SMAI 2021, La Grande-Motte

Regularity for optimal compliance problems with length penalization

Bohdan Bulanyi, Université de Paris, LJLL

22/06/2021

Statement of the problem

A spatial dimension $N \ge 2$ and an exponent $p \in (1, +\infty)$ are given. Let Ω be an open bounded set in \mathbb{R}^N and let $f \in L^{q_0}(\Omega)$ with

$$q_0 = (p^*)'$$
 if $1 , $q_0 > 1$ if $p = N$, $q_0 = 1$, if $p > N$
where $p^* = Np/(N-p)$ and $(1/p^*) + (1/(p^*)') = 1$.$

We define the energy functional $E_{f,\Omega}$ over $W_0^{1,p}(\Omega)$ as follows

$$\mathsf{E}_{f,\Omega}(u) = rac{1}{p} \int_{\Omega} |\nabla u|^p dx - \int_{\Omega} f u dx.$$

For each closed proper subset Σ of $\overline{\Omega}$, $E_{f,\Omega}$ admits a unique minimizer $u_{f,\Omega,\Sigma}$ over $W_0^{1,p}(\Omega \setminus \Sigma)$, which is a unique solution to the Dirichlet problem

 $\begin{cases} -\Delta_p u = f \text{ in } \Omega \setminus \Sigma \\ u = 0 \text{ on } \Sigma \cup \partial \Omega, \end{cases}$

which means that $u_{f,\Omega,\Sigma} \in W^{1,p}_0(\Omega ackslash \Sigma)$ and

$$\int_{\Omega} |\nabla u_{f,\Omega,\Sigma}|^{\rho-2} \nabla u_{f,\Omega,\Sigma} \nabla \varphi dx = \int_{\Omega} f \varphi dx \qquad \forall \varphi \in W_0^{1,\rho}(\Omega \setminus \Sigma)$$

2/22

For each closed proper subset Σ of $\overline{\Omega}$ we define the p-compliance functional at Σ by

$$C_{f,\Omega}(\Sigma) = -E_{f,\Omega}(u_{f,\Omega,\Sigma}) = \frac{1}{p'} \int_{\Omega} |\nabla u_{f,\Omega,\Sigma}|^p dx = \frac{1}{p'} \int_{\Omega} f u_{f,\Omega,\Sigma} dx$$

Physical interpretation, N = 2

- Ω can be interpreted as a membrane which is attached along
 Σ ∪ ∂Ω to some fixed base and subjected to a given force f
- the space $W_0^{1,p}(\Omega \setminus \Sigma)$ consists of all kinematically admissible displacement fields
- the energy linear form

$$\varphi\mapsto \int_{\Omega} |\nabla u_{f,\Omega,\Sigma}|^{p-2} \nabla u_{f,\Omega,\Sigma} \nabla \varphi dx$$

represents the work of the membrane at the equilibrium $u_{f,\Omega,\Sigma}$ and for an arbitrary displacement $\varphi \in W_0^{1,p}(\Omega \setminus \Sigma)$

• the value $E_{f,\Omega}(u_{f,\Omega,\Sigma})$ is the total potential energy at the equilibrium $u_{f,\Omega,\Sigma}$, which, according to the equilibrium equation, is equal to $-\frac{1}{p'}\int_{\Omega} f u_{f,\Omega,\Sigma} dx$

• the stiffness of the membrane is measured through the *p*-compliance functional which is equal to the product of the coefficient $\frac{1}{p'}$ and the work $\int_{\Omega} f u_{f,\Omega,\Sigma} dx$ performed by the force *f*.

Varying Σ in the class of all closed connected proper subsets of $\overline{\Omega}$, we want to find the maximal global stiffness of the membrane, provided that the weighted one-dimensional Hausdorff measure of Σ is taken into account.

Thus, we need to solve the following shape optimization problem, which we formulate in any spatial dimension $N \ge 2$.

Let $p \in (N-1, +\infty)$. Given $\lambda > 0$, find a set $\Sigma_{opt} \subset \overline{\Omega}$ minimizing the functional $\mathcal{F}_{\lambda, f, \Omega}$ defined by

$$\mathcal{F}_{\lambda,f,\Omega}(\Sigma) = \mathcal{C}_{f,\Omega}(\Sigma) + \lambda \mathcal{H}^1(\Sigma)$$

among all sets Σ in the class $\mathcal{K}(\Omega)$ of all closed connected proper subsets of $\overline{\Omega}$.

Or simply solve the following shape optimization problem

$$(\mathcal{P}) \qquad \min_{\Sigma \in \mathcal{K}(\Omega)} (\mathcal{C}_{f,\Omega}(\Sigma) + \lambda \mathcal{H}^1(\Sigma))$$

Problem (\mathcal{P}) can be formulated in terms of stresses.

Expressing $-E_{f,\Omega}(u_{f,\Omega,\Sigma})$ in terms of the dual principle, we obtain the following dual formulation

$$(\mathcal{P}^*) \qquad \min_{\Sigma \in \mathcal{K}(\Omega)} \min_{\sigma \in S(\Sigma)} \frac{1}{p'} \int_{\Omega} |\sigma|^{p'} dx + \lambda \mathcal{H}^1(\Sigma)$$

of Problem (\mathcal{P}) .

Here the minimization with respect to the stresses σ is taken over the set $S(\Sigma)$ of all statically admissible stresses fields, namely

$$S(\Sigma) = \{ \sigma \in L^{p'}(\Omega; \mathbb{R}^N) : div(\sigma) + f = 0 \text{ in } \mathcal{D}'(\Omega \setminus \Sigma) \}.$$

- A. Chambolle, J. Lamboley, A. Lemenant, E. Stepanov, *Regularity* for the optimal compliance problem with length penalization, SIAM J. Math. Anal., 2017
 - absence of closed loops
 - local Ahlfors regularity inside Ω
 - local $C^{1, \alpha}$ regularity inside Ω
 - classification of blow-up limits inside Ω

Problem (C). Let $p \in (N - 1, +\infty)$. Given L > 0, find a set $\Sigma_{opt} \subset \overline{\Omega}$ minimizing the p-compliance functional $C_{f,\Omega}$ among all sets Σ in the class of all closed connected subsets of $\overline{\Omega}$ satisfying the constraint $0 < \mathcal{H}^1(\Sigma) \leq L$.

• G. Buttazzo, F. Santambrogio, Asymptotical compliance optimization for connected networks, Netw. Heterog. Media, 2007

-Behavior when $L \rightarrow \infty$;

-Γ-convergence to the average distance functional.

Let $\Omega \subset \mathbb{R}^N$ be open and bounded, $f \in L^{q_0}(\Omega)$ and L > 0.

 $\mathcal{K}(\Omega)$ is endowed with the topology generated by the Hausdorff distance.

Then, as $p \to +\infty$, the functionals $(C_{f,\Omega}(\cdot))$ Γ -converge to the average distance functional given by

$$\mathcal{K}(\Omega)
i \Sigma \mapsto \int_{\Omega} \operatorname{dist}(x, \Sigma \cup \partial \Omega) f(x) dx$$

Thus, in some sense, the limit of Problem (\mathcal{P}) as $p \to +\infty$ corresponds to the minimization of the functional

$$\mathcal{K}(\Omega) \ni \Sigma \mapsto \int_{\Omega} \operatorname{dist}(x, \Sigma \cup \partial \Omega) f(x) dx + \lambda \mathcal{H}^{1}(\Sigma),$$

for which it is known that minimizers may not be C^1 regular

• D. Slepcev, Counterexample to regularity in average-distance problem, Ann. Inst. H. Poincaré Anal. Non Linéaire, 2014

Main results for minimizers of Problem (\mathcal{P}), $N \geq 2$

Several of our results will hold under some condition on the integrability of the source f. Namely we define

$$q_1 = rac{Np}{Np - N + 1} \ \ ext{if} \ \ 2 \leq p < +\infty, \qquad q_1 = rac{2p}{3p - 3} \ \ ext{if} \ \ 1 < p < 2,$$

and we notice that $q_1 \ge q_0$.

The condition $f \in L^{q_1}(\Omega)$ for $p \in [2, +\infty)$ is natural, since q_1 in this case seems to be the right exponent which implies an estimate of the type

$$\int_{B_r(x_0)} |\nabla u|^p dx \le Cr$$

for the solution u to the Dirichlet problem

$$-\Delta_{p}v = f$$
 in $B_{r}(x_{0}), v \in W_{0}^{1,p}(B_{r}(x_{0}))$

Conventions: N will denote an integer greater than or equal to 2;

 Ω , unless otherwise stated, will denote an open bounded set in \mathbb{R}^N

The main regularity result established is the following.

Theorem. Let $p \in (N - 1, +\infty)$, $f \in L^q(\Omega)$ with $q > q_1$. Then there exists a constant $\alpha \in (0, 1)$ such that the following holds. Let Σ be a solution to Problem (\mathcal{P}). Then for \mathcal{H}^1 -a.e. point $x \in \Sigma \cap \Omega$ one can find a radius $r_0 > 0$ depending on x such that $\Sigma \cap \overline{B}_{r_0}(x)$ is a $C^{1,\alpha}$ regular curve. At least for some small enough values of λ , solutions to Problem (\mathcal{P}) are nontrivial.

Proposition. Let $p \in (N-1, +\infty)$, $f \in L^{q_0}(\Omega)$, $f \neq 0$. Then there exists a number $\lambda_0 = \lambda_0(N, p, f, \Omega) > 0$ such that if Problem (\mathcal{P}) is defined for $\lambda \in (0, \lambda_0]$, then every solution to this problem has positive \mathcal{H}^1 -measure. Moreover, if p > N, then the empty set will not be a solution to Problem (\mathcal{P}).

A set $\Sigma \subset \mathbb{R}^N$ is said to be Ahlfors regular of dimension 1, if there exist constants c > 0, $r_0 > 0$ and C > 0 such that for every $r \in (0, r_0)$ and for every $x \in \Sigma$ the following holds

 $cr \leq \mathcal{H}^1(\Sigma \cap B_r(x)) \leq Cr$

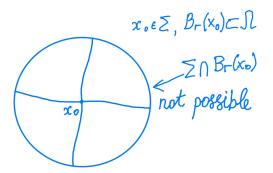
Theorem. Let $\Omega \subset \mathbb{R}^2$ be a bounded domain with locally Lipschitz boundary, $p \in (1, +\infty)$, and $f \in L^{\frac{2p}{2p-1}}(\Omega)$. Let Σ be a solution to Problem (\mathcal{P}) with diam $(\Sigma) > 0$. Then Σ is Ahlfors regular.

The exponent
$$q = \frac{2p}{2p-1}$$
 seems to be sharp

Theorem. Let $p \in (N - 1, +\infty)$ and $f \in L^q(\Omega)$ with $q > q_1$. Then every solution Σ to Problem (\mathcal{P}) cannot contain closed loops (i.e., homeomorphic images of the unit circle S^1) and, therefore, topologically is a tree.

Absence of quadruple points inside $\boldsymbol{\Omega}$

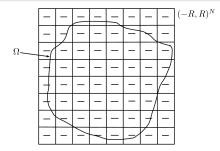
Proposition. Let $p \in (N - 1, +\infty)$ and $f \in L^q(\Omega)$ with $q > q_1$. Then every solution Σ to Problem (\mathcal{P}) cannot contain quadruple points in Ω .



Importance of the connectedness assumption

Theorem. Let $\lambda > 0$, $p \in (N - 1, +\infty)$, $f \in L^{q_0}(\Omega)$, $f \neq 0$. Then the existence of minimizers for the functional $C_{f,\Omega}(\cdot) + \lambda \mathcal{H}^1(\cdot)$ over the class of all closed proper subsets of $\overline{\Omega}$ fails.

Theorem. Let L > 0, $p \in (N - 1, +\infty)$, $f \in L^{q_0}(\Omega)$, $f \neq 0$. Then the existence of minimizers for the p-compliance functional $C_{f,\Omega}$ over the class $\{\Sigma \subset \overline{\Omega} : \Sigma \text{ is closed}, 0 < \mathcal{H}^1(\Sigma) \leq L\}$ fails.



- In 2d study the regularity of solutions to Problem (\mathcal{P}) up to the tip of an endpoint and up to the branching point for a triple point
- Is every solution Σ to Problem (P) with diam(Σ) > 0 Ahlfors regular in any spatial dimension N ≥ 2 for every p ∈ (N − 1, +∞)?
- Assume that Σ is a solution to Problem (P) with diam(Σ) > 0, S ⊂ Σ is such that any x ∈ S is not a regular point, and Σ\S is locally C^{1,α} regular for some α ∈ (0, 1). Is it true that dim_H(S) < 1?
- In codimension 2, can a solution to Problem (\mathcal{P}) have a knot?
- Classification of blow-up limits in 2d and for $p \neq 2$

Thank you for your attention!