Finding Global Minima via Kernel Approximations

Francis Bach

INRIA - Ecole Normale Supérieure, Paris, France

Joint work with Alessandro Rudi and Ulysse Marteau-Ferey Congrès SMAI, la Grande Motte - June 22, 2021

Global optimization

• Zero-th order minimization

 $\min_{x \in \Omega} f(x)$

- $\Omega \subset \mathbb{R}^d$ simple compact subset (e.g., $[-1,1]^d$)
- -f with some bounded derivatives
- access to function values

Global optimization

• Zero-th order minimization

 $\min_{x \in \Omega} f(x)$

- $\Omega \subset \mathbb{R}^d$ simple compact subset (e.g., $[-1,1]^d$)
- -f with some bounded derivatives
- access to function values
- No convexity assumption

Global optimization

• Zero-th order minimization

 $\min_{x \in \Omega} f(x)$

- $\Omega \subset \mathbb{R}^d$ simple compact subset (e.g., $[-1,1]^d$)
- -f with some bounded derivatives
- access to function values
- No convexity assumption
- Many applications
 - Hyperparameter optimization in machine learning
 - Industry

Optimal algorithms

- Goal: Find $\hat{x} \in \Omega$ such that $f(\hat{x}) \min_{x \in \Omega} f(x) \leqslant \varepsilon$
 - Lowest number of function calls
 - Worst-case guarantees over all functions f in some convex set ${\mathcal F}$

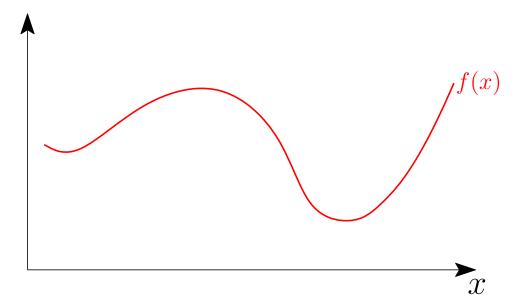
$$\sup_{f \in \mathcal{F}} \left\{ f(\hat{x}) - \min_{x \in \Omega} f(x) \right\} \leqslant \varepsilon$$

Optimal algorithms

- Goal: Find $\hat{x} \in \Omega$ such that $f(\hat{x}) \min_{x \in \Omega} f(x) \leqslant \varepsilon$
 - Lowest number of function calls
 - Worst-case guarantees over all functions f in some convex set ${\mathcal F}$

$$\sup_{f \in \mathcal{F}} \left\{ f(\hat{x}) - \min_{x \in \Omega} f(x) \right\} \leqslant \varepsilon$$

- Equivalence to uniform function approximation (Novak, 2006)
 - Simplest algorithm: approximate f by \hat{f} and minimize \hat{f}

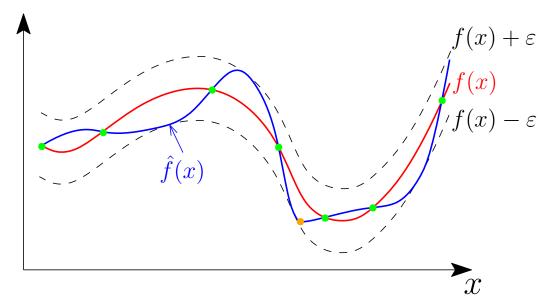


Optimal algorithms

- Goal: Find $\hat{x} \in \Omega$ such that $f(\hat{x}) \min_{x \in \Omega} f(x) \leqslant \varepsilon$
 - Lowest number of function calls
 - Worst-case guarantees over all functions f in some convex set ${\mathcal F}$

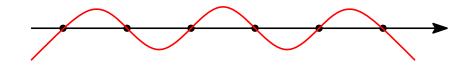
$$\sup_{f \in \mathcal{F}} \left\{ f(\hat{x}) - \min_{x \in \Omega} f(x) \right\} \leqslant \varepsilon$$

- Equivalence to uniform function approximation (Novak, 2006)
 - Simplest algorithm: approximate f by \hat{f} and minimize \hat{f}



- Optimal worst-case performance over \mathcal{F} (Novak, 2006)
 - n = number of function evaluations
 - $\mathcal{F}=\mathrm{Lipschitz}\text{-continuous functions:}~n\propto\varepsilon^{-d}$

- Optimal worst-case performance over \mathcal{F} (Novak, 2006)
 - -n = number of function evaluations
 - $\mathcal{F} = \text{Lipschitz-continuous functions:} n \propto \varepsilon^{-d}$
 - $\mathcal{F} = \boldsymbol{m}$ bounded derivatives: $n \propto \varepsilon^{-d/\boldsymbol{m}}$
- Smoothness to circumvent the curse of dimensionality
 - NB: constants may depend (exponentially) in d

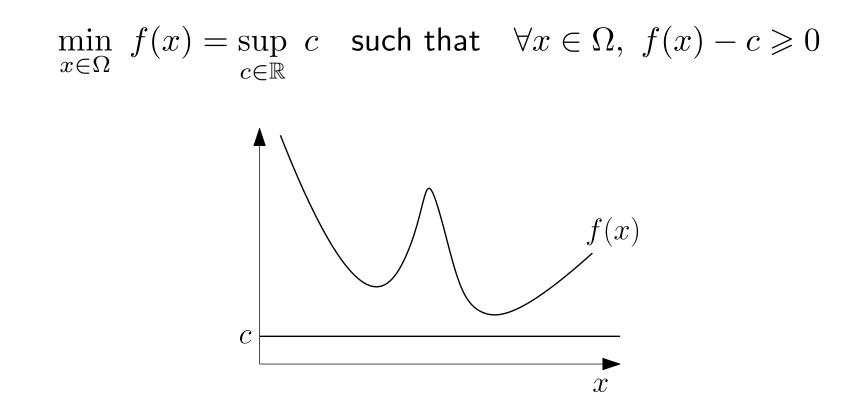


- Optimal worst-case performance over \mathcal{F} (Novak, 2006)
 - -n = number of function evaluations
 - $\mathcal{F}=\mbox{Lipschitz-continuous functions:}~n\propto \varepsilon^{-d}$
 - $\mathcal{F} = \boldsymbol{m}$ bounded derivatives: $n \propto \varepsilon^{-d/\boldsymbol{m}}$
- Smoothness to circumvent the curse of dimensionality
 - NB: constants may depend (exponentially) in d
- Algorithms have exponential running-time complexity
 - "Approximate then optimize"

- Optimal worst-case performance over \mathcal{F} (Novak, 2006)
 - -n = number of function evaluations
 - $\mathcal{F}=\mbox{Lipschitz-continuous functions:}~n\propto \varepsilon^{-d}$
 - $\mathcal{F} = m$ bounded derivatives: $n \propto \varepsilon^{-d/m}$
- Smoothness to circumvent the curse of dimensionality
 - NB: constants may depend (exponentially) in d
- Algorithms have exponential running-time complexity
 - "Approximate then optimize"
- Algorithms with polynomial-time complexity in n?
 - "Approximate and optimize"

Reformulations

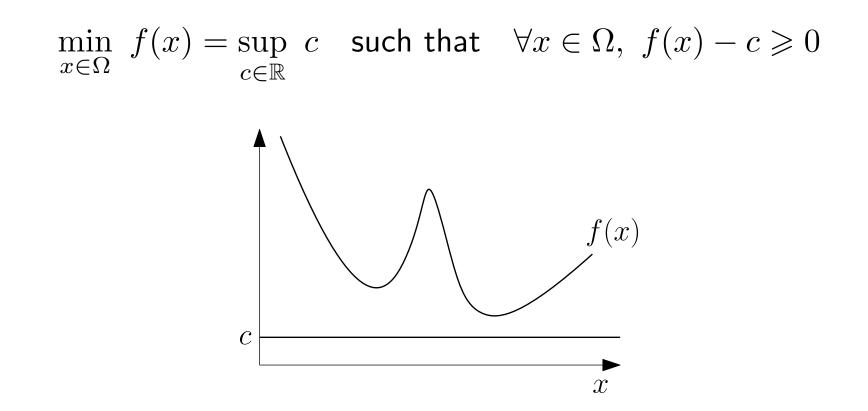
• Equivalent convex problem



- All optimization problems are convex!

Reformulations

• Equivalent convex problem



- All optimization problems are convex!
- Need to represent non-negative functions (such as f(x) c)

Representing non-negative functions

- Assumption: g(x) can be represented as $g(x) = \langle \phi(x), G\phi(x) \rangle$
 - with ${\boldsymbol{G}}$ symmetric operator
 - Assume constant function can be represented as $1=\langle u,\phi(x)\rangle$
 - Example: set of polynomials of degree 2rwith $\phi(x)$ composed of monomials of degree r, of dimension $\binom{d+r}{r}$

Representing non-negative functions

- Assumption: g(x) can be represented as $g(x) = \langle \phi(x), G\phi(x) \rangle$
 - with ${\boldsymbol{G}}$ symmetric operator
 - Assume constant function can be represented as $1=\langle u,\phi(x)\rangle$
 - Example: set of polynomials of degree 2rwith $\phi(x)$ composed of monomials of degree r, of dimension $\binom{d+r}{r}$
- Positivity through "sums-of-squares"
 - If $G \succcurlyeq 0$, then $\forall x \in \Omega, \ g(x) = \langle \phi(x), G \phi(x) \rangle \ge 0$

- Then,
$$g(x) = \sum_{i \in I} \lambda_i \langle \phi(x), (h_i \otimes h_i) \phi(x) \rangle = \sum_{i \in I} \lambda_i \langle \phi(x), h_i \rangle^2$$

Representing non-negative functions

- Assumption: g(x) can be represented as $g(x) = \langle \phi(x), G\phi(x) \rangle$
 - with ${\boldsymbol{G}}$ symmetric operator
 - Assume constant function can be represented as $1=\langle u,\phi(x)\rangle$
 - Example: set of polynomials of degree 2rwith $\phi(x)$ composed of monomials of degree r, of dimension $\binom{d+r}{r}$
- Positivity through "sums-of-squares"
 - If $G \succcurlyeq 0$, then $\forall x \in \Omega, \ g(x) = \langle \phi(x), G \phi(x) \rangle \ge 0$

- Then,
$$g(x) = \sum_{i \in I} \lambda_i \langle \phi(x), (h_i \otimes h_i) \phi(x) \rangle = \sum_{i \in I} \lambda_i \langle \phi(x), h_i \rangle^2$$

- Are all non-negative functions sums-of-squares?
 - Polynomials: no if d > 1 (see, e.g., Rudin, 2000)

Global optimization with sums of square polynomials

- Replace $f(x) c \ge 0$ by $f(x) = c + \langle \phi(x), A\phi(x) \rangle$ with $A \succcurlyeq 0$
 - represented as $F = c \cdot u \otimes u + A$

Global optimization with sums of square polynomials

• Replace $f(x) - c \ge 0$ by $f(x) = c + \langle \phi(x), A\phi(x) \rangle$ with $A \succcurlyeq 0$

- represented as
$$F = c \cdot u \otimes u + A$$

• Sum-of-squares optimization (Lasserre, 2001; Parrilo, 2003)

 $\sup_{c \in \mathbb{R}, A \succeq 0} c \quad \text{such that} \quad \forall x \in \mathbb{R}^d, \ f(x) = c + \langle \phi(x), A \phi(x) \rangle$

- Equivalent to original problem if $f(x) - f_*$ is a sum-of-squares

Global optimization with sums of square polynomials

• Replace $f(x) - c \ge 0$ by $f(x) = c + \langle \phi(x), A\phi(x) \rangle$ with $A \succcurlyeq 0$

- represented as
$$F = c \cdot u \otimes u + A$$

• Sum-of-squares optimization (Lasserre, 2001; Parrilo, 2003)

 $\sup_{c \in \mathbb{R}, A \succcurlyeq 0} c \quad \text{such that} \quad \forall x \in \mathbb{R}^d, \ f(x) = c + \langle \phi(x), A \phi(x) \rangle$

- Equivalent to original problem if $f(x) - f_*$ is a sum-of-squares - If not, and if localization set $\Omega = \{x, \|x\|^2 \leq R^2\}$ is known,

 $\forall x \in \Omega, \ f(x) \ge 0 \quad \Leftrightarrow \quad \forall x \in \mathbb{R}^d, \ f(x) = q(x) + (R^2 - ||x||^2)p(x)$

with p and q sums-of-squares polynomials (of unknown degree) – Needs "hierarchies"

Representing more general functions with RKHSs

- Reproducing Kernel Hilbert Space (RKHS) :
 - Hilbert space of functions $g \in \mathcal{H}, \ g : \mathbb{R}^d \to \mathbb{R}$
 - Representation as linear form : $g(x) = \langle g, \phi(x) \rangle$
 - Kernel : $k(x, x') = \langle \phi(x), \phi(x') \rangle$ (computable)

Representing more general functions with RKHSs

- Reproducing Kernel Hilbert Space (RKHS) :
 - Hilbert space of functions $g \in \mathcal{H}, \ g : \mathbb{R}^d \to \mathbb{R}$
 - Representation as linear form : $g(x) = \langle g, \phi(x) \rangle$
 - Kernel : $k(x, x') = \langle \phi(x), \phi(x') \rangle$ (computable)
- Example : Sobolev spaces (Berlinet and Thomas-Agnan, 2011)
 - Sobolev spaces $H^s(\Omega)$ with $\Omega \subset \mathbb{R}^d$, s > d/2

$$\langle f,g \rangle = \sum_{|\alpha| \le s} \int_{\Omega} \partial^{\alpha} f(x) \cdot \partial^{\alpha} g(x) dx$$

- Example s = d/2 + 1/2: $k(x, y) = \exp(-||x - y||)$

Representing more general functions with RKHSs

- Reproducing Kernel Hilbert Space (RKHS) :
 - Hilbert space of functions $g \in \mathcal{H}, \ g : \mathbb{R}^d \to \mathbb{R}$
 - Representation as linear form : $g(x) = \langle g, \phi(x) \rangle$
 - Kernel : $k(x, x') = \langle \phi(x), \phi(x') \rangle$ (computable)

\bullet Everything can be expressed using only the kernel function k

- Useful when dealing with function evaluations
- Representer theorem (Kimeldorf and Wahba, 1971): Minimizing $L(g(x_1), \ldots, g(x_n)) + \frac{\lambda}{2} ||g||^2$ can be done by restricting to

$$g(x) = \sum_{i=1}^{n} \alpha_i k(x, x_i)$$

- Then $g(x_j) = \sum_{i=1}^{n} \alpha_i k(x_j, x_i)$ and $\|g\|^2 = \sum_{i,j=1}^{n} \alpha_i \alpha_j k(x_i, x_j)$

Going infinite-dimensional (Rudi, Marteau-Ferey, and Bach, 2020)

 $\sup_{c\in\mathbb{R},\ A\succcurlyeq 0} c \quad \text{such that} \quad \forall x\in\Omega,\ f(x)=c+\langle\phi(x),A\phi(x)\rangle$

- $\phi(x) \in \mathcal{H}$ Hilbert space so that $\langle w, \phi(x) \rangle$ spans a Sobolev space
 - -s > d/2 squared-integrable derivative
 - Reproducing kernel Hilbert space (RKHS)
 - $k(x,y) = \langle \phi(x), \phi(y) \rangle = \exp(-\|x-y\|)$ for s = d/2 + 1/2.
 - See, e.g., Berlinet and Thomas-Agnan (2011)

Going infinite-dimensional (Rudi, Marteau-Ferey, and Bach, 2020)

 $\sup_{c\in\mathbb{R},\ A\succcurlyeq 0} c \quad \text{such that} \quad \forall x\in\Omega,\ f(x)=c+\langle \phi(x),A\phi(x)\rangle$

- $\phi(x) \in \mathcal{H}$ Hilbert space so that $\langle w, \phi(x) \rangle$ spans a Sobolev space
 - -s > d/2 squared-integrable derivative
 - Reproducing kernel Hilbert space (RKHS)
 - $-k(x,y) = \langle \phi(x), \phi(y) \rangle = \exp(-\|x-y\|) \text{ for } s = d/2 + 1/2.$
 - See, e.g., Berlinet and Thomas-Agnan (2011)
- Theorem: $\exists A_* \succeq 0$ such that $\forall x \in \Omega$, $f(x) = f_* + \langle \phi(x), A_*\phi(x) \rangle$
 - If f has isolated strict-second order minima in $\check{\Omega}$, and f is (s+3)-times differentiable

Going infinite-dimensional (Rudi, Marteau-Ferey, and Bach, 2020)

 $\sup_{c\in\mathbb{R},\ A\succcurlyeq 0} c \quad \text{such that} \quad \forall x\in\Omega,\ f(x)=c+\langle\phi(x),A\phi(x)\rangle$

- $\phi(x)\in \mathcal{H}$ Hilbert space so that $\langle w,\phi(x)\rangle$ spans a Sobolev space
 - -s > d/2 squared-integrable derivative
 - Reproducing kernel Hilbert space (RKHS)
 - $-k(x,y) = \langle \phi(x), \phi(y) \rangle = \exp(-\|x-y\|) \text{ for } s = d/2 + 1/2.$
 - See, e.g., Berlinet and Thomas-Agnan (2011)
- Theorem: $\exists A_* \succeq 0$ such that $\forall x \in \Omega$, $f(x) = f_* + \langle \phi(x), A_*\phi(x) \rangle$
 - If f has isolated strict-second order minima in $\stackrel{\,\,{}_\circ}{\Omega}$, and f is (s+3)-times differentiable
 - \Rightarrow Equivalent to original problem, but infinite-dimensional

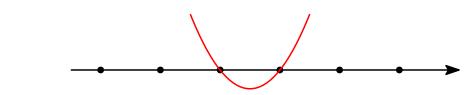
• Subsample n points $x_1, \ldots, x_n \in \Omega$ and solve

• Subsample n points $x_1, \ldots, x_n \in \Omega$ and solve

- Approximation guarantees (Rudi, Marteau-Ferey, and Bach, 2020)
 - With random samples, $n\approx \varepsilon^{-d/(m-d/2-3)}$
 - (up to logarithmic terms)
 - To be compared to optimal rate $n\approx \varepsilon^{-d/(m-d/2)}$
 - Constraint $m \ge \frac{d}{2} + 3$ can be lifted

• Subsample n points $x_1, \ldots, x_n \in \Omega$ and solve

- Approximation guarantees (Rudi, Marteau-Ferey, and Bach, 2020)
 - With random samples, $n \approx \varepsilon^{-d/(m-d/2-3)}$
 - (up to logarithmic terms)
 - To be compared to optimal rate $n \approx \varepsilon^{-d/(m-d/2)}$
 - Constraint $m \ge \frac{d}{2} + 3$ can be lifted
- Subsampling inequalities as $f(x_i) \ge c$ directly?
 - cannot improve on $n\approx \varepsilon^{-d}$



• Subsample n points $x_1, \ldots, x_n \in \Omega$ and solve

- Finite-dimensional algorithm through representer theorem
 - Marteau-Ferey, Bach, and Rudi (2020)
 - Restrict optimization to $A = \sum_{i,j=1}^{n} C_{ij} \phi(x_i) \otimes \phi(x_j)$ with $C \geq 0$

• Subsample n points $x_1, \ldots, x_n \in \Omega$ and solve

- Finite-dimensional algorithm through representer theorem
 - Marteau-Ferey, Bach, and Rudi (2020)
 - Restrict optimization to $A = \sum_{i,j=1}^{n} C_{ij} \phi(x_i) \otimes \phi(x_j)$ with $C \geq 0$
- Semi-definite programming problem
 - Complexity $O(n^{3.5} \log \frac{1}{\epsilon})$ by interior point method
 - More efficient Newton algorithm in $O(n^3)$

• Input: $f: \mathbb{R}^d \to \mathbb{R}$, $\Omega \subset \mathbb{R}^d, n \ge 0, \lambda > 0, s > d/2$

- Input: $f: \mathbb{R}^d \to \mathbb{R}$, $\Omega \subset \mathbb{R}^d, n \ge 0, \lambda > 0, s > d/2$
- 1. Sampling: $\{x_1, \ldots, x_n\}$ sampled i.i.d. uniformly on Ω

- Input: $f: \mathbb{R}^d \to \mathbb{R}$, $\Omega \subset \mathbb{R}^d, n \ge 0, \lambda > 0, s > d/2$
- 1. Sampling: $\{x_1, \ldots, x_n\}$ sampled i.i.d. uniformly on Ω
- 2. Feature computation
 - Compute $K_{ij} = k(x_i, x_j)$ for k Sobolev kernel of smoothness s
 - Compute square root of $K = R^{\top} R \in \mathbb{R}^{n \times n}$
 - Set $\Phi_j = j$ -th column of R, $\forall j \in \{1, \ldots, n\}$
 - Set $f_j = f(x_j)$, $\forall j \in \{1, \ldots, n\}$

- Input: $f: \mathbb{R}^d \to \mathbb{R}$, $\Omega \subset \mathbb{R}^d, n \ge 0, \lambda > 0, s > d/2$
- 1. Sampling: $\{x_1, \ldots, x_n\}$ sampled i.i.d. uniformly on Ω
- 2. Feature computation
 - Compute $K_{ij} = k(x_i, x_j)$ for k Sobolev kernel of smoothness s
 - Compute square root of $K = R^{\top} R \in \mathbb{R}^{n \times n}$
 - Set $\Phi_j = j$ -th column of R, $\forall j \in \{1, \dots, n\}$ - Set $f_j = f(x_j), \forall j \in \{1, \dots, n\}$
- 3. Solve $\max_{c \in \mathbb{R}, B \succeq 0} c \lambda \operatorname{tr}(B)$ s.t. $\forall j \in \{1, \dots, n\}, f_j c = \Phi_j^\top B \Phi_j$

– With Lagrange multipliers $\alpha \in \mathbb{R}^n$

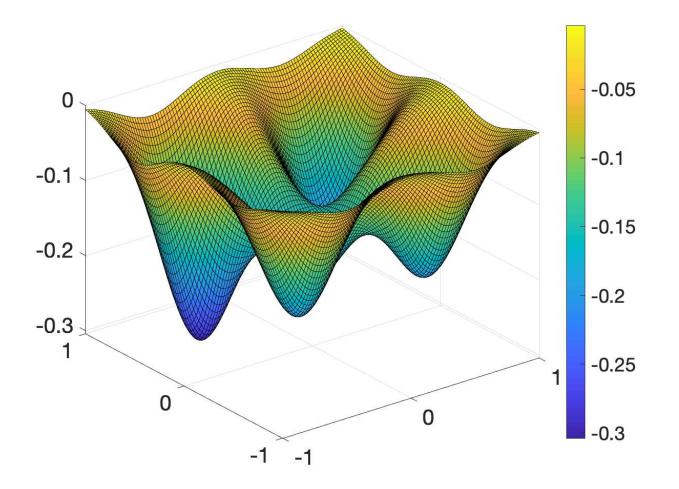
- Input: $f: \mathbb{R}^d \to \mathbb{R}$, $\Omega \subset \mathbb{R}^d, n \ge 0, \lambda > 0, s > d/2$
- 1. Sampling: $\{x_1, \ldots, x_n\}$ sampled i.i.d. uniformly on Ω
- 2. Feature computation
 - Compute $K_{ij} = k(x_i, x_j)$ for k Sobolev kernel of smoothness s
 - Compute square root of $K = R^{\top} R \in \mathbb{R}^{n \times n}$
 - Set $\Phi_j = j$ -th column of R, $\forall j \in \{1, \dots, n\}$ - Set $f_j = f(x_j), \forall j \in \{1, \dots, n\}$
- 3. Solve $\max_{c \in \mathbb{R}, B \succeq 0} c \lambda \operatorname{tr}(B)$ s.t. $\forall j \in \{1, \dots, n\}, f_j c = \Phi_j^\top B \Phi_j$

– With Lagrange multipliers $\alpha \in \mathbb{R}^n$

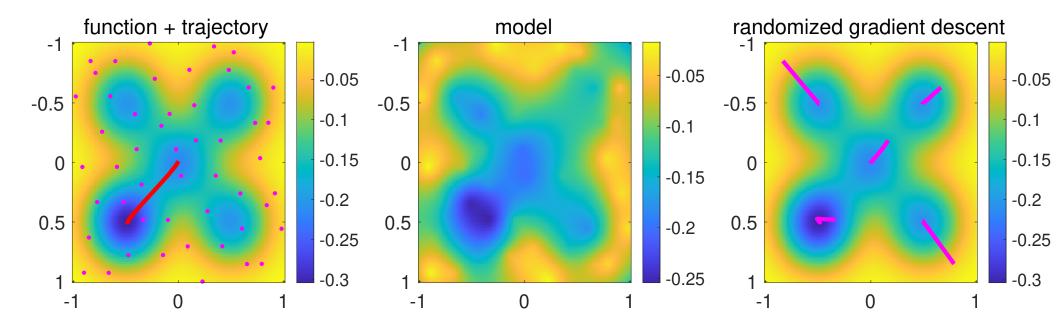
• **Output:** c and $\hat{x} = \sum_{j=1}^{n} \alpha_j x_j$

Illustration

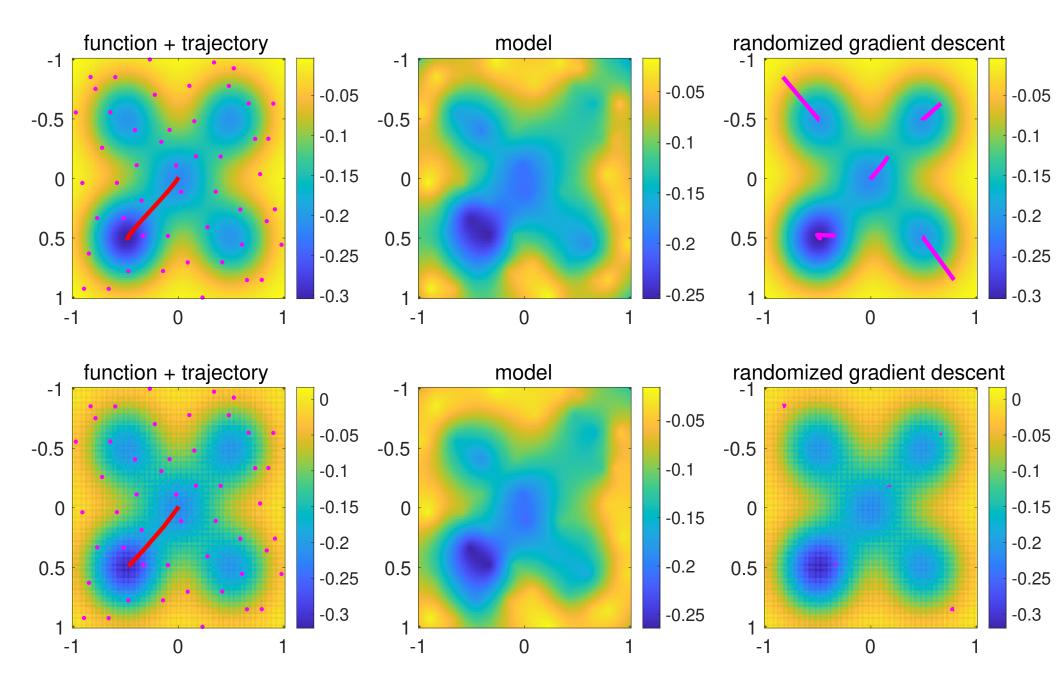
• Minimization of two-dimensional function



Illustration

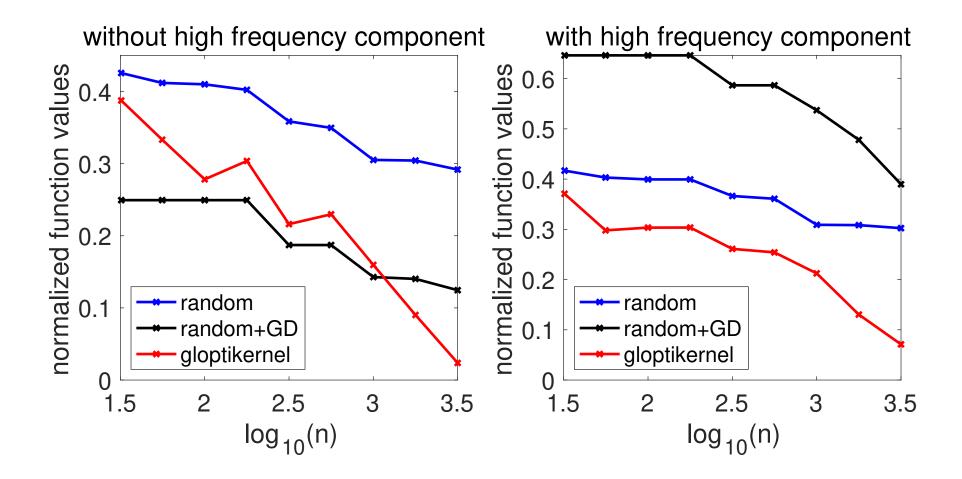


Illustration



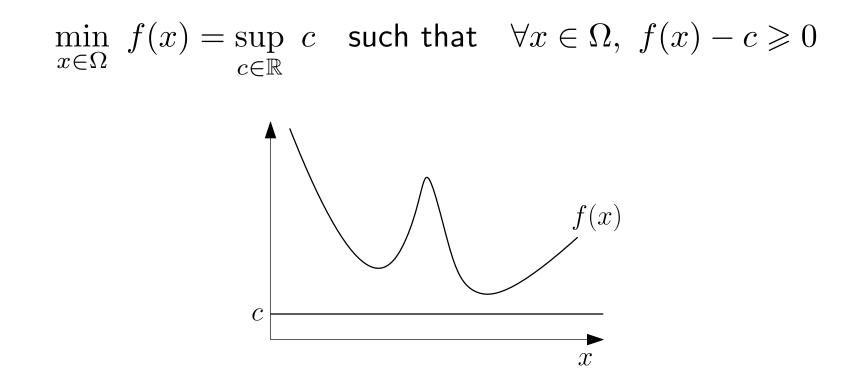
Illustration

• Minimization of eight-dimensional function



Duality

• Primal problem



Duality

• Primal problem

$$\min_{x\in\Omega} f(x) = \sup_{c\in\mathbb{R}} c \quad \text{such that} \quad \forall x\in\Omega, \ f(x) - c \ge 0$$

• Dual problem on probability measures

$$\inf_{\mu \in \mathbb{R}^{\Omega}} \int_{\Omega} \mu(x) f(x) dx \quad \text{such that} \quad \int_{\Omega} \mu(x) dx = 1, \ \forall x \in \Omega, \ \mu(x) \ge 0$$

Duality with sums-of-squares

• Primal problem

 $\min_{x\in\Omega} f(x) = \sup_{c\in\mathbb{R},\ A\succcurlyeq 0} c \quad \text{such that} \quad \forall x\in\Omega,\ f(x) - c = \langle \phi(x), A\phi(x) \rangle$

• Dual problem on signed measures

$$\inf_{\mu \in \mathbb{R}^{\Omega}} \int_{\Omega} \mu(x) f(x) dx \quad \text{s. t.} \quad \int_{\Omega} \mu(x) dx = 1, \ \int_{\Omega} \mu(x) \phi(x) \otimes \phi(x) \succcurlyeq 0$$

- Extension of results on polynomials (Lasserre, 2020)

Extension - I

• Generic constrained optimization problem

$$\inf_{\theta \in \Theta} F(\theta) \quad \text{such that} \quad \forall x \in \Omega, \ g(\theta, x) \ge 0$$

Extension - I

• Generic constrained optimization problem

$$\inf_{\theta\in\Theta}\ F(\theta) \quad \text{such that} \quad \forall x\in\Omega, \ g(\theta,x) \geqslant 0$$

• Sums-of-squares reformulation

 $\inf_{\theta\in\Theta,\ A\succcurlyeq0}F(\theta)\quad\text{such that}\quad\forall x\in\Omega,\ g(\theta,x)=\langle\phi(x),A\phi(x)\rangle$

- Requires penalization by tr(A) and subsampling
- Need representation as sums-of-squares to benefit from smoothness
- Can be done in the primal or the dual

Extension - I

• Generic constrained optimization problem

$$\inf_{\theta\in\Theta}\ F(\theta) \quad \text{such that} \quad \forall x\in\Omega, \ g(\theta,x) \geqslant 0$$

• Sums-of-squares reformulation

 $\inf_{\theta\in\Theta,\ A\succcurlyeq0}F(\theta)\quad\text{such that}\quad\forall x\in\Omega,\ g(\theta,x)=\langle\phi(x),A\phi(x)\rangle$

- Requires penalization by $\mathrm{tr}(A)$ and subsampling
- Need representation as sums-of-squares to benefit from smoothness
- Can be done in the primal or the dual
- Application to optimal transport (Vacher, Muzellec, Rudi, Bach, and Vialard, 2021)

Smooth optimal transport (Vacher et al., 2021)

- Primal formulation: $\inf_{\gamma \in \Gamma(\mu,\nu)} \int_{\mathfrak{X} \times \mathfrak{Y}} c(x,y) d\gamma(x,y)$
 - $\Gamma(\mu,\nu)$ set of probability distributions with marginals μ and ν
- Dual formulation: $\sup_{u,v\in C(\mathbb{R}^d)} \int_{\mathcal{X}} u(x)d\mu(x) + \int_{\mathcal{Y}} v(y)d\mu(y)$ such that $\forall (x,y) \in \mathcal{X} \times \mathcal{Y}, \ c(x,y) \ge u(x) + v(y)$

Smooth optimal transport (Vacher et al., 2021)

- Primal formulation: $\inf_{\gamma \in \Gamma(\mu,\nu)} \int_{\mathfrak{X} \times \mathfrak{Y}} c(x,y) d\gamma(x,y)$
 - $\Gamma(\mu,\nu)$ set of probability distributions with marginals μ and ν

• Dual formulation:
$$\sup_{u,v\in C(\mathbb{R}^d)} \int_{\mathfrak{X}} u(x)d\mu(x) + \int_{\mathfrak{Y}} v(y)d\mu(y)$$

such that $\forall (x,y) \in \mathfrak{X} \times \mathfrak{Y}, \ c(x,y) \ge u(x) + v(y)$

- $\bullet\,$ Estimation from i.i.d. samples from smooth densities for μ and ν
 - Rate: from $O(n^{-1/d})$ to $O(n^{-m/d})$ (Weed and Berthet, 2019)
 - No polynomial-time algorithm

Smooth optimal transport (Vacher et al., 2021)

- Primal formulation: $\inf_{\gamma \in \Gamma(\mu,\nu)} \int_{\mathfrak{X} \times \mathfrak{Y}} c(x,y) d\gamma(x,y)$
 - $\Gamma(\mu,\nu)$ set of probability distributions with marginals μ and ν

• Dual formulation:
$$\sup_{u,v\in C(\mathbb{R}^d)} \int_{\mathfrak{X}} u(x)d\mu(x) + \int_{\mathfrak{Y}} v(y)d\mu(y)$$

such that $\forall (x,y) \in \mathfrak{X} \times \mathfrak{Y}, \ c(x,y) \ge u(x) + v(y)$

- $\bullet\,$ Estimation from i.i.d. samples from smooth densities for μ and ν
 - Rate: from $O(n^{-1/d})$ to $O(n^{-m/d})$ (Weed and Berthet, 2019)
 - No polynomial-time algorithm
- Kernel sums of squares: replace inequality constraint by: $\forall (x,y) \in \mathfrak{X} \times \mathfrak{Y}, \ c(x,y) = u(x) + v(y) + \langle \phi(x,y), A\phi(x,y) \rangle$

Extension - II

• Constrained optimization problem

$$\inf_{x\in \mathbb{R}^d} f(x) \quad \text{such that} \quad \forall x\in \Omega, \ g(x) \geqslant 0$$

Extension - II

• Constrained optimization problem

$$\inf_{x\in\mathbb{R}^d} f(x) \quad \text{such that} \quad \forall x\in\Omega, \ g(x) \geqslant 0$$

• Sums-of-squares reformulation

$$\sup_{c \in \mathbb{R}, A \succcurlyeq 0, B \succcurlyeq 0} c$$

such that $\forall x \in \Omega, \ f(x) = c + \langle \phi(x), A\phi(x) \rangle + g(x) \langle \phi(x), B\phi(x) \rangle$

- Extension of results on polynomials (Lasserre, 2001)

Conclusion

• Global optimization through kernel approximations

- Joint optimization and approximation
- infinite-dimensional sums-of-squares representation
- Controlled subsampling with guarantees

Conclusion

• Global optimization through kernel approximations

- Joint optimization and approximation
- infinite-dimensional sums-of-squares representation
- Controlled subsampling with guarantees

• Further extensions

- Efficient algorithms below ${\cal O}(n^3)$ complexity
- Adaptive choice of sampling points
- Certificates of optimality
- Other infinite-dimensional convex optimization problems

Conclusion

• Global optimization through kernel approximations

- Joint optimization and approximation
- infinite-dimensional sums-of-squares representation
- Controlled subsampling with guarantees

• Further extensions

- Efficient algorithms below ${\cal O}(n^3)$ complexity
- Adaptive choice of sampling points
- Certificates of optimality
- Other infinite-dimensional convex optimization problems
- See arxiv.org/abs/2012.11978 and francisbach.com/
- See talk by Ulysse Marteau-Ferey (Wednesday at 11am)

References

- Alain Berlinet and Christine Thomas-Agnan. *Reproducing Kernel Hilbert Spaces in Probability and Statistics*. Springer Science & Business Media, 2011.
- G. S. Kimeldorf and G. Wahba. Some results on Tchebycheffian spline functions. *J. Math. Anal. Applicat.*, 33:82–95, 1971.
- Jean-Bernard Lasserre. Global optimization with polynomials and the problem of moments. *SIAM Journal on Optimization*, 11(3):796–817, 2001.
- Jean-Bernard Lasserre. The moment-SOS hierarchy and the Christoffel-Darboux kernel. Technical Report 2011.08566, arXiv, 2020.
- Ulysse Marteau-Ferey, Francis Bach, and Alessandro Rudi. Non-parametric models for non-negative functions. *Advances in Neural Information Processing Systems*, 33, 2020.
- Erich Novak. *Deterministic and Stochastic Error Bounds in Numerical Analysis*, volume 1349. Springer, 2006.
- Pablo A. Parrilo. Semidefinite programming relaxations for semialgebraic problems. *Mathematical Programming*, 96(2):293–320, 2003.
- Alessandro Rudi, Ulysse Marteau-Ferey, and Francis Bach. Finding global minima via kernel approximations. Technical Report 2012.11978, arXiv, 2020.
- Walter Rudin. Sums of squares of polynomials. *The American Mathematical Monthly*, 107(9):813–821, 2000.
- Adrien Vacher, Boris Muzellec, Alessandro Rudi, Francis Bach, and Francois-Xavier Vialard. A

dimension-free computational upper-bound for smooth optimal transport estimation. Technical Report 2101.05380, arXiv, 2021.

Jonathan Weed and Quentin Berthet. Estimation of smooth densities in Wasserstein distance. In *Conference on Learning Theory*, pages 3118–3119. PMLR, 2019.