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Coupling between free fluid and porous flows

Arbitrary flow direction in Q := Q; UX U Q,
= Open problem for 2-D/3-D inertial flows (no global solvability)
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Non-inertial flows with 0 < ¢p < 1 : Stokes/Darcy-Brinkman problem

V=0 in Qf U Qp,

—nAv+Vp=pf in Qp,

—d)iAv+qu_1fu+Vp:pf in Qp,
p

suitable B.C.; e.g. v =0 on I := 99qQ.

= + physically relevant interface conditions on 3 at the macroscale... ?
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Usual coupling for Navier-Stokes and Darcy flows

Ad-hoc extended Beavers-Joseph-Saffman’s interface conditions

@ From Beavers & Joseph (1967), Saffman (1971) and Jones (1973) :
semi-empirical approach with experimental data for 1-D channel flow

@ Jager & Mikeli¢ (2000, 2009), Brillard et al. (2013) : homogenization

@ Mainly valid for the 1-D channel flow parallel to interface X
see Angot et al. (2017, 2021), Eggenweiler & Rybak (2020, 2021)

[vn]s =0

f .
T (V'v + V'UT)): m = b [viTilsg, for j=1,2 on X =3,.

Vs

n-[o(v,p)n]y =0
@ Saffman’s approx. : [v-T]y; := (v/ — vP)s-T = vf.7, not always valid

® = In contradiction with non-zero stress vector jump derived by
asymptotic modeling theory of PhA., Goyeau and Ochoa-Tapia (2017)

@ = Only linear conditions in contradiction with the nonlinear ones derived
by PhA., Goyeau and Ochoa-Tapia (2021)
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Asymptotic modeling and related approximations

New theory with given interface position zx (# upscaling theories)
See [PhA., Goyeau and Ochoa-Tapia, Phys. Rev. E, 2017|
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Single-domain continuum modeling with heterogeneous inter-region Qgp

@ Dimensional reduction of Qyp, to a dividing surface ¥ (as for fractures)

@ Average over d generalized Brinkman (variable porosity & permeability)

@ Asymptotic analysis at O(d/L) with § := d/L < 1 since d = O(\/Kp)

@ = Sets of jump interface conditions depending on 0 < £ := |zx|/d < 1

Asymptotic models at a fluid-porous ir c Principles of the asymptotic modeling theory



Approximations at the first-order in O(d/L)

A key result extensively used

Lemma (Approximation of the generalized average over thickness d)

Let v : [—d/2,d/2] — R be a continuously differentiable function and let
w: [—d/2,d/2] — R be Lebesgue-integrable.
Then we have :

/_dd/; w(z) Y (x) de

= d(w) PEYD AV 6 (1| oo ]y @?)

= d (w) Px + O (¢’ [l (|w]) d*) -

= Averaging over d the product of functions as Darcy drag : u K~ 'v
= Averaging over d the nonlinear terms coming from Navier-Stokes or
Dupuit-Forchheimer

Asymptotic models at a fluid-porous interface Principles of the asymptotic modeling theory



Asymptotic interface models up to O(d/L)

Jump interface conditions on X = X; (£ = 0) for non-inertial flow

S|

Q, Free fluid region

Q , Homogencous porous regior

I]:’U-’I’L]]E =0,

o{(v)-nz =_F_ as [v]s,

VEy

[o (v, p)-nly, = \/% Bsvl — fo

on X = Xi.

@ asx > 0 : coefficient of tangential velocity slip (only scalar)
@ (Bs > 0 : tensor (symmetric semi-positive definite) of Darcy friction

@ = Multi-directional 2-D/3-D flows with anisotropic effects of
microstructure for both Stokes/ Darcy-Brinkman or Stokes/Darcy models

Asymptotic models at a fluid-porous ir > Jump conditions for mass and momentum




Asymptotic interface models up to O(d/L)

Jump interface conditions on X = X} (€ = 1) for non-inertial flow

zZ

Q, Free fluid region

[v]ls =0, ie. vl =00 :=vs

[o(v,p)nly = —H— Bsvs — fo on ¥ = .

@ Velocity continuity on 3 for Stokes/Darcy-Brinkman and Stokes/Darcy
@ (Bx > 0 : tensor (symmetric positive definite) of Darcy friction

@ = Multi-directional 2-D/3-D flows with anisotropic effects of
microstructure for both Stokes/Darcy-Brinkman or Stokes/Darcy models

Asymptotic models at a fluid-porous ir c Jump conditions for mass and momentum



The incompressible inertial viscous flow

Navier-Stokes/Darcy-Forchheimer model (0 < ¢, < 0.95)

=> Volume-averaged Navier-Stokes equations in Qgp with ¢pp < ¢ <1
All the terms must be kept in €25, = coherency when ¢ — 1 or ¢ — ¢
See [PhA., Goyeau and Ochoa-Tapia, Adv. Water Res., 2021]

Vw =0 in €,
V-(pv@v) —pAv+Vp =pf in Qp,

gv <$U® )—V-a(’u,p)

R . = ’ ir Q N

+ll4 —I— *p |'U| K}(d)) v P fp

v R v + (AN (Z) v —|— vl) =p ' i Q )
P /Tr | | ( p) P

where :
@ x(¢) : Dupuit-Forchheimer’s inertial tensor (strong inertia regime)

@ stress tensor for a Newtonian fluid in Q¢ or Qgp :
o(v,p) := “(Vv—l—V'v )—pl,
with ¢ =1 in Qf, ¢ = ¢p in Qp.

@ stress tensor for Darcy’s law in Qp : 0P (v, p) := —p I

Nonlinear asymptotic models for the inertial flows The single-domain continuum model




The nonlinear interface model for the inertial flow

Ratio of Navier-Stokes nonlinear term over Forchheimer friction

102

R_NS-F Lid_p
—— R_Ns-F for L=10dp
— R_NS-F for L=100dp

Normalized ratio (log scale}

T T T T T T T T T
0.8 0.82 0.84 0.86 0.88 09 0.82 0.94 0.96 0.98 1
Porosity phi

Ratio of Navier-Stokes nonlinear term over Forchheimer’s inertial drag
Rns/p = O(y/ K(¢)/¢2L k()

=> Navier’s nonlinear term can be neglected in Q for ¢pp < 0.95, but not in
Qsp (pp < ¢ < 1) since the two nonlinear terms are then of the same order.
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The nonlinear interface model for the inertial flow

Navier-Stokes/Darcy-Forchheimer macroscopic model

+ the nonlinear interface model at ¥ = X, (middle of Q) up to O(d/L)
with a surface force f& :=d (p f) on 2 :

[[’U'nl]z =0,
oy (v)ng = \/l;?p as [v]s,

R
IIU('Uap)'n]]z: - \/E

on X = X,.

Bs-vs

—|—% pvnv’ 4+ plu|g AsTs — f&

where ¢y, := (7 4 9P) /2 (arithmetic mean of traces on %)
@ = Non-inertial interface model on X,
@ + two additional nonlinear terms coming from inertia in Qsp (As > 0)
° % pvnv’ # % p|v’|? n (suggested conjecture of Riviere et al., 2008)

@ = To our knowledge, this nonlinear multi-dimensional model is the first
proposed in the literature for the inertial flow with global dissipation

The nonlinear interface model at ¥ = X, 11
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The nonlinear interface model for the inertial flow

Navier-Stokes/Darcy-Forchheimer macroscopic model
+ the nonlinear interface model at ¥ = X (£ = 1) up to O(d/L)
with a surface force f& :=d(p f) on 2 :

[v]s = O, ie. vl =0 :=vs

[o(v,p)n]s = \/l;?pﬂz-'vz on X = Y.

1
—|—5 pvnvs + p |lvs| Asvs — &

@ = Non-inertial interface model on X
stress jump interface conditions with velocity continuity

@ + two additional nonlinear terms coming from inertia in Qfp (As > 0)

@ = Only the parameter Bs; of the non-inertial interface model is required
at ¥ = X (€ = 1) since As =~ By k(dp)-

Nonlinear asymptotic models for the inertial flows The nonlinear interface model at ¥ = X 12



Unsteady Navier-Stokes/Darcy coupled problem

Flow configuration in fluid-porous domain Q := Qy UX U Qp C R? (d < 3)

€ : open bounded connected domain with Lipschitz boundary T' := 82
3 := 8Qp : closed smooth surface (of class €1'1) or £p a convex domain (to avoid

unnecessary technicalities...)

['=0Q

porous domain €2,

90y =TUY

Stokes/Darcy problem Coupling with stress jump interface conditions
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Unsteady Navier-Stokes/Darcy coupled problem

Coupling with nonlinear stress jump interface conditions on ¥ = X

Vv=0 in (0,T) X Q,

1
vl + (V x 'vf)/\vf —pAvf 4+ v (pf + > |'uf|2) =5t in (0,T) X Qpg,
e dvP + p K1 vP 4 VpP = fP in (0,T) X Qp,

vf =0 on (0,T) x T,
v(t =0) = vo in Q,

with the data :
@ constant mass density p = 1 and dynamic viscosity g > 0

@ constant intrinsic permeability tensor K (symmetric and positive definite),
possibly time-dependent : K € L2(]0, T[; R4*%) s.t. with some kv, > 0 :
(K™Y (t) y)-y > km |y|? for all y € R* and almost every t € (0,T).

@ body forces : ff € L?(0,T; L?*(Qy)%) and fP € L?(0,T; H*(2)%)

@ small parameter € > 0 possibly going to zero

Analysis of the Navier-Stokes/Darcy problem Coupling with stress jump interface conditions
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Unsteady Navier-Stokes/Darcy coupled problem

Nonlinear stress jump interface conditions on X = X

Cauchy stress tensor in Q5 or Q, :
of(v,p) :=cf(v) —pI, where  of(v) := 2 pu D(v) in Qp,

. 1 T
with  D(v) := > (V'v + Vo ) )
oP(v,p) := —pP I, in Qp,

where o (v) is the viscous stress tensor and D(v) is the strain rate tensor
(symmetric part of Vv), I being the unit tensor.

f P

[v]s =0, ie. vy, = vy i=vs
" 1 N on ¥ = Eb,
v,p)n]ys = —— Bz v —vnv v vy —
[o(v,p)-nlx \/?52 =+3 s+ vzl Asvs — &
where :
@ K := ||K]||2 (or another permeability reference)

@ given external surfacic force on 3 : fss € L2(0,T; H—1/2(%)4)

@ stress jump friction tensor (symmetric and uniformly positive definite) :
ﬂz: c L2 (0’ T; Loo(z)dxd)

@ inertial friction tensor (uniformly bounded and positive definite, possibly
symmetric) : Ay € L™ ((0,T) x X)dxd

Analysis of the Navier-Stokes/Darcy problem Coupling with stress jump interface conditions
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Unsteady Navier-Stokes/Darcy coupled problem

Leray’s type weak problem with divergence-free test functions

Functional setting :
H := {u € L?()% Vau=0in Q, uv =0 on I‘} ,
V= {u € H} ()% Viu=0 in Q} ,
Vi = {u S Hé’r(ﬂf)d; Vu =0 in Qf} .

Equivalent weak transmission problem : looking for a velocity solution

v € L2(0,T; V) such that v'f := 9,vf € L1 (0, T; H—1(Q24)9)

<8tvf,z,of> , +/ ((V X v)Av) -cpdm—|—/ p,V'v:chd:c—‘,—/ w (K 'v)-pde
Vi Vy Q2 Qy Qp

—l—/g%(Bgv)-cpds+/z:|v>:|()\2'v)'4pds

1 r
+5 / (v-n v — |v|2 ap~n) ds => vanishing term when ¢ = v
=

= [ fedet o) 1jns,  forall pEV,
«Q

supplemented with the initial condition v(t = 0) = vo.

It makes sense for any v/ (t) € H'(24)? and vP(t) € H(Qp)? (H?Z-elliptic
regularity of pressure in €2p) with Sobolev continuous imbeddings for d < 3 :
HY(Qf)? — Lb(Qs)? and HY/2(2)? — L4(2)?

f the Navier-Stokes/Darcy problem Coupling with stress jump interface conditions
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Unsteady Navier-Stokes/Darcy coupled problem

Linearly implicit discrete time scheme with time-step 6t > 0

u® : the time approximate of any function u(t) at time t3 := k 5t

Starting from v°

= wo, the Euler implicit scheme reads for all k € N such that
(k+1)0t<T:

okt okt
/n Tvcpdm—i-e/n %qzdm—}-/ (V X v, )/\vk+1) «pdx

f P
+ uw’“+1 de+/ p (K™D EFD R G g

+/ —(@’““ :+1)-¢ds+/ [k | A5 05 1) ds
=

—}-7 / v:+1~n vf-cp - (v’:~v’:+1) Lp~n) ds (=0 with ¢ = vf+1)

/ fk+1 «pdx + <fk+1, > , for all ¢ € V.

1/2,%

of the Navier-Stokes/Darcy problem A linearly implicit Euler time scheme 17



Unsteady Navier-Stokes/Darcy coupled problem

Passing to the limit with € = 6t in the time scheme when §t — 0

Theorem (Global solvability in time of the Navier-Stokes/Darcy coupled flow)

Let us consider any data f € L?(0,T; L?(Q2)%) with fP € L?(0,T; H*()?),

f= € L%(0,T; H_I/Z(E)d), vg € V and any p > 0 with the above natural assumptions
on K, Bs and As.

Then, there exists at least a solution (v, p) to the Navier-Stokes/Darcy problem for
d < 3 such that for any T > O :

i) v € L%(0,T; V) with vf € L=(0,T; L?(25)?%) and v is weakly continuous from
[0, T] into L2(24)<,

i) v’ = 8,vf € L¥4(0,T; VY),
iti) p € W—1°°(0,T; L?(R2)) with pP € L?(0,T; H*(Qyp)).

Moreover, any solution satisfies the energy inequality below for almost every t € [0,T] :

0@, + [ IVo O n, drt [* [ w T @pe) o dear
+/ (/ (B=(T)v(7T))-v(T)dsdTr —|—/ los(7)] A= (7T) v(7))-v(T) ds) dr

< llvoll3 +/0 ([ srede+ (.0 _yjz) ar

For the space dimension d = 2, the solution (v, p) is unique with
vf € €([0, T]; L2 (25)?) such that v'¥ € L?(0,T; V() and the above inequality does
actually become an equality of energy.

Analysis of the Navier-Stokes/Darcy problem Main result of global solvability in time



Some perspectives...

@ Analysis of global well-posedness in time of the Stokes/Darcy-Brinkman
and Stokes/Darcy fluid-porous coupled problems (for non-inertial flows)
with different sets of jump interface conditions on X, or Xy :

Ok whatever the size of data
[PhA., ESAIM : Math. Model. Numer. Anal., 2018 and 2021 (submitted)]

@ Global solvability in time of the Navier-Stokes/Darcy coupled problem
with no restriction on the size of the data :

N.B. All previous studies only prove the solvability
either with small data (Reynolds number) for the steady problem
or locally over a small time interval for the unsteady problem.

@ Well-posedness analysis of the Navier-Stokes/Darcy-Forchheimer coupled
problem : in progress

THANK YOU FOR YOUR ATTENTION
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