Conclusion et Perspectvies 000000

∃ ► < ∃ ►</p>

Un modèle homogénéisé pour la tomographie optique chez le nouveau-né

Stephanie Lohrengel, Farah Oumri, Stéphanie Salmon

Université de Reims Champagne-Ardenne Laboratoire de Mathématiques CNRS UMR 9008

SMAI 2021, 21 Juin 2021

Ξ.

Contexte et introduction

2 Nouveau modèle homogénéisé

Conclusion et Perspectvies

St. Salmon Un modèle LCS homogénéisé pur la TOD

イロト イロト イヨト イヨト

Ξ.

Contexte et introduction

2 Nouveau modèle homogénéisé

Conclusion et Perspectvies

St. Salmon Un modèle LCS homogénéisé pur la TOD

イロト イロト イヨト イヨト

Le projet ANR MAIA en quelques mots / chiffres

Éléments clefs

- Appel : ANR, AAPG 2015, CE23
- Porteur : Pr. François Rousseau (IMT Atlantique)
- Dates : 2015-2020 (60 mois)

Les acteurs

- Informatique : LaTIM (Brest), CReSTIC (Reims), ICube (Strasbourg), IRISA (Rennes), LTCI (Paris)
- Mathématiques : LMReims, LAMFA (Amiens)
- Clinique : CHU Reims, CHU Amiens, CHU Rennes
- Industrie : Kitware (Lyon)

<回><モン</td>

3

3

Contexte clinique

- Prématurité = naissance avant 37 SA.
- 65 000 naissances par an en France.
- Organes affectés : cerveau, poumons, tube digestif, canal artériel
- Étude nationale : EPIPAGE 2 = suivi de cohortes à 2 ans et 5 ans pour analyser les retards de développement.

Objectifs globaux

 Analyse de données multi-modales cérébrales chez le prématuré (IRM, EEG, NIRS)... ...pour les corréler aux besoins d'interventions de professionnels (kinésithérapeuthes, ergothérapeutes, orthophonistes...)

Conclusion et Perspectvies 000000

э

Outils d'investigation spécifiques

Non-invasifs, non-irradiants car nouveaux-nés.

Conclusion et Perspectvies 000000

Modèles en tomographie optique diffuse

Principe: absorption de la lumière dans le spectre proche infrarouge (NIRS). Non-invasive, non-irradiante, portable.

Questions ?

Est-ce que la TOD permet de repérer des lésions cérébrales telles les hémoragies intra-ventriculaires (HIV) et les leucomalacies périventriculaires ?

St. Salmon

Un modèle LCS homogénéisé pur la TOD

Résolution de l'équation du transfert radiatif

Equation intégro-différentielle Intensité spécifique de radiation I(t, x, s) énergie des photons au temps t, au point x, dans la direction s (par unité stéradian) = 6 variables + temps t.

$$\frac{1}{c}\partial_t I(t,\mathsf{x},\mathsf{s}) + \mathsf{s} \cdot \nabla I(t,\mathsf{x},\mathsf{s}) + \mu_t I(t,\mathsf{x},\mathsf{s}) = \frac{\mu_\mathsf{s}}{4\pi} \int_{\mathbb{S}} f(\mathsf{s},\mathsf{s}')I(t,\mathsf{x},\mathsf{s}')\,\mathsf{d}\mathsf{s}' + q(t,\mathsf{x},\mathsf{s})$$

- μ_a : coefficient d'absorption
- μ_s : coefficient de diffusion
- $\mu_t = \mu_a + \mu_s$: coefficient d'atténuation totale.

Résolution numérique coûteuse : simulation par méthode Monte Carlo. Analyse asymptotique \implies approximation par un modèle plus simple. Petit paramètre = ratio entre μ_a et μ_s .

• $\Phi(\vec{r}, t)$: densité de photons diffus.

э.

Résolution du problème direct : approximation classique par l'équation de diffusion

 \Rightarrow Équation de la diffusion (domaine temporel)

$$\frac{1}{c}\partial_t \Phi(\vec{r},t) - \operatorname{div}\left(\frac{1}{3(\mu_a + \mu'_s)} \nabla \Phi(\vec{r},t)\right) + \mu_a \Phi(\vec{r},t) = q_0(\vec{r},t)$$

coefficient de diffusion $\kappa = (3(\mu_a + \mu'_s))^{-1}$, vitesse de la lumière $c = c_0/n$, *n* indice de réfraction du tissu. • source *q* harmonique en temps, gaussienne à fréquence fixée $\omega > 0$.

 \Rightarrow Équation de la diffusion (domaine fréquentiel)

$$-\operatorname{div}(\kappa \nabla \Phi) + \left(\mu_{a} + \frac{i\omega}{c}\right) \Phi = q \text{ in } \Omega + \text{ CL de Robin sur } \partial \Omega.$$

Formulation variationnelle : Trouver Φ telle que

$$\int_{\Omega} \kappa \nabla \Phi \cdot \nabla \overline{\psi} \, \mathrm{d} x + \int_{\Omega} \left(\mu_{\mathbf{a}} + \frac{i\omega}{c} \right) \Phi \overline{\psi} \, \mathrm{d} x + \frac{1}{2\chi} \int_{\partial \Omega} \Phi \overline{\psi} \, \mathrm{d} s = \int_{\Omega} q \overline{\psi} \, \mathrm{d} x + \frac{1}{2\chi} \int_{\partial \Omega} g \overline{\psi} \, \mathrm{d} s.$$

Pour données régulières (dont $q \in L^2(\Omega)$), le théorème de Lax-Milgram nous assure que le problème est bien posé. Simulation Freefem++ avec éléments finis de Lagrange \mathbb{P}^1 . **Observable** = valeurs au bord de Φ . Intro 000000000 Nouveau modèle homogénéisé 000000000

Modèle

Figure: Modèle circulaire sain (gauche), avec une perturbation (milieu). Modèle réaliste de tête de nouveau-né (droite).

Tissu	$\mu_a \ [mm^{-1}]$	$\mu'_{s} \ [mm^{-1}]$	κ	$arepsilon = \sqrt{\mu_{a}/\mu_{s}}$
scalp	0.018	1.9	0.17	0.03
crâne	0.016	1.6	0.21	0.03
matière grise	0.048	0.5	0.61	0.098
matière blanche	0.037	1.0	0.32	0.06
LCS	0.0041	0.032	9.23	0.11

Paramètres optiques (800 nm (see [1]). $\mu'_s = \mu_s(1 - g)$ coefficient de diffusion réduit avec g = 0.9 pour tous tissus.

[1] M. DEHAES, K. KAZEMI, M. PÉLÉGRINI-ISSAC, R. GREBE, H. BENALI, AND F. WALLOIS, Quantitative Effect of the Neonatal Fontanel on Synthetic Near Infrared Spectroscopy Measurements, Human Brain Mapping 34 (2013).

∃ ► < ∃ ►</p>

Résolution du problème direct

Figure: Différence des valeurs sur le bord avec et sans inclusion dans le modèle à 4 couches : 3ème couche = LCS (gauche), 3ème couche = crâne (droite).

La couche de LCS se comporte comme un guide d'onde :

- difficile d'obtenir des informations sur la présence d'une inclusion,
- pas de pénétration en profondeur de la lumière.

Nouveau modèle homogénéisé •••••••

Conclusion et Perspectvies 000000

Ξ.

Contexte et introduction

Nouveau modèle homogénéisé

Conclusion et Perspectvies

St. Salmon Un modèle LCS homogénéisé pur la TOD

イロト イロト イヨト イヨト

Conclusion et Perspectvies 000000

Un nouveau modèle homogénéisé.

Prendre en compte la présence de trabécules arachnoïdiennes (TA) = diffuseurs discrets.

< 6 b

4 3 4 3 4 3 4

э

Figure: Trabécules arachnoïdiennes (@neuroscientificallychallenged.com). Micro-structure périodique de largeur δ contenant LCS et TA.

E. OKADA, D.T. DELPY. Near-infrared light propagation in an adult head model. I. Modeling of low-level scattering in the cerebrospinal fluid layer. Appl. Optics. 2003;42(16):2906–2914.

Homogénéisation de l'équation de diffusion

Moyenne du paramètre de coefficient de diffusion pour différents pourcentages p de TA dans le LCS.

Paramètres optiques pour les TA = scalp.

⇒ homogénéiser d'abord l'ETR, pas l'équation de diffusion : le libre parcours moyen dans le milieu doit être petit par rapport à l'échelle des inhomogénéités.

A 10

A B M A B M

э

Homogénéisation de l'ETR

Proposition

$$\frac{1}{c}\partial_t I_{\delta}(t,\mathsf{x},\mathsf{s}) + \mathsf{s} \cdot \nabla I_{\delta}(t,\mathsf{x},\mathsf{s}) + \mu_{t,\delta} I_{\delta}(t,\mathsf{x},\mathsf{s}) = \frac{\mu_{\mathsf{s},\delta}}{4\pi} \int_{\mathbb{S}} f(\mathsf{s},\mathsf{s}') I_{\delta}(t,\mathsf{x},\mathsf{s}') \, d\mathsf{s}' + q(t,\mathsf{x},\mathsf{s}).$$

+ conditions initiales.

On montre que I_{δ} converge faible-* dans $L^{\infty}(\Omega)$ vers I solution de l'ETR avec comme paramètres les valeurs moyennes $\mu_a^* = \langle \mu_a \rangle, \mu_s^* = \langle \mu_s \rangle$ (voir [2]) :

$$\frac{1}{c}\partial_t I(t,\mathsf{x},\mathsf{s}) + \mathsf{s} \cdot \nabla I(t,\mathsf{x},\mathsf{s}) + \mu_t^* I_{\delta}(t,\mathsf{x},\mathsf{s}) = \frac{\mu_s^*}{4\pi} \int_{\mathbb{S}} f(\mathsf{s},\mathsf{s}') I_{\delta}(t,\mathsf{x},\mathsf{s}') \, d\mathsf{s}' + q(t,\mathsf{x},\mathsf{s})$$

+ conditions initiales.

[2] L. DUMAS AND F. GOLSE, Homogenization of transport equations, SIMA J. Appl. Math. 60(4) (2000)

Approximation de l'ETR homogénéisé par l'équation de diffusion

Paramètres pour l'équation de difusion :
$$\kappa = rac{1}{3(<\mu_a>+<\mu_s'>)}, <\mu_a>$$

р	$<\mu_{a}>$	$<\mu_{s}'>$	κ	$\varepsilon = \sqrt{\mu_a/\mu_s}$
10%	0.0055	0.219	1.49	0.05
20%	0.0069	0.406	0.81	0.0412

Paramètres du modèle homogénéisé pour différentes proportions p de TA dans LCS. Paramètres optiques pour TA = scalp.

・ロト ・ 一下・ ・ ヨト・

= nar

▶ < ∃ >

Résultats numériques

Perturbation d'un rayon de 10 mm, située à 2mm de l'interface cerveau/LCS, à un angle de $\pi/6$. Maillage 300 points sur le bord.

Figure: Différence des valeurs sur le bord avec et sans inclusion dans le modèle à 4 couches. Modèle classique (gauche), modèle homogénéisé : 10% TA dans LCS (milieu), 20% TA dans LCS (droite).

⇒ Sensibilité à la présence de perturbations améliorée.

∃ ► < ∃ ►</p>

э

Résultats numériques avec mesures bruitées.

Figure: Différence des valeurs sur le bord avec et sans inclusion dans le modèle à 4 couches. Mesures bruitées, modèle homogénéisé : 15% TA dans LCS. 5% bruit (gauche), 10% bruit (droite).

Résultats sensibilité sur maillage réaliste

Sensibilité mesure la variation de la solution du problème selon les variations des paramètres optiques. Mathématiquement = dérivée directionnelle.

Figure: Tête d'un nouveau-né masculin maillage réalisé à Amiens (IRM + CT-Scan).

H. AZIZOLLAHI, A. AARABI, F. WALLOIS. Effects of uncertainty in head tissue conductivity and complexity on EEG forward modeling in neonates. HUM. BRAIN MAPPING 2016; 37(10):3604–3622.

Figure: Sensibilité par rapport à μ_a . Modèle classique (gauche). Nouveau modèle 10% TA dans LCS (milieu), nouveau modèle 20% TA dans LCS (droit).

くぼう くほう くほう

Conclusion et Perspectvies 000000

Résultats maillage réaliste

Figure: Sensibilité par rapport à μ_a . Modèle classique (gauche). Nouveau modèle 10% TA dans LCS (milieu), nouveau modèle 20% TA dans LCS (droit).

<回>< E> < E> < E> <

2

Ξ.

Contexte et introduction

2 Nouveau modèle homogénéisé

Conclusion et Perspectvies

St. Salmon Un modèle LCS homogénéisé pur la TOD

イロト イロト イヨト イヨト

(B)

3

- Développement d'un nouveau modèle pour mieux prendre en compte la couche de LCS.
- L'approximation de la diffusion est faite sur l'ETR homogénéisée.
- Sensibilité à la présence de perturbations améliorée.
- La complexité numérique reste la même que pour l'approximation classique par l'équation de la diffusion.
- \Rightarrow Prometteur pour le problème inverse.

Conclusion et Perspectvies

Problème inverse

St. Salmon Un modèle LCS homogénéisé pur la TOD

Conclusion et Perspectvies

Problème inverse

Conclusion et Perspectvies

æ

Problème inverse

FIGURE – La reconstruction de μ_a et κ avec 25 % d'AT dans le LCS. $(\vartheta_{\mu_a}, \vartheta_{\kappa})=(5.10^{-3}, 10^{-2})$ pour $\mu_a, (\vartheta_{\mu_a}, \vartheta_{\kappa})=(5.10^{-1}, 5.10^{-3})$ pour κ .

Merci de votre attention.

イロン イヨン イヨン -

æ –