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Electric propulsion and electron kinetic equation

The motivation of this work is PEGASES, a gridded ion thruster that operates with a
low-temperature plasma.Motivation:	Plasma	Propulsion	with	Electronegative	gases
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Figure 3. Example of EVDF and EEPF with di↵erent qe and �e for a temperature

Te = 4 eV and density ne = 1017 m�3. �e < 0 corresponds to Druyvesteyn-

like distribution functions, whereas �e > 0 corresponds to two-temperature like

distributions.

distribution function, whereas the fourth moment �e modifies the kurtosis, which has

an impact in the energy distribution function. For negative values of �e, the EEDF has

a Druyvesteyn-like shape, whereas, �e > 0 has a two-temperature like shape.

The transport fluxes are obtained by introducing the distribution function into

Eq. (16). The explicit expressions of the transport fluxes for this closure read
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3.3. Determination of the production terms due to collisions

In this work, we consider the dominant collisional processes in a low-pressure discharge

in a noble gas. These are elastic collisions with gas, excitation collisions and electron

impaction ionization collisions with the gas and elastic collisions between electrons.

Consequently, we will write the production terms in Eqs. (11)-(15) as the sum of the

contribution of the di↵erent collisional processes, which yields,

ṅe = ṅ(iz)
e , R = R(el)

eg , Q = Q(el)
eg + Q(inel)

eg , (22)

Rhf = Rhf,(el)
eg + Rhf,(el)

ee , Q(4) = Q4,(el)
eg + Q4,(inel)

eg + Q4,(el)
ee .

Note that the only contribution for the electron mass production is a result of

the ionization collisions. As the electron-electron elastic collision conserves mass,

momentum, and energy, their contribution appears only in the production of heat-

flux and fourth moment. The electron-neutral elastic collisions conserve mass, so they

exchange momentum, energy, heat-flux, and kurtosis. Finally, as the inelastic collisions

are less frequent than the elastic collisions, their contribution to the anisotropic moments

(momentum and heat-flux) is neglected with respect to the elastic ones, as done in the

two-term Boltzmann approach [29]. Alternatively, their contribution to the isotropic

part of the distribution function, i.e., energy and kurtosis losses, will be taken into

account.
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Figure 8. Comparison of 1D moment model with experiments at pg = 15 mTorr and

Pabs = 200 W.

interestingly, the EEDF that are reconstructed with the fourth moment also resemble

quantitatively to these measure in the experiments. The results at pg = 5 mTorr using

the moment model improve the results of the Maxwellian model. However they compare

worse than the higher pressure. This mismatch can be due to di↵erent reasons, such

as the heating of the gas and local transport that cannot be reduced to a 1D model.

Nevertheless, the comparison of the computed EEDF with the experimental ones is also

promising, particular in regions not influenced by the RF field.
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ṅe = ṅ(iz)
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We consider a kinetic model for the electrons in an electropositive atomic plasma,
consisting of electrons (e), a single species of positive ions (i), and neutral gas (g). The
kinetic equation for the electrons reads:

@fe
@t

+ v · rfe +
er�

me
· rvfe =

�fe
�t

����
c

(�)

ng � ne, ni (�)
Te � Tg, Ti (�)

� �

We consider a kinetic model for the electrons in an electropositive atomic plasma,
consisting of electrons (e), a single species of positive ions (i), and neutral gas (g). The
kinetic equation for the electrons reads:

∂fe
∂t

+ v · ∇fe +
e∇φ
me
· ∇vfe =

δfe
δt

∣∣∣∣
c

(1)
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Consequently, we will write the production terms in Eqs. (11)-(15) as the sum of the

contribution of the di↵erent collisional processes, which yields,
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Note that the only contribution for the electron mass production is a result of

the ionization collisions. As the electron-electron elastic collision conserves mass,

momentum, and energy, their contribution appears only in the production of heat-

flux and fourth moment. The electron-neutral elastic collisions conserve mass, so they

exchange momentum, energy, heat-flux, and kurtosis. Finally, as the inelastic collisions

are less frequent than the elastic collisions, their contribution to the anisotropic moments

(momentum and heat-flux) is neglected with respect to the elastic ones, as done in the

two-term Boltzmann approach [29]. Alternatively, their contribution to the isotropic

part of the distribution function, i.e., energy and kurtosis losses, will be taken into

account.

High-moment closure for electrons 22

Figure 8. Comparison of 1D moment model with experiments at pg = 15 mTorr and

Pabs = 200 W.

interestingly, the EEDF that are reconstructed with the fourth moment also resemble

quantitatively to these measure in the experiments. The results at pg = 5 mTorr using

the moment model improve the results of the Maxwellian model. However they compare

worse than the higher pressure. This mismatch can be due to di↵erent reasons, such

as the heating of the gas and local transport that cannot be reduced to a 1D model.

Nevertheless, the comparison of the computed EEDF with the experimental ones is also

promising, particular in regions not influenced by the RF field.
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Figure 8. Comparison of 1D moment model with experiments at pg = 15 mTorr and

Pabs = 200 W.

interestingly, the EEDF that are reconstructed with the fourth moment also resemble

quantitatively to these measure in the experiments. The results at pg = 5 mTorr using

the moment model improve the results of the Maxwellian model. However they compare

worse than the higher pressure. This mismatch can be due to di�erent reasons, such

as the heating of the gas and local transport that cannot be reduced to a 1D model.

Nevertheless, the comparison of the computed EEDF with the experimental ones is also

promising, particular in regions not influenced by the RF field.
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We consider a kinetic model for the electrons in an electropositive atomic plasma,
consisting of electrons (e), a single species of positive ions (i), and neutral gas (g). The
kinetic equation for the electrons reads:
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We consider a kinetic model for the electrons in an electropositive atomic plasma,
consisting of electrons (e), a single species of positive ions (i), and neutral gas (g). The
kinetic equation for the electrons reads:
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Electron collisions: Collisional operators

We consider the following collisional processes

δfe
δt

∣∣∣∣
c

=
δfe
δt

∣∣∣∣
(elast.)

eg

+
δfe
δt
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(inelast.)

eg

+
δfe
δt

∣∣∣∣
ee

+
δfe
δt
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ei

.

electron-gas elastic
collisions

Boltzmann operator δfe
δt

∣∣∣∣(Boltz)
eg

=

∫ ∫ (
f ′ef
′
g − fefg

)
gσdΩdvg.

where:
g = |vg − ve| is the
relative velocity
σ(g, χ) is the differential
scattering cross-section
dΩ = sinχdχdϕ is the
differencial solid angle

17

Derivation	of	collisional	source	terms:	Elastic	Collisions

Mechanics	of	the	collision

1.!. Boltzmann'• kinetic equation 11 

db 

Figure 1.1. Diagram of binary collision 

Substituting Eq. (1.2.6) into the second Eq. (1.2.3) and taking 
account of (1.2.4) leads to the condition 

I 

g = g, (1.2. 7) 
which implies that the resulting vector of the relative velocity g trans-
forms into without changing its value g = jgj . The change of di-
rection of g with respect to g is governed by the polar and azimuthal 
angles x and I{J, respectively (Fig. 1.1). Then 

g' = gicos x + gj sin x cos I{J + gk sin x sin I{J, (1.2.8) 
where i, j, k are perpendicular unit vectors with g directed along i. 

It follows from Eqs. (1.2.4)-(1.2.6) that the inversions of velocities 
are obtained by a mere interchange of the primed and unprimed val-
ues. This property as well as the linearity of equations ensures equal 
Jacobians of direct and inverse transformations. One can easily show 
that the relationships 

dv ordvl(j = dGdg, (1.2.9) 

and 

(1.2.10) 
prove to be valid [1] . 

For further discussion, it would be helpful to introduce the concept 
of differential scattering cross section. Consider a monoenergetic beam 
of particles incident on the force centre at the initial velocity g with 
all possible values of the impact parameter b (Fig. 1.1). The num-
ber of particles scattered per unit time into the solid angle element 
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~ve = ~G +
µeg

me
~g and ~vg = ~G � µeg

mg
~g (18)

~v0e = ~G +
µeg

me
~g0 and ~v0g = ~G � µeg

mg
~g0 (19)

In the reference frame of the vector ~g

~g0 = g
⇣
cos�~i + sin� cos'~j + sin� sin'~k

⌘
(20)

We can see that we can write :
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g( ~G,~g,�,') (21)
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Steps to compute the elastic collisions:
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Electron collisions: Collisional operators

We consider the following collisional processes

δfe
δt

∣∣∣∣
c

=
δfe
δt

∣∣∣∣
(elast.)

eg

+
δfe
δt

∣∣∣∣
(inelast.)

eg

+
δfe
δt

∣∣∣∣
ee

+
δfe
δt

∣∣∣∣
ei

.

electron-gas elastic
collisions

Boltzmann operator δfe
δt

∣∣∣∣(Boltz)
eg

=

∫ ∫ (
f ′ef
′
g − fefg

)
gσdΩdvg.

where:
g = |vg − ve| is the
relative velocity
σ(g, χ) is the differential
scattering cross-section
dΩ = sinχdχdϕ is the
differencial solid angle
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Derivation	of	collisional	source	terms:	Elastic	Collisions

Mechanics	of	the	collision

1.!. Boltzmann'• kinetic equation 11 

db 

Figure 1.1. Diagram of binary collision 

Substituting Eq. (1.2.6) into the second Eq. (1.2.3) and taking 
account of (1.2.4) leads to the condition 

I 

g = g, (1.2. 7) 
which implies that the resulting vector of the relative velocity g trans-
forms into without changing its value g = jgj . The change of di-
rection of g with respect to g is governed by the polar and azimuthal 
angles x and I{J, respectively (Fig. 1.1). Then 

g' = gicos x + gj sin x cos I{J + gk sin x sin I{J, (1.2.8) 
where i, j, k are perpendicular unit vectors with g directed along i. 

It follows from Eqs. (1.2.4)-(1.2.6) that the inversions of velocities 
are obtained by a mere interchange of the primed and unprimed val-
ues. This property as well as the linearity of equations ensures equal 
Jacobians of direct and inverse transformations. One can easily show 
that the relationships 

dv ordvl(j = dGdg, (1.2.9) 

and 

(1.2.10) 
prove to be valid [1] . 

For further discussion, it would be helpful to introduce the concept 
of differential scattering cross section. Consider a monoenergetic beam 
of particles incident on the force centre at the initial velocity g with 
all possible values of the impact parameter b (Fig. 1.1). The num-
ber of particles scattered per unit time into the solid angle element 
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Electron collisions: Collisional operators

We consider the following collisional processes

δfe
δt

∣∣∣∣
c

=
δfe
δt

∣∣∣∣
(elast.)

eg

+
δfe
δt

∣∣∣∣
(inelast.)

eg

+
δfe
δt

∣∣∣∣
ee

+
δfe
δt

∣∣∣∣
ei

.

electron-gas elastic
collisions

Boltzmann operator

Lorentz gas

δfe
δt

∣∣∣∣(Boltz)
eg

=

∫ ∫ (
f ′ef
′
g − fefg

)
gσdΩdvg.

δfe
δt

∣∣∣∣(Lorentz)
eg

= ngve
∫ (

f ′e − fe
)
σ(ve, χ)dΩ

1.3. APPROXIMATION À 2 TERMES 21

cinétiques, comme celles de Boltzmann, Landau ou Fokker-Planck. Dans le cadre
de ce cours limité aux plasmas faiblement ionisés, nous nous concentrerons dans
la suite sur l’approximation de Boltzmann du terme de collision.

Notons enfin pour terminer, que certains auteurs réservent l’appellation d’équation
cinétique aux équations qui décrivent une dynamique irréversible. De ce point de
vue, les équations de Liouville, BGGKY ou Vlasov, invariantes par renversement
du temps 5, ne devraient pas être considérées comme des équations cinétiques.
C’est l’approximation de Boltzmann du terme de collision que nous présenterons
dans le chapitre suivant qui donnera à cette équation approchée son “vrai” ca-
ractère cinétique.

1.3 Approximation à 2 termes

Dans le cas des plasmas faiblement ionisés, les collisions dominantes pour les
électrons sont celles avec les espèces neutres. Considérons une collision élastique
entre un électron et un neutre. Du fait du du faible rapport des masses m/M
entre les 2 particules, on peut en première approximation considérer les neutres
comme infiniment lourds et donc immobiles, avant et après la collision. Dans ces
conditions, la cinématique d’une telle collision est identique à celle d’une particule
rebondissant élastiquement sur un mur :

ve

vex

vey

v0
e

v0
ex

v0
ey

~i

~j

Par conservation de l’énergie cinétique de l’électron,

||v0
e|| = ||ve||

Puisque v0
ex = �vex et v0

ey = vey, la variation de vitesse de l’électron au cours du
choc est telle que

�ve ⌘ v0
e � ve = �2vex i,

c’est-à-dire une variation allant de �ve = 0 (choc tangent au mur) à �ve = �2ve

(choc orthogonal au mur).

5. Autrement dit, f(r,�v,�t) vérifie la même équation d’évolution que f(r,v, t)
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δfe
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= νm(fg − fe)
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Coulomb collisions
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Electron collisional regimes

Under our conditions, the plasma is in a regime between the continuum and the kinetic
descriptions

Figure: Adapted from Course by C. Groth

The macroscopic time is defined as
t0 = L0/u0 where u0 = (eT0e/m

0
h)1/2 is the

Bohm speed.
The electron time is t0e = L0/V0e where
V0e = (eT0e/me)1/2 .

The scaled kinetic equation reads

∂ f̃e
∂ t̃

+
1
ε
ṽ·∇̃f̃e+

1
ε
∇̃φ̃·∇̃ṽ f̃e =

1
ε


 1
Kneg

δf̃e
δt̃

∣∣∣∣∣
eg

+
1

Knee
δf̃e
δt̃

∣∣∣∣∣
ei

+
1

Knee
δf̃e
δt̃

∣∣∣∣∣
ee


 .

where

ε =

√
me

m0
h

, Kneg =
1

n0gσ0egL
and Knee =

1
n0eσ0eeL
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Non-equilibrium distribution functions
We are particularly interested in properly representing the electron energy distribution function
(EEDF). This is defined as:

ge(E, x, t)dE = v2edv
∫ 2π

0
dθ
∫ π

0
sinϕ fe(ve, x, t) dϕ (2)

where the velocity in polar coordinates reads ve = ve
(
cosϕ, sinϕ cos θ, sinϕ sin θ

)
and the

energy is eE = 1
2mev2e.

Maxwellian

f (M)
e

(v, x, t) = ne
(
βe

π

)3/2
exp

(
−βev2

)
Not able to represent deviations in
the tail of the EEDF

Grad’s

f (Grad)(ci) = f (M)(ci) (1 + A + Aici
+ Bijcicj +Dijkcicjck + ...

)
Problems: Hyperbolicity and
Positivity.

Maximum entropy

f (Max.entr.)(ci) = exp (A + Aici
+ Bijcicj +Dijkcicjck + ...

)
Problems: Generalization to
different operators.
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Grad’s closure with skewness and
excess kurtosis perturbations



Moment equations
In order to have skewness and excess kurtosis perturbations we choose the following moment system:

∂

∂t

∫
∞
ψfedve +∇ ·

∫
∞
ψvfedve −

∫
∞
fe
e∇φ
me

· ∇vψdve =

∫
∞
ψ
δfe
δt

∣∣∣∣
c
dve.

with the weights

ψ(ve) =

(
me, meve,

me

2
c2e,

me

2
c2ece,

me

2
c4e
)T
.

where ce = ve − ue is the the peculiar velocity.

These macroscopic variables are defined as follows,

Density ne =

∫
∞
fedv, Flux ρeuei =

∫
∞
mevifedv, Internal energy pe =

1
3

∫
∞
mec2efedv, (3)

Heat flux qei =
1
2

∫
∞
mec2ecei fedv, and Fourth moment peiijj =

1
2

∫
∞
mec4efedv.

The system of equations reads
∂ne
∂t

+
∂

∂xi
neuei = ṅe, (4)

me

∂

∂t
neuei +

∂

∂xj

(
meneueiuej + peδij

)
= −eneEi + Ri, (5)

3
2
∂pe
∂t

+
∂

∂xk

(
qek +

3
2
peuek

)
+ pe

∂uek
∂xk

= Q, (6)

∂qei
∂t

+
∂

∂xj

(
reij + qeiuej

)
+ reijk

∂uek
∂xj

+ qej
∂uei
∂xj
− 5

2
pe
ρe

∂pe
∂xj

δij = Rhfi −
5
2
pe
ρe

(Ri − meṅeuei ), (7)

∂

∂t
peiijj +

∂

∂xk

(
reiijjk + peiijjuek

)
+ 4reij

∂uei
∂xj
− 4

qei
ρe

∂pe
∂xj

δij = Q(4) − 4
qei
ρe

(Ri − meṅeuei ). (8)
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In order to have skewness and excess kurtosis perturbations we choose the following moment system:

∂

∂t

∫
∞
ψfedve +∇ ·

∫
∞
ψvfedve −

∫
∞
fe
e∇φ
me

· ∇vψdve =

∫
∞
ψ
δfe
δt

∣∣∣∣
c
dve.

with the weights

ψ(ve) =

(
me, meve,

me

2
c2e,

me

2
c2ece,

me

2
c4e
)T
.

where ce = ve − ue is the the peculiar velocity.
These macroscopic variables are defined as follows,

Density ne =

∫
∞
fedv, Flux ρeuei =

∫
∞
mevifedv, Internal energy pe =

1
3

∫
∞
mec2efedv, (3)

Heat flux qei =
1
2

∫
∞
mec2ecei fedv, and Fourth moment peiijj =

1
2

∫
∞
mec4efedv.

The system of equations reads
∂ne
∂t

+
∂

∂xi
neuei = ṅe, (4)

me

∂

∂t
neuei +

∂

∂xj

(
meneueiuej + peδij

)
= −eneEi + Ri, (5)

3
2
∂pe
∂t

+
∂

∂xk

(
qek +

3
2
peuek

)
+ pe

∂uek
∂xk

= Q, (6)

∂qei
∂t

+
∂

∂xj
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reij + qeiuej

)
+ reijk

∂uek
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+ qej
∂uei
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− 5

2
pe
ρe

∂pe
∂xj

δij = Rhfi −
5
2
pe
ρe
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Grad’s ansatz
By injecting the Grad’s ansantz in the definition of the variables we obtain the following distribution
function

fe(x, ce, t) = f (M)
e

{
1 +

8β2e
5ρe

qei cei
(
βec2e −

5
2

)
+

(
15
8
− 5βe

2
c2e +

β2e
2
c4e

)
∆e

}
.

where the non-dimensional excess kurtosis is defined as

∆e =
peiijj − p(M)

eiijj

p(M)
eiijj

=
2
15
ρe

p2e

∫
∞
mec4e

(
fe − f (M)

e

)
dv

The new variable is able to parametrize the electron energy distribution function

Note: Grad’s 13M model has a Maxwellian EEDF

12 23



Grad’s ansatz
By injecting the Grad’s ansantz in the definition of the variables we obtain the following distribution
function

fe(x, ce, t) = f (M)
e

{
1 +

8β2e
5ρe

qei cei
(
βec2e −

5
2

)
+

(
15
8
− 5βe

2
c2e +

β2e
2
c4e

)
∆e

}
.

where the non-dimensional excess kurtosis is defined as

∆e =
peiijj − p(M)

eiijj

p(M)
eiijj

=
2
15
ρe

p2e

∫
∞
mec4e

(
fe − f (M)

e

)
dv

The new variable is able to parametrize the electron energy distribution function

Note: Grad’s 13M model has a Maxwellian EEDF

12 23



Grad’s ansatz
By injecting the Grad’s ansantz in the definition of the variables we obtain the following distribution
function

fe(x, ce, t) = f (M)
e

{
1 +

8β2e
5ρe

qei cei
(
βec2e −

5
2

)
+

(
15
8
− 5βe

2
c2e +

β2e
2
c4e

)
∆e

}
.

where the non-dimensional excess kurtosis is defined as

∆e =
peiijj − p(M)

eiijj

p(M)
eiijj

=
2
15
ρe

p2e

∫
∞
mec4e

(
fe − f (M)

e

)
dv

The new variable is able to parametrize the electron energy distribution function

Note: Grad’s 13M model has a Maxwellian EEDF
12 23



Closure of collisional integrals: electron-gas elastic collisions
We use the following properties and definitions

Conservation: meve + mgvg = mev′e + mgv′g and 1
2mev2e + 1

2mgv2g = 1
2mev′2e + 1

2mgv′2g
Mom. coll. operator:

∫
∞ ψe

δfe
δt

∣∣∣
c
dv =

∫
∞
∫
∞
∫

(ψ′e − ψe)fefggσdΩdvgdve.

Centre-of-mass vars: G :=
meve+mgvg
me+mg

, g := ve − vg.

We write the collisional integrals in the centre-of-mass variables
Momentum exchange

R(el)
eg = −µeg

∫
∞

∫
∞
gQ(1)fefggdgdG. (9)

Energy exchange

Q(el)
egTot

= −µeg

∫
∞

∫
∞

(G · g) Q(1)fefggdgdG. (10)

Heat flux exchange

RhF,(el)egTot
= −µeg

2

∫
∞

∫
∞

{[
(G · g)G + G2g +

(
µeg

me

)2
g2g
]
Q(1)

−2
(
µeg

me

)[ 1
2
g2G− 3

2
(G · g)g

]
Q(2)
}
gfefgdgdG. (11)

Fourth moment exchange

Q(4)
egTot

= −2µeg

∫
∞

∫
∞

{[
G2 +

(
µeg

me

)2
g2
]

(G · g) Q(1)

+

(
µeg

me

)[ 3
2

(G · g)2 − 1
2
g2G2

]
Q(2)
}
gfefgdgdG. (12)
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Closure of collisional integrals: electron-gas elastic collisions

We obtain the following results
Momentum exchange

R(el)
eg = −meneν(fr,1)

eg ue − meneν(skew,1)
eg

qe
pe︸ ︷︷ ︸

Soret effect

.

Energy exchange

Q(el)
eg =

me

mg

neν(fr,2)
eg e (Tg − Te)− me

mg

neν(kurt,2)
eg ∆eeTg︸ ︷︷ ︸

Kurtosis correction

−R(el)
eg · ue.

Heat flux exchange

RhF,(el)eg = − neν(fr,3)
eg eTeue︸ ︷︷ ︸

Dufour effect

−ν(skew,3)
eg qe.

Fourth moment exchange

Q(el,4)
eg =

me

mg

ν
(fr,4)
eg

p2e
ρe

( Tg
Te
− 1
)
− me

mg

ν
(kurt,4)
eg ∆e

p2e
ρe

Tg
Te︸ ︷︷ ︸

Kurtosis correction

+4ν(skew,3)
eg qe · ue.
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Closure of collisional integrals: electron-gas elastic collisions
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1
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∆e = 0.12 
∆e = 0.25 

The frequencies are functions of the Chapman-Cowling integrals

Ω
(l,r)
eg (Te) =

1
2

( 1
πβe

)1/2 ∫ ∞

0
ξ2r+3e−ξ

2
Q(l)dξ with ξ =

√
βeg. (13)
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Closure of collisional integrals: electron-electron and ioniza-
tion collisions
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Inelastic collisions

Density production

ṅ(iz)
e

= nengK
(0)
iz .

Energy losses

Q(inel)
eg

= −
excit,iz∑
k=0

nengK
(0)
inel,kφ

∗
k ,

Fourth-moment losses

Q(inel,4)
eg

= −2
(
p2
e

ρe

) excit,iz∑
k=0

(
K(0)
inel,k

(
φ∗k
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)2

+K(1)
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(
φ∗k
Te

))
.

16 23



Closure of collisional integrals: electron-electron and ioniza-
tion collisions

2 3 4 5
Te [eV]

10-13

10-12

10-11

10-10

10-9

 R
at

e 
[m

3
s
−

1
]

ν(skew)
ee /ne

2 3 4 5
Te [eV]

10-13

10-12

10-11

10-10

10-9

ν(kurt)
ee /ne

∆e = -0.25 
∆e = -0.12 
Maxwellian
∆e = 0.12 
∆e = 0.25 

electron-electron collisions:

Heat flux exchange

RhF
ee

= −ν(skew)
ee

qe.

Fourth-moment exchange

Q(4)
ee

= −ν(kurt)
ee

p2
e

ρe

∆e.

2 3 4 5
Te [eV]

10-20

10-19

10-18

10-17

10-16

10-15

10-14

10-13

10-12

 R
at

e 
[m

3
s
−

1
]

K
(0)
iz

2 3 4 5
Te [eV]

10-20

10-19

10-18

10-17

10-16

10-15

10-14

10-13

10-12

K
(1)
iz

∆e = -0.25 
∆e = -0.12 
∆e = 0.00 
∆e = 0.12 
∆e = 0.25 

Inelastic collisions

Density production
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Numerical results



Case 1: Relaxation in a homogeneous background
We study a 0D argon plasma where the
electrons are initially at 5 eV and
Maxwellian distribution and the gas at
room temperature (0.026 eV)

The elastic and inelastic
collisions will cool down the
electrons as well as change their
energy distribution.

We compare two models:

I Maxwellian distribution
dne
dt

= Ionization

dTe
dt

= Elast. Losses + Inelast. Losses

I High-order moment
dne
dt

= Ionization

dTe
dt

= Elast. Losses + Inelast. Losses

d∆e

dt
= Elast. Losses + Inelast. Losses + e-e relax.
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Case 2: 1D simulation of an ICP reactor
We study a 1D slab along the axis of the ICP
reactor working on argon.

We solve a model with a finite volume
scheme with:

I Lax-Friedrichs scheme
I TVD reconstruction with ospre
limiter

I Third-order TVD Runge-Kutta in
time
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Future work and conclusions



Open questions and future work

There is a number of open questions that can provide interdisciplinary interaction
between mathematics and physics:

Limitations of Grad’s approach.

I Regularization of the equations
I Extension of Maximum-Entropy to multi-component and general collisional
operator?

Asymptotic limits of the equations:

I Collisional behaviour has two possible limits Kneg → 0 (equilibrium with gas) and
Knee → 0 (equilibrium with electrons).
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Small comment on the transport in the collisional limit Kneg → 0

If we consider the BGK operator

δfe
δt

∣∣∣∣
eg

BGK
= −νmfe

The Chapman-Enskog expansion with the BGK operator yields the following expressions
for electron velocity and heat flux,

uBGKe = −DBGKe

( 1
ne
∇ne +∇ ln Te

)

︸ ︷︷ ︸
Fick’s law

− µBGKe E︸ ︷︷ ︸
Electrical Mobility

and hBGKe = − κBGKe ∇Te︸ ︷︷ ︸
Fourier’s law

However, with our approach, we have additional effects

uC−Ee = −De




1
ne
∇ne + (1 + χe︸︷︷︸

thermodiff.

)∇ ln Te + αe∇∆e︸ ︷︷ ︸
Diffusion due to EEDF


− µeE,

hC−Ee = βeneuC−Ee − κe∇Te − ϑe∇ne︸ ︷︷ ︸
Dufour

− κe∇∆e︸ ︷︷ ︸
Diffusion due to EEDF

.
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Open questions and future work

There is a number of open questions that can provide interdisciplinary interaction
between mathematics and physics:

Limitations of Grad’s approach.
I Regularization of the equations
I Extension of Maximum-Entropy to multi-component and general collisional
operator?

Asymptotic limits of the equations:
I Collisional behaviour has two possible limits Kneg → 0 (equilibrium with gas) and
Knee → 0 (equilibrium with electrons).

I Limit of massless electron me/m0
h → 0 and relation to low-Mach regime of

electrons.
I Limit of small Debye length (quasi-neutral regime).

Extension to other collisional operators
I Reactions close to chemical equilibrium and three-body interactions.
I Coulomb collisions with Fokker-Planck operator.

Multi-dimensions implementations
I Asymptotic preserving schemes
I Well-balancing (implementation of stiff source terms).
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Conclusions

In ICP discharges we measure kurtosis perturbations in the EEDF. This can be
approximated by the resolution of the contracted fourth moment.

Deviations from the Maxwellian and the integration of the Boltzmann collisional
operator can lead to ”unexpected terms” in the transport fluxes. These terms are
usually disregarded in simple closures based on the BGK operator.

The comparison with PIC and the experiments is very promising and shows the
improvement due to the fourth moment

Paper with derivation of the model and comparison to experiments in preparation.
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