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Coupling between free fluid and porous flows

Arbitrary flow direction in Ω := Ωf ∪ Σ ∪ Ωp
⇒ Open problem for 2-D/3-D inertial flows (no global solvability)

Non-inertial flows with 0 < φp < 1 : Stokes/Darcy-Brinkman problem

∇·v = 0 in Ωf ∪ Ωp,

−µ∆v +∇p = ρ f in Ωf ,

− µ

φp
∆v + µK−1

p v +∇p = ρ f in Ωp,

suitable B.C., e.g. v = 0 on Γ := ∂Ω.

⇒ + physically relevant interface conditions on Σ at the macroscale... ?
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Usual coupling for Navier-Stokes and Darcy flows

Ad-hoc extended Beavers-Joseph-Saffman’s interface conditions

From Beavers & Joseph (1967), Saffman (1971) and Jones (1973) :
semi-empirical approach with experimental data for 1-D channel flow
Jäger & Mikelić (2000, 2009), Brillard et al. (2013) : homogenization
Mainly valid for the 1-D channel flow parallel to interface Σ
see Angot et al. (2017, 2021), Eggenweiler & Rybak (2020, 2021)


[[v·n]]Σ = 0

τj·
(
∇v +∇vT

)f
Σ
·n =

αbj√
Kp

[[v·τj]]Σ, for j = 1, 2

n·[[σ(v, p)·n]]Σ = 0

on Σ = Σt.

Saffman’s approx. : [[v·τ ]]Σ := (vf − vp)Σ·τ ≈ vf ·τ , not always valid

⇒ In contradiction with non-zero stress vector jump derived by
asymptotic modeling theory of PhA., Goyeau and Ochoa-Tapia (2017)
⇒ Only linear conditions in contradiction with the nonlinear ones derived
by PhA., Goyeau and Ochoa-Tapia (2021)
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Asymptotic modeling and related approximations
New theory with given interface position zΣ (6= upscaling theories)
See [PhA., Goyeau and Ochoa-Tapia, Phys. Rev. E, 2017]

Single-domain continuum modeling with heterogeneous inter-region Ωfp

Dimensional reduction of Ωfp to a dividing surface Σ (as for fractures)
Average over d generalized Brinkman (variable porosity & permeability)
Asymptotic analysis at O(d/L) with δ := d/L� 1 since d = O(

√
Kp)

⇒ Sets of jump interface conditions depending on 0 ≤ ξ := |zΣ|/d ≤ 1
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Approximations at the first-order in O(d/L)

A key result extensively used

Lemma (Approximation of the generalized average over thickness d)

Let ψ : [−d/2, d/2]→ R be a continuously differentiable function and let
w : [−d/2, d/2]→ R be Lebesgue-integrable.
Then we have :∫ d/2

−d/2

w(x)ψ(x) dx

= d 〈w〉 ψ(−d/2) + ψ(d/2)

2
+ O

(
‖ψ′‖∞〈|w|〉 d2)

= d 〈w〉ψΣ + O
(
‖ψ′‖∞〈|w|〉 d2) .

⇒ Averaging over d the product of functions as Darcy drag : µK−1v

⇒ Averaging over d the nonlinear terms coming from Navier-Stokes or
Dupuit-Forchheimer
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Asymptotic interface models up to O(d/L)

Jump interface conditions on Σ = Σt (ξ = 0) for non-inertial flow



[[v·n]]Σ = 0,

σf
v (v)·nΣ =

µ√
Kp

αΣ [[v]]Σ,

[[σ(v, p)·n]]Σ =
µ√
Kp

βΣ·vf
Σ − fΣ

on Σ = Σt.

αΣ > 0 : coefficient of tangential velocity slip (only scalar)
βΣ ≥ 0 : tensor (symmetric semi-positive definite) of Darcy friction
⇒ Multi-directional 2-D/3-D flows with anisotropic effects of
microstructure for both Stokes/Darcy-Brinkman or Stokes/Darcy models
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Asymptotic interface models up to O(d/L)

Jump interface conditions on Σ = Σb (ξ = 1) for non-inertial flow


[[v]]Σ = 0, i.e. vf

Σ = vp
Σ := vΣ

[[σ(v, p)·n]]Σ =
µ√
Kp

βΣ·vΣ − fΣ
on Σ = Σb.

Velocity continuity on Σb for Stokes/Darcy-Brinkman and Stokes/Darcy
βΣ > 0 : tensor (symmetric positive definite) of Darcy friction
⇒ Multi-directional 2-D/3-D flows with anisotropic effects of
microstructure for both Stokes/Darcy-Brinkman or Stokes/Darcy models

Asymptotic models at a fluid-porous interface Jump conditions for mass and momentum 8



The incompressible inertial viscous flow
Navier-Stokes/Darcy-Forchheimer model (0 < φp ≤ 0.95)

⇒ Volume-averaged Navier-Stokes equations in Ωfp with φp ≤ φ ≤ 1
All the terms must be kept in Ωfp ⇒ coherency when φ→ 1 or φ→ φp

See [PhA., Goyeau and Ochoa-Tapia, Adv. Water Res., 2021]

∇·v = 0 in Ω,

∇· (ρ v ⊗ v)− µ∆v +∇p = ρ f in Ωf ,

1

φ
∇·
(
ρ

φ
v ⊗ v

)
−∇·σ(v, p)

+µK−1·v+
ρ√
Kp

|v|κ(φ)·v = ρ f in Ωfp,

µK−1
p ·v +

ρ√
Kp

|v|κ(φp)·v +∇p = ρ f in Ωp,

where :
κ(φ) : Dupuit-Forchheimer’s inertial tensor (strong inertia regime)
stress tensor for a Newtonian fluid in Ωf or Ωfp :

σ(v, p) :=
µ

φ
(∇v +∇vT )− p I,

with φ = 1 in Ωf , φ = φp in Ωp.

stress tensor for Darcy’s law in Ωp : σp(v, p) := −p I
Nonlinear asymptotic models for the inertial flows The single-domain continuum model 9



The nonlinear interface model for the inertial flow

Ratio of Navier-Stokes nonlinear term over Forchheimer’s inertial drag
RNS/F = O(

√
K(φ)/φ2Lκ(φ))

⇒ Navier’s nonlinear term can be neglected in Ωp for φp ≤ 0.95, but not in
Ωfp (φp ≤ φ ≤ 1) since the two nonlinear terms are then of the same order.

Nonlinear asymptotic models for the inertial flows The single-domain continuum model 10



The nonlinear interface model for the inertial flow
Navier-Stokes/Darcy-Forchheimer macroscopic model

+ the nonlinear interface model at Σ = Σm (middle of Ωfp) up to O(d/L)
with a surface force fΣ := d 〈ρ f〉 on Σ :

[[v·n]]Σ = 0,

σv(v)·nΣ =
µ√
Kp

αΣ [[v]]Σ,

[[σ(v, p)·n]]Σ =
µ√
Kp

βΣ·vΣ

+
1

2
ρ v·nvf + ρ |v|Σ λΣ·vΣ − fΣ

on Σ = Σm.

where ψΣ :=
(
ψf + ψp

)
Σ
/2 (arithmetic mean of traces on Σ)

⇒ Non-inertial interface model on Σm

+ two additional nonlinear terms coming from inertia in Ωfp (λΣ > 0)
1

2
ρ v·nvf 6= 1

2
ρ |vf |2 n (suggested conjecture of Rivière et al., 2008)

⇒ To our knowledge, this nonlinear multi-dimensional model is the first
proposed in the literature for the inertial flow with global dissipation
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The nonlinear interface model for the inertial flow

Navier-Stokes/Darcy-Forchheimer macroscopic model

+ the nonlinear interface model at Σ = Σb (ξ = 1) up to O(d/L)
with a surface force fΣ := d 〈ρ f〉 on Σ :



[[v]]Σ = 0, i.e. vf
Σ = vp

Σ := vΣ

[[σ(v, p)·n]]Σ =
µ√
Kp

βΣ·vΣ

+
1

2
ρ v·nvΣ + ρ |vΣ| λΣ·vΣ − fΣ

on Σ = Σb.

⇒ Non-inertial interface model on Σb

stress jump interface conditions with velocity continuity

+ two additional nonlinear terms coming from inertia in Ωfp (λΣ > 0)

⇒ Only the parameter βΣ of the non-inertial interface model is required
at Σ = Σb (ξ = 1) since λΣ ' βΣ κ(φp).

Nonlinear asymptotic models for the inertial flows The nonlinear interface model at Σ = Σb 12



Unsteady Navier-Stokes/Darcy coupled problem
Flow configuration in fluid-porous domain Ω := Ωf ∪ Σ ∪ Ωp ⊂ Rd (d ≤ 3)

Ω : open bounded connected domain with Lipschitz boundary Γ := ∂Ω
Σ := ∂Ωp : closed smooth surface (of class C 1,1) or Ωp a convex domain (to avoid
unnecessary technicalities...)

porous domain Ωp

Σ = ∂Ωp

free-fluid domain Ωf

∂Ωf = Γ ∪ Σ

Γ = ∂Ω

ν

n
arbitrary flow direction

Analysis of the Navier-Stokes/Darcy problem Coupling with stress jump interface conditions 13



Unsteady Navier-Stokes/Darcy coupled problem

Coupling with nonlinear stress jump interface conditions on Σ = Σb



∇·v = 0 in (0, T )× Ω,

∂tv
f + (∇× vf )∧ vf − µ∆vf +∇

(
pf +

1

2
|vf |2

)
= ff in (0, T )× Ωf ,

ε ∂tv
p + µK−1 vp +∇pp = fp in (0, T )× Ωp,

vf = 0 on (0, T )× Γ,

v(t = 0) = v0 in Ω,

with the data :

constant mass density ρ = 1 and dynamic viscosity µ > 0

constant intrinsic permeability tensor K (symmetric and positive definite),
possibly time-dependent : K ∈ L2(]0, T [;Rd×d) s.t. with some km > 0 :
(K−1(t) y)·y ≥ km |y|2 for all y ∈ Rd and almost every t ∈ (0, T ).

body forces : ff ∈ L2(0, T ;L2(Ωf)d) and fp ∈ L2(0, T ;H1(Ω)d)

small parameter ε > 0 possibly going to zero

Analysis of the Navier-Stokes/Darcy problem Coupling with stress jump interface conditions 14



Unsteady Navier-Stokes/Darcy coupled problem
Nonlinear stress jump interface conditions on Σ = Σb

Cauchy stress tensor in Ωf or Ωp :
σf (v, p) := σf

v (v)− p I, where σf
v (v) := 2µD(v) in Ωf ,

with D(v) :=
1

2

(
∇v +∇vT

)
,

σp(v, p) := −pp I, in Ωp,

where σf
v (v) is the viscous stress tensor and D(v) is the strain rate tensor

(symmetric part of ∇v), I being the unit tensor.


[[v]]Σ = 0, i.e. vfΣ = v

p
Σ := vΣ

[[σ(v, p)·n]]Σ =
µ
√
K
βΣ vΣ +

1

2
v·nvΣ + |vΣ|λΣ vΣ − fΣ

on Σ = Σb,

where :
K := ‖K‖2 (or another permeability reference)
given external surfacic force on Σ : fΣ ∈ L2(0, T ;H−1/2(Σ)d)

stress jump friction tensor (symmetric and uniformly positive definite) :
βΣ ∈ L2(0, T ;L∞(Σ)d×d)

inertial friction tensor (uniformly bounded and positive definite, possibly
symmetric) : λΣ ∈ L∞((0, T )× Σ)d×d

Analysis of the Navier-Stokes/Darcy problem Coupling with stress jump interface conditions 15



Unsteady Navier-Stokes/Darcy coupled problem
Leray’s type weak problem with divergence-free test functions
Functional setting :

H :=
{
u ∈ L2(Ω)d; ∇·u = 0 in Ω, u·ν = 0 on Γ

}
,

V :=
{
u ∈ H1

0(Ω)d; ∇·u = 0 in Ω
}
,

Vf :=
{
u ∈ H1

0,Γ(Ωf )d; ∇·u = 0 in Ωf

}
.

Equivalent weak transmission problem : looking for a velocity solution
v ∈ L2(0, T ;V ) such that v′f := ∂tvf ∈ L1(0, T ;H−1(Ωf )d)



〈
∂tv

f
, ϕ

f
〉
V ′
f
,Vf

+

∫
Ωf

((∇× v)∧ v) ·ϕ dx+

∫
Ωf

µ∇v :∇ϕ dx+

∫
Ωp

µ (K
−1
v)·ϕ dx

+

∫
Σ

µ
√
K

(βΣ v)·ϕ ds+

∫
Σ

|vΣ| (λΣ v)·ϕ ds

+
1

2

∫
Σ

(
v·nv·ϕ− |v|2 ϕ·n

)
ds ⇒ vanishing term when ϕ = v

=

∫
Ω

f ·ϕ dx+ 〈fΣ, ϕ〉−1/2,Σ , for all ϕ ∈ V ,

supplemented with the initial condition v(t = 0) = v0.
It makes sense for any vf (t) ∈ H1(Ωf )d and vp(t) ∈ H1(Ωp)d (H2-elliptic
regularity of pressure in Ωp) with Sobolev continuous imbeddings for d ≤ 3 :
H1(Ωf )d ↪→ L6(Ωf )d and H1/2(Σ)d ↪→ L4(Σ)d

Analysis of the Navier-Stokes/Darcy problem Coupling with stress jump interface conditions 16



Unsteady Navier-Stokes/Darcy coupled problem

Linearly implicit discrete time scheme with time-step δt > 0

uk : the time approximate of any function u(t) at time tk := k δt

Starting from v0 = v0, the Euler implicit scheme reads for all k ∈ N such that
(k+ 1) δt ≤ T :



∫
Ωf

vk+1
ε − vk

ε

δt
·ϕ dx+ ε

∫
Ωp

vk+1
ε − vk

ε

δt
·ϕ dx+

∫
Ωf

(
(∇× vk

ε )∧ vk+1
ε

)
·ϕ dx

+

∫
Ωf

µ∇vk+1
ε :∇ϕ dx+

∫
Ωp

µ (K
−1,(k+1)

v
k+1
ε )·ϕ dx

+

∫
Σ

µ
√
K

(β
k+1
Σ v

k+1
ε )·ϕ ds+

∫
Σ

|vk
ε | (λ

k+1
Σ v

k+1
ε )·ϕ ds

+
1

2

∫
Σ

(
v
k+1
ε ·nvk

ε ·ϕ− (v
k
ε ·v

k+1
ε )ϕ·n

)
ds (= 0 with ϕ = v

k+1
ε )

=

∫
Ω

f
k+1·ϕ dx+

〈
f

k+1
Σ , ϕ

〉
−1/2,Σ

, for all ϕ ∈ V .

Analysis of the Navier-Stokes/Darcy problem A linearly implicit Euler time scheme 17



Unsteady Navier-Stokes/Darcy coupled problem
Passing to the limit with ε = δt2 in the time scheme when δt→ 0

Theorem (Global solvability in time of the Navier-Stokes/Darcy coupled flow)

Let us consider any data f ∈ L2(0, T ;L2(Ω)d) with fp ∈ L2(0, T ;H1(Ω)d),
fΣ ∈ L2(0, T ;H−1/2(Σ)d), v0 ∈ V and any µ > 0 with the above natural assumptions
on K, βΣ and λΣ.
Then, there exists at least a solution (v, p) to the Navier-Stokes/Darcy problem for
d ≤ 3 such that for any T > 0 :

i) v ∈ L2(0, T ;V ) with vf ∈ L∞(0, T ;L2(Ωf )d) and vf is weakly continuous from
[0, T ] into L2(Ωf )d,

ii) v′f = ∂tv
f ∈ L4/d(0, T ;V ′f ),

iii) p ∈W−1,∞(0, T ;L2(Ω)) with pp ∈ L2(0, T ;H2(Ωp)).

Moreover, any solution satisfies the energy inequality below for almost every t ∈ [0, T ] :

‖v(t)‖20,Ωf
+

∫ t

0

µ ‖∇v(τ)‖20,Ωf
dτ +

∫ t

0

∫
Ωp

µ (K
−1

(τ)v(τ))·v(τ) dx dτ

+

∫ t

0

(∫
Σ

µ
√
K

(βΣ(τ) v(τ))·v(τ) ds dτ +

∫
Σ

|vΣ(τ)| (λΣ(τ) v(τ))·v(τ) ds

)
dτ

≤ ‖v0‖20,Ωf
+

∫ t

0

(∫
Ω

f(τ)·v(τ) dx+ 〈fΣ(τ), v(τ)〉−1/2,Σ

)
dτ.

For the space dimension d = 2, the solution (v, p) is unique with
vf ∈ C ([0, T ];L2(Ωf )d) such that v′f ∈ L2(0, T ;V ′f ) and the above inequality does
actually become an equality of energy.

Analysis of the Navier-Stokes/Darcy problem Main result of global solvability in time 18



Some perspectives...

Analysis of global well-posedness in time of the Stokes/Darcy-Brinkman
and Stokes/Darcy fluid-porous coupled problems (for non-inertial flows)
with different sets of jump interface conditions on Σm or Σb :
Ok whatever the size of data
[PhA., ESAIM : Math. Model. Numer. Anal., 2018 and 2021 (submitted)]

Global solvability in time of the Navier-Stokes/Darcy coupled problem
with no restriction on the size of the data :

N.B. All previous studies only prove the solvability
either with small data (Reynolds number) for the steady problem
or locally over a small time interval for the unsteady problem.

Well-posedness analysis of the Navier-Stokes/Darcy-Forchheimer coupled
problem : in progress

Thank you for your attention
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