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ELECTRIC PROPULSION AND ELECTRON KINETIC EQUATION

The motivation of this work is PEGASES, a gridded ion thruster that operates with a

low-temperature plasma.
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ELECTRIC PROPULSION AND ELECTRON KINETIC EQUATION

The motivation of this work is PEGASES, a gridded ion thruster that operates with a

low-temperature plasma.
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© Atoms and molecules

@ lons
o Electrons

We consider a kinetic model for the electrons in an electropositive atomic plasma,
consisting of electrons (¢), a single species of positive ions (i), and neutral gas (g). The
()
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kinetic equation for the electrons reads:
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ELECTRON COLLISIONS: COLLISIONAL OPERATORS

We consider the following collisional processes
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ELECTRON COLLISIONS: COLLISIONAL OPERATORS

We consider the following collisional processes
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where:
g = |vg — V.| isthe
relative velocity

o(g, x) is the differential
scattering cross-section
dQ = sin xdxdy is the
differencial solid angle
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ELECTRON COLLISIONS: COLLISIONAL OPERATORS

We consider the following collisional processes
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ELECTRON COLLISIONS: COLLISIONAL OPERATORS

We consider the following collisional processes
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ELECTRON COLLISIONS: COLLISIONAL OPERATORS

We consider the following collisional processes
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ELECTRON COLLISIONS: COLLISIONAL OPERATORS

We consider the following collisional processes
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ELECTRON COLLISIONAL REGIMES

Under our conditions, the plasma is in a regime between the continuum and the kinetic

descriptions
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ELECTRON COLLISIONAL REGIMES

Under our conditions, the plasma is in a regime between the continuum and the kinetic
descriptions

Continuum [Fransition Kinetic
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Figure: Adapted from Course by C. Groth

m The macroscopic time is defined as
t° = L°/u® where u® = (eT?/m?)"/? is the
Bohm speed.

m The electron time is t2 = L°/V? where
V2 = (e12/m.)/2,

The scaled kinetic equation reads
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ELECTRON COLLISIONAL REGIMES

Under our conditions, the plasma is in a regime between the continuum and the kinetic
descriptions
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NON-EQUILIBRIUM DISTRIBUTION FUNCTIONS

We are particularly interested in properly representing the
. This is defined as:

27 T
de = vidv / do / sin fe(ve, x, t) dp (2)
Jo Jo

where the velocity in polar coordinates reads v. = v. (cos ¢, sin ¢ cos 6, sin ¢ sin ) and the
ise€ = 1Im.vi.
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We are particularly interested in properly representing the
. This is defined as:
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where the velocity in polar coordinates reads v. = v. (cos ¢, sin ¢ cos 6, sin ¢ sin ) and the
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NON-EQUILIBRIUM DISTRIBUTION FUNCTIONS

We are particularly interested in properly representing the
. This is defined as:

27 T
de = vidv / do / sin fe(ve, x, t) dp (2)
Jo Jo

where the velocity in polar coordinates reads v. = v. (cos ¢, sin ¢ cos 6, sin ¢ sin ) and the
ise€ = 1Im.vi.
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GRAD’S CLOSURE WITH SKEWNESS AND
EXCESS KURTOSIS PERTURBATIONS




MOMENT EQUATIONS

In order to have skewness and excess kurtosis perturbations we choose the following moment system:
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where ¢, = v, — u. is the the peculiar velocity.
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MOMENT EQUATIONS

In order to have skewness and excess kurtosis perturbations we choose the following moment system:
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where ¢, = v, — u. is the the peculiar velocity.
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MOMENT EQUATIONS

In order to have skewness and excess kurtosis perturbations we choose the following moment system:
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GRAD’S ANSATZ

By injecting the Grad’s ansantz in the definition of the variables we obtain the following distribution
function
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By injecting the Grad’s ansantz in the definition of the variables we obtain the following distribution
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CLOSURE OF COLLISIONAL INTEGRALS: ELECTRON-GAS ELASTIC COLLISIONS

We use the following properties and definitions
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CLOSURE OF COLLISIONAL INTEGRALS: ELECTRON-GAS ELASTIC COLLISIONS

We use the following properties and definitions
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m Conservation: MeVe + Mgy = MV, + Mgy and Jmeve + 3mgvy = ;mcvy + 3mgv
. g Sfe — . ()
m Mom. coll. operator: Joo e W‘c av= [ [ [(be — ¥ )fefagodQdvgdv..
. . Mmvetmyv .
m Centre-of-mass vars: G .= W, g:i=V.—Vg.

We write the collisional integrals in the centre-of-mass variables
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CLOSURE OF COLLISIONAL INTEGRALS: ELECTRON-GAS ELASTIC COLLISIONS
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CLOSURE OF COLLISIONAL INTEGRALS: ELECTRON-ELECTRON AND IONIZA-

TION COLLISIONS
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CLOSURE OF COLLISIONAL INTEGRA ELECTRON-ELECTRON AND IONIZA-

TION COLLISIONS
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NUMERICAL RESULTS




CASE 1: RELAXATION IN A HOMOGENEOUS BACKGROUND

We study a oD argon plasma where the
electrons are initially at 5 eV and
Maxwellian distribution and the gas at
room temperature (0.026 eV)

m The elastic and inelastic
collisions will cool down the
electrons as well as change their
energy distribution.

m We compare two models:
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CASE 2: 1D SIMULATION OF AN ICP REACTOR

We study a 1D slab along the axis of the ICP
reactor working on argon.

m We solve a model with a finite volume
scheme with:

> Lax-Friedrichs scheme

» TVD reconstruction with ospre
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However, with our approach, we have additional effects
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Dufour Diffusion due to EEDF
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m Paper with derivation of the model and comparison to experiments in preparation.
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