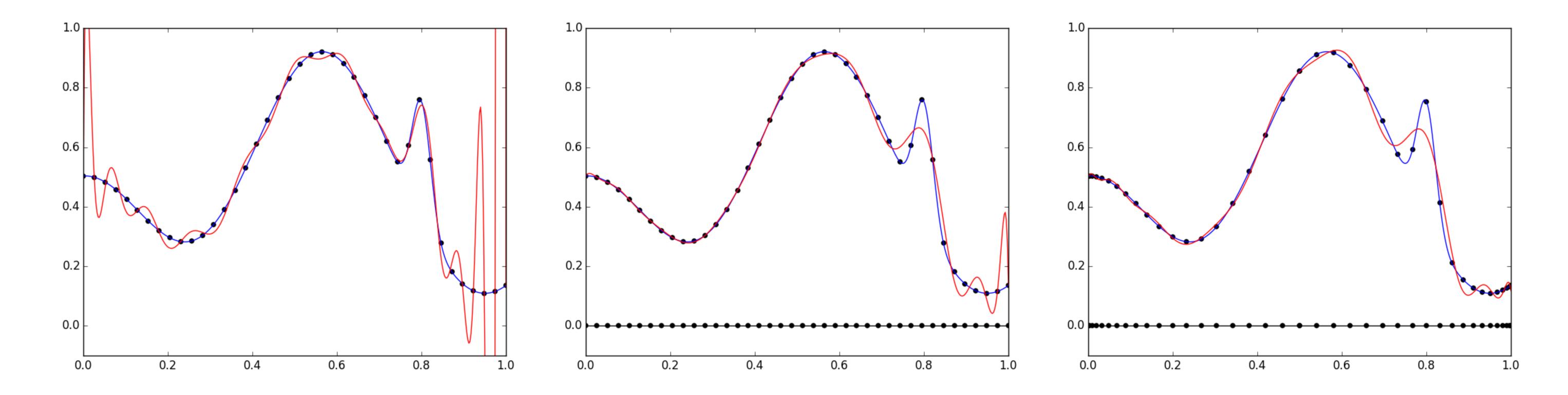


OPTIMAL SAMPLING AND WEIGHTED LEAST-SQUARES

ALBERT COHEN & Matthieu Dolbeault Laboratoire Jacques-Louis Lions, Sorbonne Université

INTRODUCTION

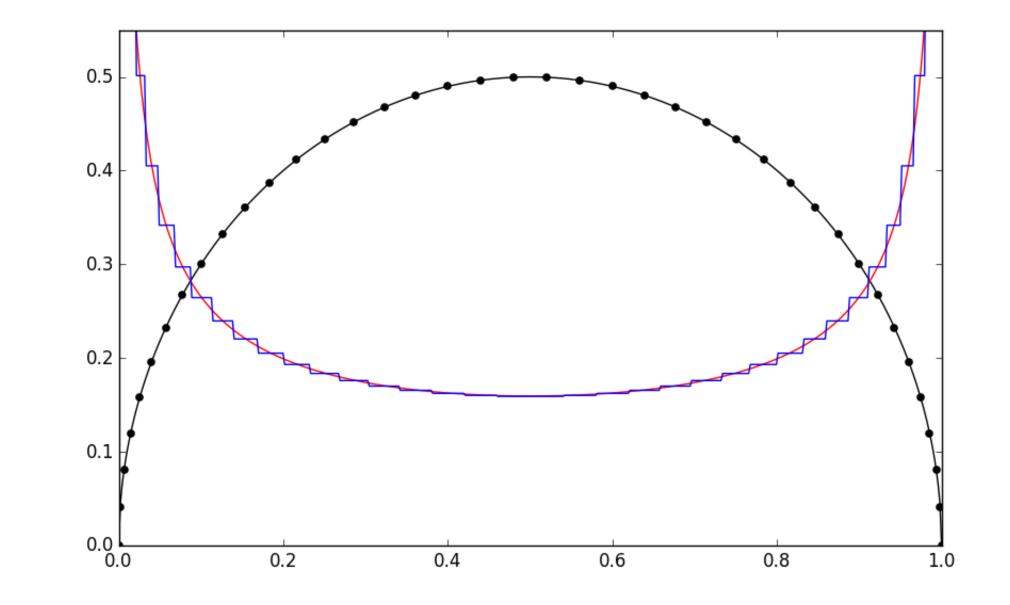


We want to approximate an unknown function $\mathbf{u} \in L^2(D)$, with $D \subset \mathbb{R}^d$ a compact domain, by some $\tilde{\mathbf{u}} \in V_n$, with $V_n \subset L^2(D)$ a fixed space of dimension *n*, based on evaluations of *u* at *m* chosen points $\mathbf{x}^1, \ldots, \mathbf{x}^m \in D$, with *m* of the order of *n*.

Define $\mathbf{\bar{u}} = P_{L^2} u \in V_n$, it reaches the optimum $||u - \bar{u}||_{L^2} = \min_{v \in V_n} ||u - v||_{L^2}$

Goal: Given *D* and $V_n \subset L^2(D)$, choose *m* random points $x^1, \ldots, x^m \in D$ such that for any $u \in L^2(D)$, the approximation $\widetilde{u} \in V_n$ satisfies

 $\mathbb{E}\|u - \widetilde{u}\|_{L^{2}(D)}^{2} \le C\|u - \overline{u}\|_{L^{2}(D)}^{2}$



WEIGHTED LEAST-SQUARES

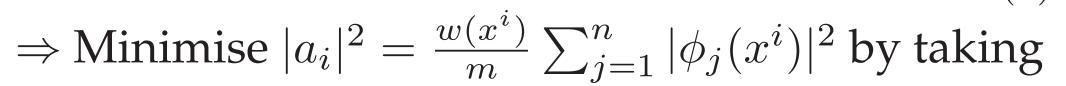
Define the discrete ℓ^2 semi-norm
$\ v\ _{\mathbf{x}}^{2} := \frac{1}{m} \sum_{i=1}^{m} w(x^{i}) v(x^{i}) ^{2}$

CONCENTRATION INEQUALITIES

Lemma: If $\mathbb{E}(\|v\|_{\mathbf{x}}^2) = \|v\|_{L^2}^2$ for $v \in L^2(D)$ and $\|v\|_{L^2}^2 \leq C\|v\|_{\mathbf{x}}^2$ for $v \in V_n$, then

$$\mathbb{E}(\|u - \widetilde{u}\|_{L^2}^2) \le (1 + C)\|u - \overline{u}\|_{L^2}^2$$

 \Rightarrow Draw i.i.d points (x^i) according to $d\sigma(x) = \frac{1}{w(x)}dx$



$$\frac{1}{w(x)} = k_n(x) := \frac{1}{n} \sum_{j=1}^n |\phi_j(x^i)|^2$$

Theorem (Ahlswede and Winter 2002, Tropp 2012):

 $\mathbb{P}(\|G - I\| > 1/2) \le 2ne^{-\frac{m}{10n}}$

Corollary: If $m \ge 10n \log(2n/\varepsilon)$, then $\frac{1}{2}I \le G \le \frac{3}{2}I$ with probability at least $1 - \varepsilon$

Theorem (Cohen and Migliorati, 2017): If $m \ge 10n \log(2n/\varepsilon)$, then

$$\mathbb{E}(\|u - \widetilde{u}\|_{L^2}^2) \le 3 \|u - \overline{u}\|_{L^2}^2 + \mathcal{O}(\varepsilon)$$

Weighted least-squares approximation

$$\widetilde{u} := \underset{v \in V_n}{\operatorname{argmin}} \|u - v\|_{\mathbf{x}}^2 = P_{\mathbf{x}}u = \sum_{k=1}^n c_k \phi_k,$$

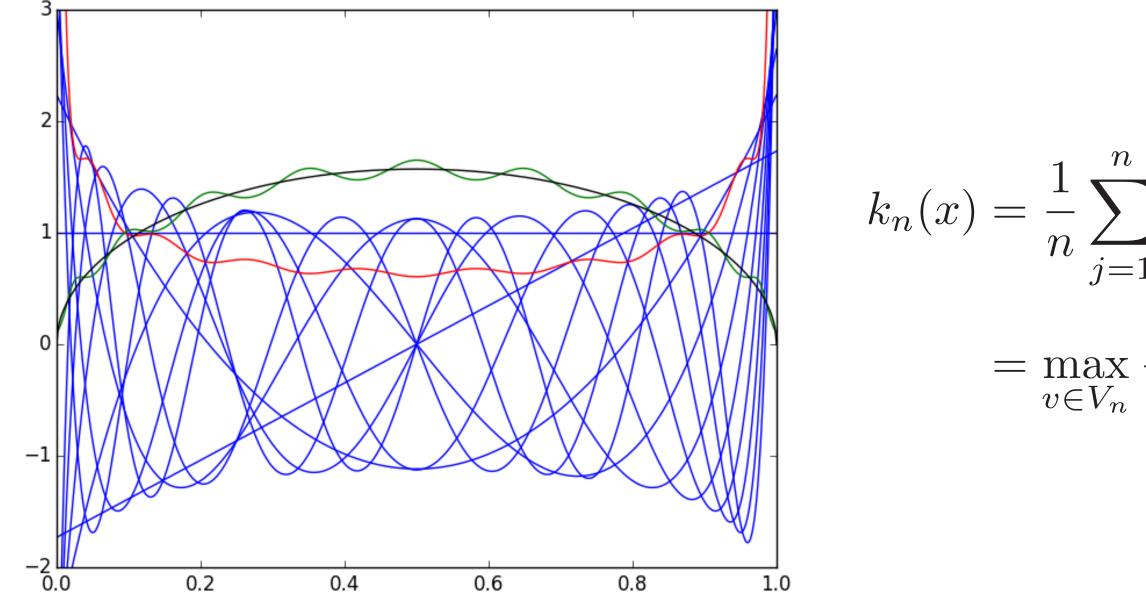
 V_n \widetilde{u}

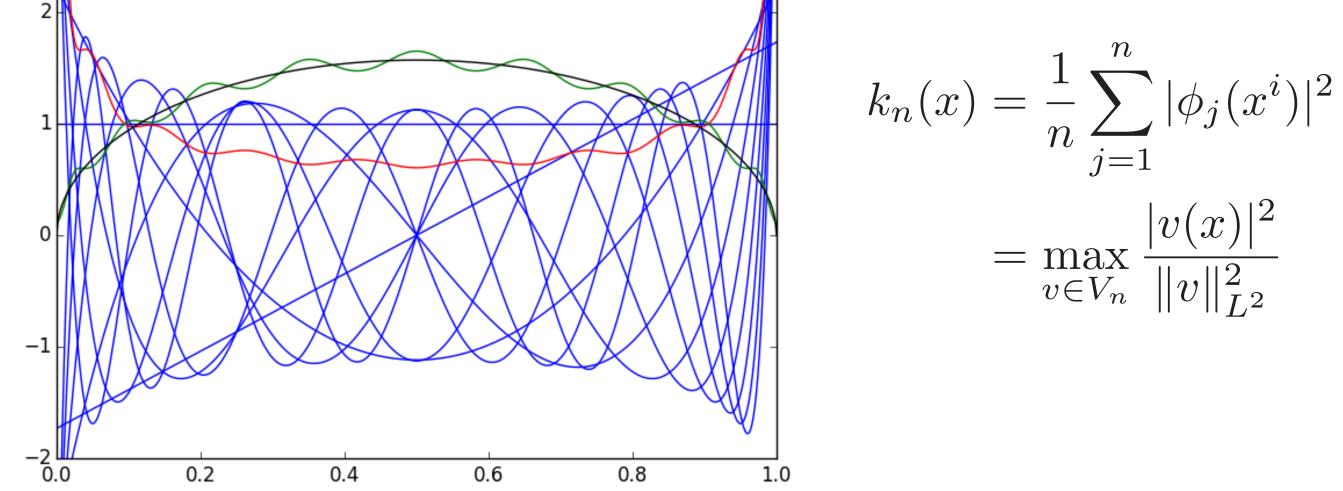
where (ϕ_1, \ldots, ϕ_n) is an orthonormal basis of V_n and c is the solution to Gc = B with

$$B_j = \langle \phi_j, u \rangle_{\mathbf{x}} \text{ and } G_{j,k} = \langle \phi_j, \phi_k \rangle_{\mathbf{x}} = \sum_{i=1}^m a_i a_i^*, \ a_i = \left(\sqrt{\frac{w(x^i)}{m}} \phi_j(x^i)\right)_{j \le m}$$

For any
$$v = \sum_{k=1}^{n} c_k \phi_k$$
, we have $\|v\|_{L^2}^2 = c^* c$ and $\|v\|_{\mathbf{x}}^2 = c^* G c$

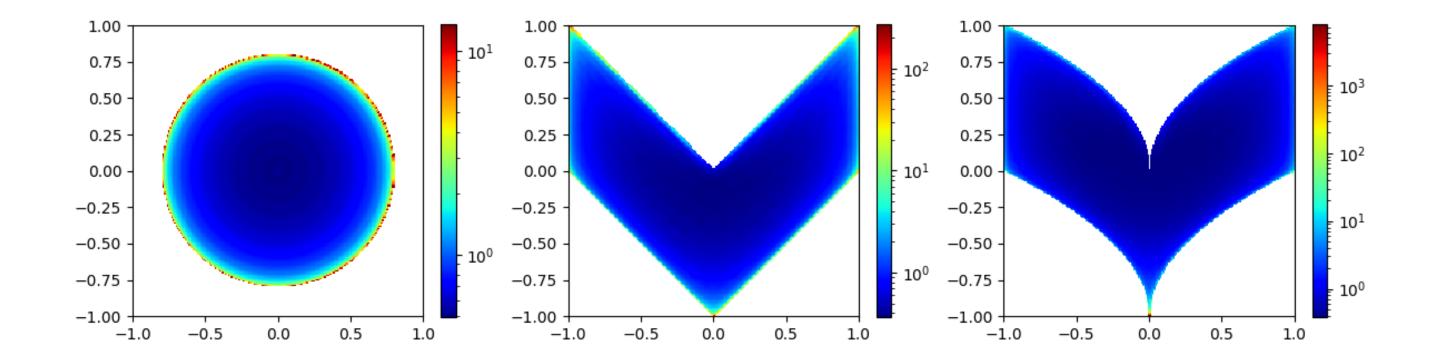
CHRISTOFFEL FUNCTION

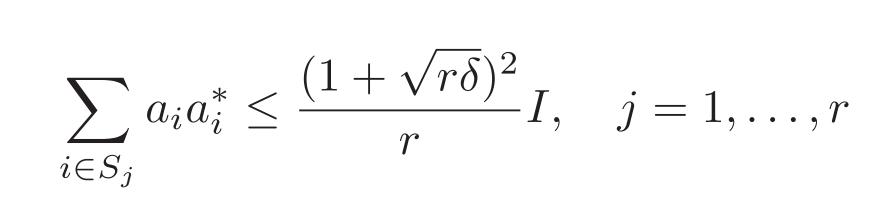




SAMPLE REDUCTION

Theorem (Marcus, Spielman and Srivastava, 2015): Let $r \ge 2$ and $a_1, \ldots, a_m \in \mathbb{C}^n$ such that $|a_i|^2 \leq \delta$ and $\sum_{i=1}^m a_i a_i^* = I$. Then there exists a partition $S_1 \sqcup \cdots \sqcup S_r$ of $\{1, \ldots, m\}$ such that





Theorem (Cohen and Dolbeault, 2021): There exists a random sampling $S = \{x^1, \ldots, x^{\overline{m}}\}$ with $\overline{m} \leq Cn$ and a linear reconstruction $(u(x^i)) \mapsto \widetilde{u}$ such that

$$\mathbb{E}\|u - \widetilde{u}\|_{L^2}^2 \le C'\|u - \overline{u}\|_{L^2}^2$$

Drawbacks:

• *C* and *C'* are inexploitably large

• exponential complexity for constructing the sample