T(xk=0n )

• Iterate over k ≥ 0:
• compute jumps (in parallel): Jkn = F∆T(xkn)− C∆T(xkn)
• sequential update to obtain

{
xk+1n

}
n: ∀n, xk+1n+1 = C∆T(xk+1n ) + Jkn

! The fine solver is called only in the parallel part of the algorithm !
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Parareal algorithm for MD simulations

• Fundamental property : xkn = Fn
∆T(x0) for any n ≤ k. In practice, convergence

is observed in many cases over long times in a few iterations.
• In MD, we often run simulations with time steps chosen just below the
stability limit (this often provides sufficient accuracy on the quantities of
interest). There is hence no room for choosing δtC � δtF

• We thus turn to a different paradigm where C∆T integrates a simpler
dynamics than F∆T (say with the same time step):

• F∆T integrates the original Langevin dynamics (with the reference potential Vf )
• C∆T integrates a Langevin dynamics run on a simplified, cheaper to compute
potential Vc.
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Convergence criteria

• Relative error between consecutive parareal trajectories:

E(k,N) =
∑N

n=1 |qkn − qk−1n |∑N
n=1 |q

k−1
n |

.

• We stop the algorithm at the first parareal iteration k for which

E(k,N) < δconv

• Theoretical gain Γ = N
k
=
# fine propagations for a sequential algorithm
# fine propagations for the parareal algorithm
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Settings

• 128 tungsten atoms
• BCC lattice + periodic boundary conditions
• Langevin dynamics
• β−1 = T = 300 Kelvin ( + we have to revisit
the time integrator)

• VF - fine machine-learning interatomic
potentials SNAP-56 (spectral neighbor
analysis potentials): Wood, Cusentino, Wirth,
Thompson, Physical Review B (2019)

• VC - coarse SNAP-15 potential
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LAMMPS

We use LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator) - a
popular molecular dynamics software with a focus on materials modeling.

The parareal algorithm is written in Python and we use the following three
LAMMPS include files

• in.snap.WBe.simulation.box - defines units, MD parameters, initial
configuration of the atoms and simulation cell

• in.snap.WBe.fine - defines fine potential
• in.snap.WBe.coarse - defines coarse potential

It is important to provide the same white noise for both potentials
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Plot of consecutive error for N = 297, ∆T = 0.005

The gain Γ = 5.4. But for N ≥ 298 it is not possible to work on the complete
interval [0,N] since, along the parareal iterations, the trajectory blows up

Remedy? Adaptive algorithm
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Adaptive algorithm

• On the time-slab [0,N], we run the parareal algorithm until E is
• either smaller than the convergence threshold δconv

• or larger than an explosion threshold δexpl (attained at parareal iteration # kcur)

• In the blow-up case, for the iteration kcur, we find the first time iteration
1+ m̃1 ≤ N for which E exceeds δexpl, and we shorten the slab to [0, m̃1].

• We then proceed with the parareal on the slab [0, m̃1], that we possibly
further shorten, until the relative error (on [0, m̃1]) is smaller than δconv.

• Once we have converged on [0, m̃1] (δconv), we proceed with the next part of
the time range and define the new (tentative) time-slab as [m̃1,N].
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Gain for adaptive parareal

• We remind that the classical parareal algorithm blows up when N ≥ 298.
• For N > 500, the gain seems to be almost independent of N
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Explosion threshold
The slab sizes are such that E ≤ δexpl:

• if δexpl is chosen large, there is no adaptation: classical parareal
• if δexpl is chosen small, the slabs are short: no parallelism anymore
• the optimal choice of δexpl is somewhere in-between

List of the sizes of the time-slabs found by the algorithm for N = 1000:
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Perspectives (all in progress)

Investigate the feasibility of the adaptive algorithm for realistic problems in the
high performance computing context:

• Efficiency of the algorithm for computation of material properties:
• elastic constants
• dynamical quantities (diffusion coefficients of vacancies)

• Further comparison of the adaptive algorithm and the classical parareal

• Computational gain using different couples of SNAP potentials
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