
BAMPHI (Backward-accurate Action of Matrix PHI-functions)

Franco Zivcovich

joint work with Marco Caliari† and Fabio Cassini‡

21 Juin 2021

Laboratoire Jacques–Louis Lions,

Università degli Studi di Verona†, Università degli Studi di Trento‡

Table of contents

1. Exponential-type methods

2. Are the ϕ-functions difficult to compute ?

3. Computing the action of the matrix exponential

4. What about bamphi ?

5. Numerical evidence

1 / 25

Exponential-type methods

When simulating dynamics,

more accuracy means more efforts.

This is especially true when the

underlying differential equations

are stiff.

Stiff systems are characterized by a

wide range of time scales in their

evolution.
Figure 1 – Final concentrations of components in a chemical

reaction described by stiff coupled systems of adr equations.

2 / 25

Figure 2 – As the relative velocity of the water increases

turbulence occurs in the water flow over the hull of a submarine.

Stiff equations arise in a wide

range of fields including :

• fluid dynamics,

• electromagnetics,

• acoustics,

• electrodynamics,

• molecular modeling,

• celestial mechanics

3 / 25

. . . but also in visual computing for

animating the dynamics of cloth,

fibers, fluids, or solids, and their

interaction with each other.

Figure 3 – Dynamical simulation of human hair during a

head shake carried out with an exponential-type method

4 / 25

Write our stiff system of differential equations:

u′(t) = Au(t)︸ ︷︷ ︸
stiff guy

+ g(t, u(t))︸ ︷︷ ︸
nice guy

, u(t0) = u0 ∈ CN ,

so that the stiffness is concentrated in the linearity A. The exponential-type methods are

usually derived from the Duhamel formula

u(tn + k) = ekAu(tn) +

∫ k

0
e(k−s)Ag(tn + s, u(tn + s))ds

where the linearity A is treated exactly. For this reason, they are particularly suited for

the integration of stiff systems of differential equations.

5 / 25

In particular, each exponential-type method differs from the others for how it

approximates the integral in

u(tn + k) = ekAu(tn) +

∫ k

0
e(k−s)Ag(tn + s, u(tn + s))ds ,

usually through the action of one or few linear combinations of ϕ-functions, defined as

ϕp(x) :=
∞∑
i=0

x i

(i + p)!

(
=

∫ 1

0
e(1−θ)x θp−1

(p − 1)!
dθ, p > 0

)

6 / 25

Are the ϕ-functions difficult to

compute ?

Linear combinations ϕ-functions are quite simple to compute. In fact, we can obtain

ekAv0 + ϕ1(kA)v1 + . . .+ ϕp(kA)vp,

through the single - slightly larger - action of the matrix exponential:

ekÃṽ ,

where

Ã :=

(
A W

0 J

)
, J :=

(
0 Ip−1

0 0

)
, W :=

(
k−pvp, k

−p+1vp−1, . . . , k
−1v1

)
, ṽ =

(
v0

ep

)
.

7 / 25

Ã = A W

J

beware :

symmetricity (if any) is lost and the sparsity pattern worsen,

if not handled correctly Ã may become a source of problems.

Ã :=

(
A W

0 J

)
, J :=

(
0 Ip−1

0 0

)
, W :=

(
k−pvp, k

−p+1vp−1, . . . , k
−1v1

)
, ṽ =

(
v0

ep

)

8 / 25

Consequently, exponential-type methods boil down to computing hundreds, thousands or

even millions of times the action of very few sorts of //////linear/////////////////combinations///of///////////////ϕ-functions

matrix exponentials only marginally changing from an integration step to another.

9 / 25

Computing the action of the matrix

exponential

Practitioners are fully sided with Krylov-based methods due to their simplicity and

effectiveness. The idea revolves around Arnoldi decomposition:

Ã Vm = Vm

Hm

+

hm+1,mvm+1

where Hm is a Hessemberg matrix and V?
mVm = Im with m� N.

10 / 25

Krylov approximation is obtained by forming

ekÃṽ ≈ κm(kÃ, ṽ) := ‖ṽ‖2Vme
kHme1

where m is chosen large enough so that the approximation is accurate. But Arnoldi

decomposition

• is expensive: O(m2N) (or O(mN) if Incomplete Orthogonalization Method is used);

• requires huge storage space (mN elements) and frequent memory accesses;

• for large m shows stability issues.

Hence it would be best to keep m low (or to overcome Arnoldi procedure right away).

11 / 25

To do so, one sets v (0) := ṽ and adoptes the following sub-stepping strategy :

v (l+1) := κml+1
(τl+1kÃ, v (l)), l = 0, 1, . . . , s − 1

where τ1 + . . .+ τs = 1 and m1, . . . ,ms are reasonably small positive integers (usually

between 10 and 128).

Anyway, this means Krylov methods require to run the (iom) Arnoldi procedure

at each sub-step (maybe tens or even hundreds)

× of each combination of ϕ-functions (usually less than ten)

× of each exponential integration step (maybe hundreds, thousands or even millions)

= amounting to a gazillion calls of this tiring decomposition.

12 / 25

This problem is known in the community from a long time. An attempt to tackle it

traces back to expmv, which is based on a Taylor interpolation

ekÃṽ ≈ Tm(kÃ)ṽ :=
m∑
i=0

(kÃ)i

i !
ṽ

and it comes, for stability reasons, with a sub-stepping strategy too

v (l+1) := Tm(s−1kÃ)v (l), l = 0, 1, . . . , s − 1

where v (0) := ṽ .

13 / 25

Now, Taylor interpolation is usually deprecated 1 and referred to as a bad idea for this

kind of task, in fact, σ(Ã) is usually scattered and interpolating at the origin may cause:

• a disproportionate amount of matrix-vector products to perform;

• numerical instabilities.

Yet, expmv succeded to prove a point compared to Krylov methods, in fact:

• performing Taylor interpolation only requires storing two vectors;

• any Taylor iteration only requires one matrix-vector product.

1. Author’s impression formed by talking with some (but not every) practitioners.
14 / 25

What about bamphi ?

In a way, bamphi is similar to expmv, in fact, it is based on a Newton interpolation

ekÃṽ ≈ pm(kÃ)ṽ :=
m∑
i=0

di

i−1∏
j=0

(kÃ− kxj I)ṽ

which is a mere generalization of Taylor interpolation. As such,

• performing Newton interpolation only requires storing two vectors ;

• any Newton iteration only requires one matrix-vector product.

And it comes too, for stability reasons, with a sub-stepping strategy

v (l+1) := pm(s−1kÃ)v (l), l = 0, 1, . . . , s − 1

where v (0) := ṽ .

15 / 25

Now, we need a solid interpolation set lying close to the eigenvalues of Ã to overcome

expmv’s weaknesses. Theorem from [1] says:

“The approximation κm(X, v) is mathematically equivalent to pm(X)v

provided pm(·) is the polynomial interpolating ex at the Ritz’s values, i.e., σ(Hm)”.

Hence the idea is to interpolate right at the Ritz’s values so that we can emulate Krylov

methods without actually performing a Krylov method.

16 / 25

In fact, what we are going to do is the following :

1. RUN the iom Arnoldi decomposition 2 of A once and compute the set σ(kHm) ;

2. COMPUTE the linear combinations of ϕ-functions ekÃṽ interpolating at

σ(kHm) ∪ {0, 0, . . . , 0}︸ ︷︷ ︸
p times

;

3. STEP AHEAD : IF A changed since the last integration step go to 1, ELSE go to 2.

2. we don’t even need to store the huge and full matrix Vm, we just need Hm.
17 / 25

This means that bamphi requires to run the (iom) Arnoldi procedure

once and for all at the first call of the routine

= amounting to one call

if the matrix A doesn’t change from timestep to timestep or

at each exponential integration step (maybe hundreds, thousands or even millions)

= amounting to several (but not extremely many) calls

if the matrix A unfortunately does.

18 / 25

Numerical evidence

Routines : for the numerical tests, we compare the two following Matlab routines:

• kiops: is the state-of-the-art routine when it comes to Krylov method, it employs

iom Arnoldi decomposition and it is widely used for its strength and simplicity;

• bamphi: is the routine based on Newton interpolation at Ritz’s values that we

described;

19 / 25

Test 1 : consider the 2-dimensional Advection-Diffusion-Reaction equationut = ε∆u − α(ux + uy) + γu(u − 1
2)(1− u)

u0 = 256x2y2(1− x)2(1− y)2 + 3
10

with Ω = [0, 1]2, t ∈ [0, 1
10], and homogeneous Neumann conditions are set. We employ

second-order finite differences discretization with Nx = 500 points for each dimension.

We take ε = 1
100 , γ = 100 and α so that the problem has

• Peclet number equal to 0, see figure (4);

• Peclet number equal to 0.5, see figure (5);

• Peclet number equal to 1, see figure (6);

for time marching we use the Runge–Kutta exp. integrators exprk4s6 and exprk5s10.

20 / 25

0 2 4 6 8 10 12 14 16 18
10−8

10−7

10−6

10−5

10−4

cpu time

re
la

ti
ve

er
ro

r

exprk4s6 kiops
exprk4s6 bamphi

0 2 4 6 8 10 12 14 16 18 20
10−8

10−7

10−6

10−5

10−4

cpu time

re
la

ti
ve

er
ro

r

exprk5s10 kiops
exprk5s10 bamphi

Figure 4 – adr, Peclet number 0, exprk4s6, exprk5s10

21 / 25

0 5 10 15 20 25 30 35 40
10−6

10−5

10−4

10−3

10−2

10−1

cpu time

re
la

ti
ve

er
ro

r

exprk4s6 kiops
exprk4s6 bamphi

0 5 10 15 20 25 30 35 40
10−6

10−5

10−4

10−3

10−2

10−1

cpu time

re
la

ti
ve

er
ro

r

exprk5s10 kiops
exprk5s10 bamphi

Figure 5 – adr, Peclet number 0.5, exprk4s6, exprk5s10

22 / 25

0 10 20 30 40 50 60 70 80 90
10−8

10−7

10−6

10−5

10−4

cpu time

re
la

ti
ve

er
ro

r

exprk4s6 kiops
exprk4s6 bamphi

0 5 10 15 20 25 30 35 40
10−4

10−3

10−2

10−1

cpu time

re
la

ti
ve

er
ro

r

exprk5s10 kiops
exprk5s10 bamphi

Figure 6 – adr, Peclet number 1, exprk4s6, exprk5s10

23 / 25

Test 2 : consider the 1-dimensional Cubic Schrödinger equation

iut = −∆u + |u|2u

with Ω = [−π, π], t ∈ [0, 1], u0 ∈ H
3/2
0 (Ω) and homogeneous Dirichlet conditions. We

employ second-order finite differences discretization with Nx = 500 points for each

dimension.

For time marching we use the Low-Regularity exp. type integrators explr1s2 and

explr2s4.

24 / 25

0 50 100 150 200 250 300 350 400 450 500 550 600
10−6

10−5

10−4

cpu time

re
la

ti
ve

er
ro

r

OS18 kiops
OS18 bamphi

0 2 4 6 8 10 12 14 16 18
10−7

10−6

10−5

cpu time

re
la

ti
ve

er
ro

r

RS21 kiops
RS21 bamphi

Figure 7 – Cubic Schrödinger equation, explr1s2, explr2s4

25 / 25

References

A. H. Al-Mohy and N. J. Higham, Computing the action of the matrix

exponential with an application to exponential integrators, SIAM J. Sci. Comput.

33 (2) (2011) 488–511.

M. Caliari, P. Kandolf, A. Ostermann and S. Rainer, The Leja method

revisited : backward error analysis for the matrix exponential, SIAM J. Sci. Comput.

38 (3) (2016) A1639–A1661.

S. Gaudreault, G. Rainwater and M. Tokman, KIOPS : A fast adaptive

Krylov subspace solver for exponential integrators, J. Comput. Phys., 372 (2018),

236-–255,

25 / 25

References

M. Hochbruck and A. Ostermann, Exponential integrators, Acta Numerica,

19 (2010), 209-286.

J. Niesen and W.M. Wright, A Krylov Subspace Algorithm for Evaluating the

phi-Functions appearing in Exponential Integrators, ACM Trans. Math. Software,

38(3) (2012), Article 22.

D. Michels, V.T. Luan and M. Tokman, A Stiffly Accurate Integrator for

Elastodynamic Problems, ACM Trans. on Graphics, Vol. 36, No. 4, Article 116,

(2017).

25 / 25

References

Y. Saad, Analysis of some Krylov subspace approximations to the matrix

exponential operator, SIAM. 29 (1) (1992), 209-228.

25 / 25

	Exponential-type methods
	Are the -functions difficult to compute?
	Computing the action of the matrix exponential
	What about bamphi?
	Numerical evidence

