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Solleneipebeleln oG bl s
Setting

N particles, ¢ = (g1, ..., gn) € D their positions.
Potential energy V € C2(D), interaction force F = —VV

@ Boltzmann-Gibbs measure:

u(dq) = Zu—le—BV(CI) dq, ZM — / e—BV(a) dq
D

Canonical Mean/ thermodynamic quantity:

1 € C3°(D) observable, and E,[¢] = /qud,u

Goal: being able to sample u!
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(DL Goal: sampling the Boltzmann-Gibbs measure

Overdamped Langevin dynamics

e Dynamics:

dQ; = —VV(Q,)dt + /26 1dW,

Infinitesimal generator:

Lo(X) = lim E.[o(Xt)] — o(X)

t——+oo t

= —VV - Ve(X) + BAp(X)

Fokker-Planck equation:

3t7rt = [:*’R't

Ergodicity: (Q:):>0 is ergodic with respect to p. In other words:

1
Vi € C°(D),  lim —

T—+00 T

/0 " (Qe)dt = E,[u]

Problem: Metastability!
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Goal: sampling the Boltzmann-Gibbs measure
What is metastability?

Activated
State

State 1
(metastable)

/ State 2
{stable) \

.’ H

" L

SIS SN trans isomer

Figure: cis—trans isomerization of 1,2-Dichloroethene
(http://chemcollective.org/chem/entropy/reactcoord.php)
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(DL Goal: sampling the Boltzmann-Gibbs measure

Reaction coordinate

e ¢ : D — M, with M manifold of dimension d’ < dN.

Y. ={qeD|{(q) =2z}
o Free energy:

AR = 6z, Zr = [ e V@ igg (g
JY,

Local mean force: F (~ (V£)TVE, V, B)
Free energy derivative: VA(z) = E[F(Q)]£(Q) = Z]
Property: If Q ~ p then &£(Q) ~ pa:

efﬁA(Z) dz

pa =& x p(dz) = T e Pt d;
M
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(DL Goal: sampling the Boltzmann-Gibbs measure

From now on

@ Position g = (x,y) € T"

@ Stochastic process Q; = (X, Yy) Vt>0
o with x e T y € T""™ and &(x,y) = x
e VA(z) = E[ViV(x,y) |&(x,y) = x = Z]

~ Convergence results are expressed using the relative entropy of two
measures:

[In(3)dp if p< v

400 else.

M) = {
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The Adaptive Biasing Force method
The idea

e ¢ is a generalized coordinate
e (qg,&) extended coordinates
@ Methods using &: generalized ensemble methods

full sampling trapped

A A2 with ABF bias A

ps ns us ms

timescale

Figure: Concept of ABF (Jéréme Hénin, CECAM workshop, Paris, 2021)
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el e e
First attempt

e Biased Overdamped Langevin:

dX; = (=VV 4+ VA0 ) (Xe, Ye)dt + /28~ 1dW}
dYy = =V, V(Xs, Ye)dt + /28~ 1dW?

@ Fokker-Planck equation:

Opre = B Ame — V- ((=VV 4+ VAo
o Stationary measure: 7o, oc e H(V =A%)

@ & x Ty is the uniform law!
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o ABF:

dX: = (=ViV + Gt 0 &) (Xe, Ye) dt + /23" 1dW}
dYe = =V, V(Xs, Ye)dt + /238" 1dW?
Gi(z) = B[V V(Xt, Ye) [€(Xe, Yi) = 2]

@ Fokker-Planck equation:
8t7rt = ﬂilAT{'t -V- ((—VV + Gt o f)ﬂ't)

e Known results- T Lelievre, F.Otto, M.Rousset, G.Stoltz — 2007
(I) t—llmoo Gt -
(i) I|T Tt = Moo
(iii) Flat hlstogram property: the law ¢ = £ x 7, of (€(Q¢))e>0 is s.t

lim 7rt = \: no more energy barriers.
t——+4o0

10/21



The Projected Adaptive Biasing Force method
Projected Adaptive Biasing Force method

@ In simulations, the converged bias G = . “T G; is a priori not a
——+00
gradient, and yet we are looking for VAl
o PABF:

dYe = —V, V(Xe, Ye)dt + /28 TdW?

{ dXe = (Vi V 4+ VH, 0 &) (Xe, Ye) dt + /26" 1dW}
VH(z) = PLz(A)(Gt) = PL2()\)(E[VXV(XI‘, V) |€(Xe, Ye) = 2])

o Fokker-Planck equation:

Oy = BAT — V- ((=VV 4 VH; 0 &)my)

» (H. Alrachid, T. Leliévre, 2015): technical trick regarding the projection.
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Non-conservative case Presentation of the problem

Problem

e Question: How about nonconservative forces (i.e for a generic
interacting force F)?

e Motivation:

o Implementing —V'V (ab initio MD approximations).
A priori the force 7 = —VV + eg is not conservative!

@ Is there a stationary measure to the Fokker-Planck equation?
@ Provided it exists, do we still have long-time convergence?

@ Can one obtain an estimation of the error made on the system's free
energy?
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Non-conservative case Final model

Final model

Dynamics:

AdXe = Fi(Xe, Yo)dt + Bo(X,)dt + /2B~ TdW}
25 Td W2 ()
dYt - ./_"2(Xt, Yt)dt + 2B71th

where the bias B; is either:
o Gi(.) =E[—-F1(Xe, Ye) | E(Xe, Ye)
® VH: = P2,)(G:) (Projected ABF)

where P;2(,)(G) is the Helmholtz projection in L?(v) of the vector field G.

.| (ABF)

Fokker-Planck equation:

Oy = BYAT, — V- ((F + B; o &)my) (3)
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Flat histogram property
Proposition

For both the ABF and PABF algorithm, under several assumptions, wf
converges towards the Lebesgue measure as t — oo. More precisely, for all

tz0 12
H(re)) < e (ng))).
Furthermore, there exists C > 0 such that for all initial distribution

7rg € L2(']I""), for all t > 1:

_48- 172
7§ — 1o < Ce™ ™2 — 1|2

~ Flat histogram property verified in all cases.
- Entropic: PDE satisfied by 7T§ + deriving the entropy + Gronwall.
- L-oco: Nash inequality + PDE satisfied by ﬂi.
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Existence result

Theorem

For both the ABF and PABF algorithms, under several assumptions, there
exists a couple of stationary measure and bias (77, BL)) to (3), such that
7l € CO(T") is stricly positive. As a consequence,

(i) wl satisfies a log-Sobolev inequality for some constant R > 0,

(ii) the conditional density y — 7, . (y) := 77 (x,y) /72 (x) satisfies a
log-Sobolev inequality for some constant p, for all x € T™.

~~ Note: 7 different for ABF and PABF.

- Invariant probability measures of homogeneous diffusions.

- Fixed point problem.
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Long-time convergence: conservative case

Theorem

Let us consider the ABF and PABF algorithms under several assumptions.
Let us suppose moreover that F = —VV, with V € C?>(T"). Then, there
exists K > 0 such that, for all e > 0 and for all t > 0:

H (me|nl) < K <1 + 12> e~ (A=),
9

with wl_ = pa being given by (1), A = (872 A 2p) B~ (ABF) and
A = (472 A 2p) B~ (PABF). Furthermore, (.Y, B.VY) = (ua, VA) is
the unique fixed point of (3).

~ PABF case: theoretical gap filled.

- Classical proof skeleton + property of the Helmholtz decomposition.
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Long-time convergence: non-conservative case

Theorem

Let us consider the ABF and PABF algorithms under several assumptions
(among which Fi is M-Lipschitz). Let ©l_,p be a stationary measure for
(3) and a constant such as in Theorem 1. Suppose moreover that

M3 < 2p. Then there exists K > 0 such that, for all t > 0:

H (wthrofo) < Ke M

with A = 2R(1 — 2)5~1,
As a consequence, the dynamics (3) admits a unique stationary measure.

v

~ |t is ok to use ABF and PABF with non-conservative forces.

- Classical proof skeleton + Helmholtz decomposition.
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Error bounds

Proposition

For the PABF algorithm, for all V € C?(T") and p > 1, there exists
Ky > 0 and K, > 0 such that the following holds. For a/l F € CcYT")
satisfying H.7:+ VV|lo < 1, for all stationary measure 72 of (3),
considering the corresponding bias V HZ,, one has

IVA = VHL lermy < KvKpl|F 4+ V V|| s

and, for all 1) € L>°(T"), considering

 Je U y)e PPEOIRT (x y)axdy
T e*5”£(x)ﬂfo(x,y)dxdy

’/ Ydp — /AU

one has

< Kv [l IF+ VV]eo -
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S
Quick recap

» ABF and PABF are robust:

; F
- Stationary measure 77_.

- Flat histogram property.

- Convergence of m; towards 77 .

Convergence of the bias.

- Bound on the error made on the system's free energy.

Convergence proof for ABF applied to the kinetic Langevin dynamics,
where both momenta and positions are considered?
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What now?

Now, some alchemy!

@ Alchemical reactions: £ = \ guides the system from an initial state
A =0 to a final state A = 1.

o Extended Hamiltonian:

H(q,p; A) = Ex(p. ) +
= Ex(p, A) + Verec(q, A) + Viaw (g, A)

o H(q,p;0) = H"(q,p), H(q,p:1) = H"(q, p).
@ In-between states A € (0, 1) are allowed to not make sense physically!
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Applications

Use: estimating free energy differences.
@ Hydration FE
o Ligand-binding affinity

FKBP AGcomplex

‘mutation <
— @ Lo L8 s

¢ 72l
Mutation </3 A 55

L8 L9
AGbin::ling tsinding gi,,df,,gt AGbinding

Mutation L 9 i
— ]
‘ . iy

ligand ¢
AGjeation M

o L9 s L8 - complex _ ligand
AAG = AGbiﬂding AGbinding = AGmytation ~ AGmutation

Figure: Thermodynamic cycle of protein-ligand binding and ligand mutation.
(https://www.r-ccs.riken.jp/labs/cbrt/tutorials2019/genesis-tutorial-15-1/)
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OSRW

"Random walk in orthogonal space to achieve efficient free-energy

simulation of complex systems"
Lianqging Zheng, Mengen Chen, and Wei Yang, 2008

~~ Choice of a particular reaction coordinate: (A, Fy).

Questions:
How about using ABF with (X, F))?
Is (A, F) the only good choice? Try with (A, &) ?
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What now?

Implementation

Treating alchemical reactions in TinkerHP
@ Softcores: playing with forces ignition!
o Establish bridge between TinkerHP and Colvars software
@ Implement and run A—dynamics

Toy models: solvation of water in water, solvation of sodium in water

What remains to be done

@ Comparing ABF to OSRW in TinkerHP: many ways to do it!
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What now?

Thank you for your attention!
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What now?
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