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Motivation

This work is motivated by molecular simulation, where we often have to simulate
long trajectories of complex systems.

dqt = Pt dt, dpt = —VV(qt) Clt—"}/pt dt + v/ 2’)/5_1 CIW{
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Motivation

- Since we have to simulate long-time trajectories, it seems attractive to use
the , which solves initial value problems by
parallel-in-time computations (domain-decomposition fashion)
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Motivation

- Since we have to simulate long-time trajectories, it seems attractive to use
the , which solves initial value problems by
parallel-in-time computations (domain-decomposition fashion)

- It turns out that this algorithm is not stable for MD problems when the time
horizon is too large

- We therefore work with , which performs
simulations on shorter time slabs and paste them together, thereby allowing
for a significant CPU gain (Legoll, Leliévre and Sharma, HAL preprint 03189428,
2021)

is to apply the approach for realistic physical systems
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Parallel in time algorithm for ODEs
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Parallel in time algorithm for ODEs

dx_

d
a_f(x), xeR

The (Lions, Maday and Turinici, 2001) is based upon two
integrators to propagate the system over a time AT:

- afine, accurate integrator Far
- a coarse, cheap integrator Car

For instance,
Far = (Ps,)27/% and Car = (05 )27/ with 5ty < 6tc

where ®g; is a one time step propagator
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The parareal iterative procedure

- Initialization: coarse propagation that yields {xﬁzo}n:

vn, xi5) = Car(xi=")
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The parareal iterative procedure

- Initialization: coarse propagation that yields {xﬁzo}n:

vn, xi5) = Car(xi=")

- Iterate over k > O:
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The parareal iterative procedure

- Initialization: coarse propagation that yields {xﬁzo}n:

vn, xi5) = Car(xi=")

- |terate over k > 0:
- compute jumps (in parallel): J& = Far(xk) — Car(xk)
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The parareal iterative procedure

+ Initialization: coarse propagation that yields {xf=°} :

n,  xi30 = Car(xf=°)

- Iterate over kR > O:
- compute jumps (in parallel): Jf = Far(xE) — Car(xF)
- sequential update to obtain {xf*'} : Vn, X{i] =Car(xEt") + /&
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The parareal iterative procedure

+ Initialization: coarse propagation that yields {xf=°} :

n,  xi30 = Car(xf=°)

- Iterate over kR > O:
- compute jumps (in parallel): Jf = Far(xE) — Car(xF)
- sequential update to obtain {xf*'} : Vn, X{i] =Car(xEt") + /&

I The is called only in the part of the algorithm !
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Parareal algorithm for MD simulations

- Fundamental property : xk = FAr(xo) forany n < k. In practice, convergence
is observed in many cases over long times in a few iterations.

-+ In MD, we often run simulations with time steps chosen just below the
stability limit (this often provides sufficient accuracy on the quantities of
interest). There is hence no room for choosing 6tc >> 6tr
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Parareal algorithm for MD simulations

- Fundamental property : xk = FAr(xo) forany n < k. In practice, convergence
is observed in many cases over long times in a few iterations.

-+ In MD, we often run simulations with time steps chosen just below the
stability limit (this often provides sufficient accuracy on the quantities of
interest). There is hence no room for choosing 6tc >> 6tr

- We thus turn to a different paradigm where Car integrates a simpler
dynamics than Far (say with the same time step):
- Far integrates the original Langevin dynamics (with the reference potential V¢)
- Car integrates a Langevin dynamics run on a simplified, cheaper to compute
potential V..
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Convergence criteria

- Relative error between consecutive parareal trajectories:

’ Zﬁ:1 |Q£_1|

- We stop the algorithm at the first parareal iteration k for which

E(R,N) < dcony
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Convergence criteria

- Relative error between consecutive parareal trajectories:

’ St lan |

- We stop the algorithm at the first parareal iteration k for which

E(R,N) < dcony

. Theoretical eain T = N — # fine propagations for a sequential algorithm
g ~ k  #fine propagations for the parareal algorithm
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Settings

- 128 tungsten atoms
- BCC lattice + periodic boundary conditions
- Langevin dynamics

- B~ =T =300 Kelvin ( + we have to revisit
the time integrator)




Settings

- 128 tungsten atoms
- BCC lattice + periodic boundary conditions
- Langevin dynamics

- B~ =T =300 Kelvin ( + we have to revisit
the time integrator)

- Vr - fine machine-learning interatomic
potentials SNAP-56 (spectral neighbor
analysis potentials): Wood, Cusentino, Wirth,
Thompson, Physical Review B (2019)

- Ve - coarse SNAP-15 potential



LAMMPS

We use (Large-scale Atomic/Molecular Massively Parallel Simulator) - a
popular molecular dynamics software with a focus on materials modeling.

24/06/2021 Adaptive parareal algorithm



LAMMPS

We use (Large-scale Atomic/Molecular Massively Parallel Simulator) - a
popular molecular dynamics software with a focus on materials modeling.

The parareal algorithm is written in Python and we use the following three
LAMMPS include files
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LAMMPS

We use (Large-scale Atomic/Molecular Massively Parallel Simulator) - a
popular molecular dynamics software with a focus on materials modeling.

The parareal algorithm is written in Python and we use the following three
LAMMPS include files

- in.snap.WBe.simulation.box - defines units, MD parameters, initial
configuration of the atoms and simulation cell

- in.snap.WBe.fine - defines fine potential

- in.snap.WBe.coarse - defines coarse potential

It is important to provide the same white noise for both potentials
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Plot of consecutive error for N = 297, AT = 0.005
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. But for N > 298 it is not possible to work on the complete
interval [0, N] since, along the parareal iterations, the trajectory blows up
Remedy?
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Adaptive algorithm
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Adaptive algorithm

- On the time-slab [0, N], we run the parareal algorithm until £ is

- either smaller than the convergence threshold dcony
- or larger than an explosion threshold &1 (attained at parareal iteration # Rey,)
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Adaptive algorithm

- On the time-slab [0, N], we run the parareal algorithm until £ is

- either smaller than the convergence threshold dcony
- or larger than an explosion threshold &1 (attained at parareal iteration # Rey,)

- In the blow-up case, for the iteration key, we find the first time iteration
14 my < N for which E exceeds dexp1, and we shorten the slab to [0, m].

- We then proceed with the parareal on the slab [0, m4], that we possibly
further shorten, until the relative error (on [0, m4]) is smaller than deony.
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Adaptive algorithm

- On the time-slab [0, N], we run the parareal algorithm until £ is

- either smaller than the convergence threshold dcony
- or larger than an explosion threshold &1 (attained at parareal iteration # Rey,)

- In the blow-up case, for the iteration key, we find the first time iteration
14 my < N for which E exceeds dexp1, and we shorten the slab to [0, m].

- We then proceed with the parareal on the slab [0, m4], that we possibly
further shorten, until the relative error (on [0, m4]) is smaller than deony.

- Once we have converged on [0, M1] (Jconv), We proceed with the next part of
the time range and define the new (tentative) time-slab as [m, N].
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Gain for adaptive parareal
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Gain for adaptive parareal
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- We remind that the classical parareal algorithm blows up when N > 298.
- For N > 500, the gain seems to be almost independent of N



Explosion threshold

The slab sizes are such that £ < dexpi:

- If dexp1 IS Chosen large, there is no adaptation: classical parareal
+ If dexp1 IS chosen small, the slabs are short: no parallelism anymore
- the optimal choice of dexp1 IS SOMewhere in-between

List of the sizes of the time-slabs found by the algorithm for N = 1000:
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Perspectives (all in progress)

Investigate the feasibility of the adaptive algorithm for realistic problems in the
high performance computing context:

- Efficiency of the algorithm for computation of material properties:

- elastic constants
- dynamical quantities (diffusion coefficients of vacancies)

- Further comparison of the adaptive algorithm and the classical parareal

- Computational gain using different couples of SNAP potentials
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