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f(x)

– Ω ⊂ R
d simple compact subset (e.g., [−1, 1]d)

– f with some bounded derivatives

– access to function values

• No convexity assumption

• Many applications

– Hyperparameter optimization in machine learning

– Industry
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– F = Lipschitz-continuous functions: n ∝ ε−d
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– NB: constants may depend (exponentially) in d
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• Algorithms with polynomial-time complexity in n?

– “Approximate and optimize”
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• Equivalent convex problem

min
x∈Ω

f(x) = sup
c∈R

c such that ∀x ∈ Ω, f(x)− c > 0

f (x)

x

c

– All optimization problems are convex!

• Need to represent non-negative functions (such as f(x)− c)
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• Are all non-negative functions sums-of-squares?

– Polynomials: no if d > 1 (see, e.g., Rudin, 2000)
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– represented as F = c · u⊗ u+A

• Sum-of-squares optimization (Lasserre, 2001; Parrilo, 2003)

sup
c∈R, A<0

c such that ∀x ∈ R
d, f(x) = c+ 〈φ(x), Aφ(x)〉

– Equivalent to original problem if f(x)− f∗ is a sum-of-squares

– If not, and if localization set Ω = {x, ‖x‖2 6 R2} is known,

∀x ∈ Ω, f(x) > 0 ⇔ ∀x ∈ R
d, f(x) = q(x) + (R2 − ‖x‖2)p(x)

with p and q sums-of-squares polynomials (of unknown degree)

– Needs “hierarchies”
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• Example : Sobolev spaces (Berlinet and Thomas-Agnan, 2011)
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– Example s = d/2 + 1/2 : k(x, y) = exp(−‖x− y‖)



Representing more general functions with RKHSs

• Reproducing Kernel Hilbert Space (RKHS) :

– Hilbert space of functions g ∈ H, g : Rd → R

– Representation as linear form : g(x) = 〈g, φ(x)〉

– Kernel : k(x, x′) = 〈φ(x), φ(x′)〉 (computable)

• Everything can be expressed using only the kernel function k

– Useful when dealing with function evaluations

– Representer theorem (Kimeldorf and Wahba, 1971): Minimizing

L(g(x1), . . . , g(xn)) +
λ
2‖g‖

2 can be done by restricting to

g(x) =
n
∑

i=1

αik(x, xi)

– Then g(xj) =

n
∑

i=1

αik(xj, xi) and ‖g‖2 =

n
∑

i,j=1

αiαjk(xi, xj)
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• Theorem: ∃A∗ < 0 such that ∀x ∈ Ω, f(x) = f∗ + 〈φ(x), A∗φ(x)〉

– If f has isolated strict-second order minima in
◦

Ω, and f is (s+3)-

times differentiable

⇒ Equivalent to original problem, but infinite-dimensional
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(up to logarithmic terms)

– To be compared to optimal rate n ≈ ε−d/(m−d/2)

– Constraint m >
d
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• Subsampling inequalities as f(xi) > c directly?

– cannot improve on n ≈ ε−d
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Controlled approximation through sampling

• Subsample n points x1, . . . , xn ∈ Ω and solve

sup
c∈R, A<0

c−λ tr(A) such that ∀i ∈ {1, . . . , n}, f(xi) = c+〈φ(xi), Aφ(xi)〉

• Finite-dimensional algorithm through representer theorem

– Marteau-Ferey, Bach, and Rudi (2020)

– Restrict optimization to A =
∑n

i,j=1Cijφ(xi)⊗ φ(xj) with C < 0

• Semi-definite programming problem

– Complexity O(n3.5 log 1
ε) by interior point method

– More efficient Newton algorithm in O(n3)
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Final algorithm

• Input: f : Rd → R, Ω ⊂ R
d, n > 0, λ > 0, s > d/2

1. Sampling: {x1, . . . , xn} sampled i.i.d. uniformly on Ω

2. Feature computation

– Compute Kij = k(xi, xj) for k Sobolev kernel of smoothness s

– Compute square root of K = R⊤R ∈ R
n×n

– Set Φj = j-th column of R, ∀j ∈ {1, . . . , n}

– Set fj = f(xj), ∀j ∈ {1, . . . , n}

3. Solve max
c∈R,B<0

c− λ tr(B) s. t. ∀j ∈ {1, . . . , n}, fj − c = Φ⊤
j BΦj

– With Lagrange multipliers α ∈ R
n

• Output: c and x̂ =
∑n

j=1αjxj
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• Minimization of two-dimensional function
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Illustration

• Minimization of eight-dimensional function
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Duality

• Primal problem

min
x∈Ω

f(x) = sup
c∈R

c such that ∀x ∈ Ω, f(x)− c > 0

• Dual problem on probability measures

inf
µ∈RΩ

∫

Ω

µ(x)f(x)dx such that

∫

Ω

µ(x)dx = 1, ∀x ∈ Ω, µ(x) > 0

f (x)

x

µ(x)



Duality with sums-of-squares

• Primal problem

min
x∈Ω

f(x) = sup
c∈R, A<0

c such that ∀x ∈ Ω, f(x)−c = 〈φ(x), Aφ(x)〉

• Dual problem on signed measures

inf
µ∈RΩ

∫

Ω

µ(x)f(x)dx s. t.

∫

Ω

µ(x)dx = 1,

∫

Ω

µ(x)φ(x)⊗φ(x) < 0

– Extension of results on polynomials (Lasserre, 2020)
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Extension - I

• Generic constrained optimization problem

inf
θ∈Θ

F (θ) such that ∀x ∈ Ω, g(θ, x) > 0

• Sums-of-squares reformulation

inf
θ∈Θ, A<0

F (θ) such that ∀x ∈ Ω, g(θ, x) = 〈φ(x), Aφ(x)〉

– Requires penalization by tr(A) and subsampling

– Need representation as sums-of-squares to benefit from smoothness

– Can be done in the primal or the dual

• Application to optimal transport (Vacher, Muzellec, Rudi, Bach,

and Vialard, 2021)
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v(y)dµ(y)
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Smooth optimal transport (Vacher et al., 2021)

• Primal formulation: inf
γ∈Γ(µ,ν)

∫

X×Y

c(x, y)dγ(x, y)

– Γ(µ, ν) set of probability distributions with marginals µ and ν

• Dual formulation: sup
u,v∈C(Rd)

∫

X

u(x)dµ(x) +

∫

Y

v(y)dµ(y)

such that ∀(x, y) ∈ X× Y, c(x, y) > u(x) + v(y)

• Estimation from i.i.d. samples from smooth densities for µ and ν

– Rate: from O(n−1/d) to O(n−m/d) (Weed and Berthet, 2019)

– No polynomial-time algorithm

• Kernel sums of squares: replace inequality constraint by:

∀(x, y) ∈ X× Y, c(x, y) = u(x) + v(y) + 〈φ(x, y), Aφ(x, y)〉
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Extension - II

• Constrained optimization problem

inf
x∈Rd

f(x) such that ∀x ∈ Ω, g(x) > 0

• Sums-of-squares reformulation

sup
c∈R, A<0, B<0

c

such that ∀x ∈ Ω, f(x) = c+ 〈φ(x), Aφ(x)〉+ g(x)〈φ(x), Bφ(x)〉

– Extension of results on polynomials (Lasserre, 2001)
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Conclusion

• Global optimization through kernel approximations

– Joint optimization and approximation

– infinite-dimensional sums-of-squares representation

– Controlled subsampling with guarantees

• Further extensions

– Efficient algorithms below O(n3) complexity

– Adaptive choice of sampling points

– Certificates of optimality

– Other infinite-dimensional convex optimization problems

• See arxiv.org/abs/2012.11978 and francisbach.com/

• See talk by Ulysse Marteau-Ferey (Wednesday at 11am)
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