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Introduction Goal: sampling the Boltzmann-Gibbs measure

Setting

N particles, q = (q1, . . . , qN) ∈ D their positions.
Potential energy V ∈ C2(D), interaction force F = −∇V
Boltzmann-Gibbs measure:

µ(dq) = Z−1
µ e−βV (q) dq, Zµ =

∫
D
e−βV (q) dq

Canonical Mean/ thermodynamic quantity:

ψ ∈ C∞0 (D) observable, and Eµ[ψ] =

∫
D
ψ dµ

Goal: being able to sample µ!
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Introduction Goal: sampling the Boltzmann-Gibbs measure

Overdamped Langevin dynamics

Dynamics:
dQt = −∇V (Qt)dt +

√
2β−1dWt

Infinitesimal generator:

Lϕ(X ) = lim
t→+∞

Eµ[ϕ(Xt)]− ϕ(X )

t
= −∇V · ∇ϕ(X ) + β∆ϕ(X )

Fokker-Planck equation:

∂tπt = L∗πt
Ergodicity: (Qt)t≥0 is ergodic with respect to µ. In other words:

∀ψ ∈ C∞0 (D), lim
τ→+∞

1
τ

∫ τ

0
ψ(Qt) dt = Eµ[ψ]

Problem: Metastability!
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Introduction Goal: sampling the Boltzmann-Gibbs measure

What is metastability?

Figure: cis–trans isomerization of 1,2-Dichloroethene
(http://chemcollective.org/chem/entropy/reactcoord.php)
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Introduction Goal: sampling the Boltzmann-Gibbs measure

Reaction coordinate

ξ : D →M, withM manifold of dimension d ′ ≤ dN.
Σz = {q ∈ D | ξ(q) = z}
Free energy:

A(z) = −β−1 ln(ZΣz ), ZΣz =

∫
Σz

e−βV (q) δξ(q)−z(dq)

Local mean force: F ( (∇ξ)>∇ξ,V , β)
Free energy derivative: ∇A(z) = E[F (Q) | ξ(Q) = z ]

Property: If Q ∼ µ then ξ(Q) ∼ µA:

µA = ξ ? µ(dz) =
e−βA(z) dz∫
M e−βA(z) dz

. (1)
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Introduction Goal: sampling the Boltzmann-Gibbs measure

From now on

Position q = (x , y) ∈ Tn

Stochastic process Qt = (Xt ,Yt) ∀t ≥ 0
with x ∈ Tm, y ∈ Tn−m and ξ(x , y) = x

∇A(z) = E[∇xV (x , y) | ξ(x , y) = x = z ]

 Convergence results are expressed using the relative entropy of two
measures:

H(µ|ν) =

{ ∫
ln(dµ

dν )dµ if µ� ν
+∞ else.
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Introduction The Adaptive Biasing Force method

The idea

ξ is a generalized coordinate
(q, ξ) extended coordinates
Methods using ξ: generalized ensemble methods

Figure: Concept of ABF (Jérôme Hénin, CECAM workshop, Paris, 2021)
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Introduction The Adaptive Biasing Force method

First attempt

Biased Overdamped Langevin:{
dXt = (−∇xV +∇A ◦ ξ) (Xt ,Yt) dt +

√
2β−1dW 1

t

dYt = −∇yV (Xt ,Yt)dt +
√

2β−1dW 2
t

Fokker-Planck equation:

∂tπt = β−1∆πt −∇ · ((−∇V +∇A ◦ ξ)πt)

Stationary measure: π∞ ∝ e−β(V−A◦ξ)

ξ ? π∞ is the uniform law!
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Introduction The Adaptive Biasing Force method

ABF

ABF: 
dXt = (−∇xV + Gt ◦ ξ) (Xt ,Yt) dt +

√
2β−1dW 1

t

dYt = −∇yV (Xt ,Yt)dt +
√

2β−1dW 2
t

Gt(z) = E[∇xV (Xt ,Yt) | ξ(Xt ,Yt) = z ]

Fokker-Planck equation:

∂tπt = β−1∆πt −∇ · ((−∇V + Gt ◦ ξ)πt)

Known results: T.Lelièvre, F.Otto, M.Rousset, G.Stoltz – 2007
(i) lim

t→+∞
Gt = ∇A

(ii) lim
t→+∞

πt = π∞

(iii) Flat histogram property: the law πξ
t = ξ ? πt of (ξ(Qt))t≥0 is s.t

lim
t→+∞

πξ
t = λ: no more energy barriers.

10 / 21



Introduction The Projected Adaptive Biasing Force method

Projected Adaptive Biasing Force method

In simulations, the converged bias G = lim
t→+∞

Gt is a priori not a

gradient, and yet we are looking for ∇A!
PABF:

dXt = (−∇xV +∇Ht ◦ ξ) (Xt ,Yt) dt +
√

2β−1dW 1
t

dYt = −∇yV (Xt ,Yt)dt +
√

2β−1dW 2
t

∇Ht(z) = PL2(λ)(Gt) = PL2(λ)(E[∇xV (Xt ,Yt) | ξ(Xt ,Yt) = z ])

Fokker-Planck equation:

∂tπt = β−1∆πt −∇ · ((−∇V +∇Ht ◦ ξ)πt)

I (H. Alrachid, T. Lelièvre, 2015): technical trick regarding the projection.
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Non-conservative case Presentation of the problem

Problem

• Question: How about nonconservative forces (i.e for a generic
interacting force F)?

• Motivation:
Implementing −∇V (ab initio MD approximations).
A priori the force F = −∇V + εg is not conservative!
Is there a stationary measure to the Fokker-Planck equation?
Provided it exists, do we still have long-time convergence?
Can one obtain an estimation of the error made on the system’s free
energy?
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Non-conservative case Final model

Final model

Dynamics:{
dXt = F1(Xt ,Yt)dt + Bt(Xt)dt +

√
2β−1dW 1

t

dYt = F2(Xt ,Yt)dt +
√

2β−1dW 2
t

(2)

where the bias Bt is either:
Gt(.) = E [−F1(Xt ,Yt) | ξ(Xt ,Yt) = . ] (ABF)
∇Ht = PL2(λ)(Gt) (Projected ABF)

where PL2(ν)(G ) is the Helmholtz projection in L2(ν) of the vector field G .

Fokker-Planck equation:

∂tπt = β−1∆πt −∇ · ((F + Bt ◦ ξ)πt) (3)
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Results Flat histogram property

Flat histogram property

Proposition

For both the ABF and PABF algorithm, under several assumptions, πξt
converges towards the Lebesgue measure as t →∞. More precisely, for all
t ≥ 0

H(πξt |λ) 6 e−8β−1π2tH(πξ0|λ) .

Furthermore, there exists C > 0 such that for all initial distribution
πξ0 ∈ L2(Tm), for all t ≥ 1:

‖πξt − 1‖∞ 6 Ce−4β−1π2t‖πξ0 − 1‖2 .

 Flat histogram property verified in all cases.
- Entropic: PDE satisfied by πξt + deriving the entropy + Gronwall.
- L-∞: Nash inequality + PDE satisfied by πξt .
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Results Existence

Existence result

Theorem

For both the ABF and PABF algorithms, under several assumptions, there
exists a couple of stationary measure and bias

(
πF∞,B

F
∞
)
to (3), such that

πF∞ ∈ C0(Tn) is stricly positive. As a consequence,

(i) πF∞ satisfies a log-Sobolev inequality for some constant R > 0,

(ii) the conditional density y 7→ πF∞,x(y) := πF∞(x , y)/πF ,ξ∞ (x) satisfies a
log-Sobolev inequality for some constant ρ, for all x ∈ Tm.

 Note: πF∞ different for ABF and PABF.
- Invariant probability measures of homogeneous diffusions.
- Fixed point problem.
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Results Long-time convergence

Long-time convergence: conservative case

Theorem

Let us consider the ABF and PABF algorithms under several assumptions.
Let us suppose moreover that F = −∇V , with V ∈ C2(Tn). Then, there
exists K > 0 such that, for all ε > 0 and for all t ≥ 0:

H
(
πt |πF∞

)
≤ K

(
1 +

1
ε2

)
e−(Λ−ε)t ,

with πF∞ = µA being given by (1), Λ =
(
8π2 ∧ 2ρ

)
β−1 (ABF) and

Λ =
(
4π2 ∧ 2ρ

)
β−1 (PABF). Furthermore,

(
π−∇V∞ ,B−∇V∞

)
= (µA,∇A) is

the unique fixed point of (3).

 PABF case: theoretical gap filled.
- Classical proof skeleton + property of the Helmholtz decomposition.
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Results Long-time convergence

Long-time convergence: non-conservative case

Theorem

Let us consider the ABF and PABF algorithms under several assumptions
(among which F1 is M-Lipschitz). Let πF∞,ρ be a stationary measure for
(3) and a constant such as in Theorem 1. Suppose moreover that
Mβ < 2ρ. Then there exists K ≥ 0 such that, for all t ≥ 0:

H
(
πt |πF∞

)
≤ Ke−Λt

with Λ = 2R(1− Mβ
2ρ )β−1.

As a consequence, the dynamics (3) admits a unique stationary measure.

 It is ok to use ABF and PABF with non-conservative forces.
- Classical proof skeleton + Helmholtz decomposition.
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Results Error bounds

Error bounds

Proposition

For the PABF algorithm, for all V ∈ C2(Tn) and p ≥ 1, there exists
KV > 0 and Kp > 0 such that the following holds. For all F ∈ C1(Tn)
satisfying ‖F +∇V ‖∞ ≤ 1, for all stationary measure πF∞ of (3),
considering the corresponding bias ∇HF∞, one has

‖∇A−∇HF∞‖Lp(Tm) ≤ KVKp‖F +∇V ‖∞ ,

and, for all ψ ∈ L∞(Tn), considering

Îψ :=

∫
Tn ψ(x , y)e−βH

F
∞(x)πF∞(x , y)dxdy∫

Tn e−βH
F
∞(x)πF∞(x , y)dxdy

,

one has ∣∣∣∣∫
Tn

ψdµ− Îψ

∣∣∣∣ ≤ KV ‖ψ‖∞ ‖F +∇V ‖∞ .
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Results Conclusion

Quick recap

I ABF and PABF are robust:
- Stationary measure πF∞.
- Flat histogram property.
- Convergence of πt towards πF∞.
- Convergence of the bias.
- Bound on the error made on the system’s free energy.

I Convergence proof for ABF applied to the kinetic Langevin dynamics,
where both momenta and positions are considered?
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What now?

Now, some alchemy!

Alchemical reactions: ξ ≡ λ guides the system from an initial state
λ = 0 to a final state λ = 1.
Extended Hamiltonian:

H(q, p;λ) = Ek(p, λ) + V (q, λ)

= Ek(p, λ) + Velec(q, λ) + VvdW (q, λ)

H(q, p; 0) = H ini (q, p), H(q, p; 1) = Hend(q, p).
In-between states λ ∈ (0, 1) are allowed to not make sense physically!
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What now?

Applications

Use: estimating free energy differences.

Hydration FE
Ligand-binding affinity

Figure: Thermodynamic cycle of protein-ligand binding and ligand mutation.
(https://www.r-ccs.riken.jp/labs/cbrt/tutorials2019/genesis-tutorial-15-1/)
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What now?

OSRW

"Random walk in orthogonal space to achieve efficient free-energy
simulation of complex systems"

Lianqing Zheng, Mengen Chen, and Wei Yang, 2008

 Choice of a particular reaction coordinate: (λ,Fλ).

Questions:
I How about using ABF with (λ,Fλ)?
I Is (λ,Fλ) the only good choice? Try with (λ, ξ) ?
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What now?

Implementation

Treating alchemical reactions in TinkerHP

Softcores: playing with forces ignition!
Establish bridge between TinkerHP and Colvars software
Implement and run λ–dynamics

Toy models: solvation of water in water, solvation of sodium in water

What remains to be done
Comparing ABF to OSRW in TinkerHP: many ways to do it!
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What now?

Thank you for your attention!
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