Event-based control of the damped linear wave equation

<u>Florent Koudohode</u>, Lucie Baudouin, Sophie Tarbouriech

Congrès SMAI 2021

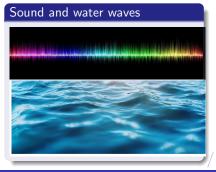
June 24, 2021

Context

Wave equation : D'Alembert (1746), Euler (1756)

$$\partial_t^2 z(x,t) - \Delta z(x,t) = f(x,t)$$

Models propagation of waves (water, sound, seismic or light etc)



Florent Koudohode, LAAS-CNRS

Congrès SMAI 2021

Event-based control of the damped linear wave equation.

Main result Strategy to prove the main result

Known results with internal feedback

Consider the wave equation in an open bounded domain Ω of \mathbb{R}^N :

(1)
$$\begin{cases} \partial_t^2 z(x,t) - \Delta z(x,t) = f(x,t) & \forall (x,t) \in \Omega \times (0,\infty), \\ z(x,t) = 0 & \forall (x,t) \in \partial\Omega \times (0,\infty), \\ z(x,0) = z_0(x) & \forall (x,t) \in \Omega, \\ \partial_t z(x,0) = z_1(x) & \forall x \in \Omega. \end{cases}$$

Energy:
$$E(t) = \frac{1}{2} (\|\partial_t z(t)\|_{L^2(\Omega)}^2 + \|\nabla z(t)\|_{L^2(\Omega)}^2)$$

In [Chen(79'),Lions(88')] taking $(f(x,t) = -\alpha \partial_t z(x,t))$ with $\alpha > 0$, and for every $(z_0, z_1) \in H_0^1(\Omega) \times L^2(\Omega)$

 $\rightsquigarrow \exists ! z \in C^0(\mathbb{R}^+; H^1_0(\Omega)) \cap C^1(\mathbb{R}^+; L^2(\Omega))$ solution to (1)

 \rightsquigarrow Exponential stability : $\exists C > 0, \delta > 0, E(t) \leq CE(0)e^{-\delta t}$.

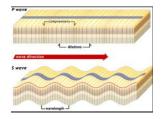
Main result Strategy to prove the main result

Control objective

We are interested in the implementation of the feedback law $f(x,t) = -\alpha \partial_t z(x,t_k)$ on digital platforms. A choice is the periodic control but one can design a triggering strategy, which determines the time instants when the control needs to be updated: it is the Event-Triggering Mechanism (ETM)

Control objective

Can we construct a ETM and maintain both stability and the well-posedness of the corresponding closed-loop system?



Main result Strategy to prove the main result

The proposed Event-triggering mechanism

Let us define the triggering law by $\begin{cases}
t_0 &= 0, \\
t_{k+1} &= \inf \left\{ t \ge t_k \text{ such that } \| \underbrace{\partial_t z(x,t) - \partial_t z(x,t_k)}_{e_k(t)} \|_{L^2(\Omega)}^2 > 2\gamma E(t) \right\} \\
\text{where } \gamma > 0 \text{ is a design parameter.}
\end{cases}$

Consequence

$$\forall t \in [t_k, t_{k+1}), \ \|\partial_t z(x, t) - \partial_t z(x, t_k)\|_{L^2(\Omega)}^2 \leq 2\gamma E(t).$$

The closed-loop system can then be described as follows:

(2)

$$\begin{cases}
\partial_t^2 z(x,t) - \Delta z(x,t) = -\alpha \partial_t z(x,t_k), & \text{in } \Omega \times [t_k, t_{k+1}), k \in \mathbb{N} \\
z(x,t) = 0, & \text{on } \partial\Omega \times \mathbb{R}^+, \\
z(\cdot,0) = z_0, \partial_t z(\cdot,0) = z_1, & \text{in } \Omega.
\end{cases}$$

Main result

Definition (Maximal time T of solution)

 $\left\{ \begin{array}{ll} T=+\infty & \mbox{if } (t_k) \mbox{ is a finite sequence,} \\ T=\limsup_{k\to+\infty} t_k & \mbox{if not.} \end{array} \right.$

Theorem (Exponential stability and avoidance of Zeno phenomenon)

 $z \in C^0([0,T); H^2(\Omega) \cap H^1_0(\Omega)) \cap C^1([0,T); H^1_0(\Omega))$

and the Zeno behavior does not occur.

Output Under some matrix inequality condition, the closed-loop system (system (1) with $f(x,t) = -\alpha \partial_t z(x,t_k)$) is exponentially stable

Main result Strategy to prove the main result

Strategy to prove the well-posedness

Well-posedness [Baudouin, Marx, Tarbouriech(2019)]

- \rightsquigarrow Based on Induction on every sample interval $[t_k, t_{k+1}]$,
- $\bullet \, \rightsquigarrow$ and well-posedness of the damped wave equation

Avoidance of Zeno behavior

• Consider
$$\forall t \in [t_k, t_{k+1}], \varphi(t) = \frac{\|\partial_t z(x,t) - \partial_t z(x,t_k)\|_{L^2(\Omega)}^2}{2\gamma E(t)}$$

- Prove that $\dot{\varphi}(t) \leq A + rac{B}{\sqrt{E(t)}}$ and $E(0)e^{-2Ct} \leq E(t) \leq E(0)e^{2Ct}$
- Then $\forall k \in \mathbb{N}$, integrating on $[t_k, t_{k+1}]$ knowing that $\varphi(t_k) = 0$ and $\varphi(t_{k+1}) = 1$ we obtain: $1 \leq \left[A + \frac{Be^{CT}}{\sqrt{E(0)}}\right](t_{k+1} t_k)$ showing there is no accumulation points due to the update.

Main result Strategy to prove the main result

Strategy to prove the exponential stability

Let us consider the following Lyapunov function:

$$V(t) = E(t) + \frac{\alpha \varepsilon}{2} \|z(t)\|_{L^2(\Omega)}^2 + \varepsilon \int_{\Omega} z(x,t) \partial_t z(x,t) dx$$

3 Step 1: Equivalence of the energy and V(t)

 $E(t) \le V(t) \le (1 + \varepsilon C_{\Omega} + \varepsilon \alpha C_{\Omega}^2) E(t)$

§ Step 2: Find the conditions on which for a desired decay rate δ

 $\dot{V}(t) + 2\delta V(t) \le 0$

This will imply the desired result : $E(t) \leq CE(0)e^{-2\delta t}$

Main result Strategy to prove the main result

Matrix inequality's condition to estimate $V(t)+2\delta V(t)$

•
$$\dot{V}(t) + 2\delta V(t) = \int_{\Omega} \psi^{\top}(x, t) M_1 \psi(x, t) dx$$

with $\psi = \begin{pmatrix} z \\ \partial_t z \\ e_k \\ \nabla z \end{pmatrix}$ and $M_1 = \begin{pmatrix} \alpha \varepsilon \delta & \delta \varepsilon & \frac{\alpha \varepsilon}{2} & 0 \\ \star & \varepsilon - \alpha + \delta & \frac{\alpha}{2} & 0 \\ \star & \star & 0 & 0 \\ \star & \star & \star & \delta - \varepsilon \end{pmatrix}$.

Poincaré's inequality:

$$\int_{\Omega} |z(t)|^2 dx \le C_{\Omega}^2 \int_{\Omega} |\nabla z(t)|^2 dx \Longleftrightarrow \int_{\Omega} \psi^{\top}(x,t) M_2 \psi(x,t) dx \ge 0 \text{ with}$$
$$M_2 = diag(-1,0,C_{\Omega}^2,0)$$

• ETM: $\|e_k(t)\|_{L^2(\Omega)}^2 \leq 2\gamma E(t) \iff \int_{\Omega} \psi^\top M_3 \psi dx \geq 0$ with $M_3 = diag(0, \gamma, \gamma, -1)$

Main result Strategy to prove the main result

Matrix inequality's condition to estimate $V(t)+2\delta V(t)$

As a consequence

$$\dot{V}(t) + 2\delta V(t) = \int_{\Omega} \psi^{\top} M_1 \psi dx$$

is subject to $\int_{\Omega} \psi^{\top}(t) M_2 \psi(t) \ge 0$ and $\int_{\Omega} \psi^{\top}(t) M_3 \psi(t) \ge 0$.

S-procedure ensures the existence of

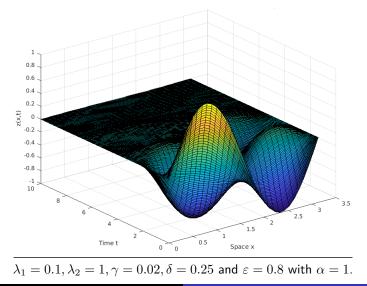
$$\lambda_1 \ge 0$$
 and $\lambda_2 \ge 0$ such that
 $\int_{\Omega} \psi^{\top} (\underbrace{M_1 + \lambda_1 M_2 + \lambda_2 M_3}_{G}) \psi dx \le 0$

Feasibility of
$$G \prec 0$$

$$G = \begin{pmatrix} -\lambda_1 + \alpha \varepsilon \delta & \delta \varepsilon & \frac{\alpha \varepsilon}{2} & 0 \\ \star & \phi_{22} & \frac{\alpha}{2} & 0 \\ \star & \star & -\lambda_2 & 0 \\ \star & \star & \star & \phi_{44} \end{pmatrix}$$
with $\phi_{22} = \varepsilon - \alpha + \delta + \bar{\gamma}$,
 $\phi_{44} = \delta - \varepsilon + \lambda_1 C_{\Omega}^2 + \bar{\gamma}$
(Use Shur complement and Elimination lemma)

Main result Strategy to prove the main result

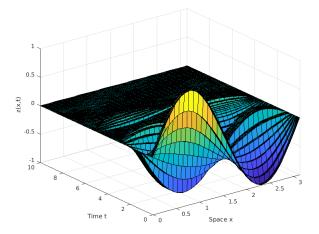
Numerical Simulation 1D: $\partial_t^2 z - \partial_x^2 z = -\alpha \partial_t z(t)$



11/14

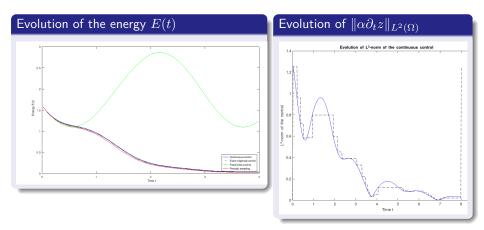
Main result Strategy to prove the main result

Numerical Simulation 1D:
$$\partial_t^2 z - \partial_x^2 z = -\alpha \partial_t z(t_k)$$



Main result Strategy to prove the main result

Evolution of the energy and the control



13/14

Conclusion and Future works

We present a matrix inequality approach for the **exponential stabilization** of the damped linear **wave equation** under an **event-triggering mechanism**.

Future works

- **(**) What about the localized damping coefficient α ?
- What about the case of the boundary control ?
- It would be relevant to study other classes of PDEs like the Schrödinger equation

Thank you for your attention!

fkoudohode@laas.fr