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Introduction.

Introduction to the image restoration context.

@ Modelisation:
y=A(x)+n

with x € R? the unknown scene, y € R™ the observation,
n € R™ the noise, and A : R? — R™ a known degradation
operator.

o Classical Goal: Estimate x from its observation y.
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Introduction.

Examples.

Noisy observation y. True scene x. Blurry observation y.
Problem: ill-posed, -conditionned. — Need to regularize.
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Plug-and-Play priors for Bayesian imaging. Bayesian framework.

Sampling using Langevin based methods

Bayesian paradigm.

@ Bayesian formulation:

fRd’ﬁ );{y‘fj) x p(x)p(y|x)

where p(x) the prior and p(y|x) is the likelihood (assumed to
be known).

Ax
® R(x) = —logp(x) and F(x,y) = —log p(y[x)(= %)
@ Maximum-A-Posteriori (MAP) estimator:

p(xly) =

fmap =arg max p(x|y)=argmin {F(x,y) + AR(x)}.| (1)
x€Rd x€Rd

@ Minimum Mean Square Error (MMSE) estimator:

fmmse =arg min E[||x — u||*[y] =E[x]y]. (2)
ucRd
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Plug-and-Play priors for Bayesian imaging. Bayesian framework.
Sampling using Langevin based methods

[llustration of the limitations of the current restoration
methods.

Brain restorations

KK
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Plug-and-Play priors for Bayesian imaging. Bayesian framework
Sampling using Langevin based methods.

Why sampling from the posterior distribution?

Because it allows to:
@ compute the MMSE estimation,
@ perform uncertainty quantification,

@ perform task such as model calibration.
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Plug-and-Play priors for Bayesian imaging. Bayesian framework
Sampling using Langevin based methods.

Sampling using the Unadjusted Langevin Algortihm (ULA).

Goal: sampling from a distribution with target density
m(x) = p(x]y) o< exp(=R(x) — F(x,y)).
o ULA:
Xis1 = Xk + 0V log m(Xk) + V20Zj 41

Xip1 = X — OVR(X) — 6VF(Xi,y) +V26Zis1|  (3)

with Z, ~ N(0, Id) for all k € N and 6 > 0.

e Results:
e Convergence towards a unique stationary distribution w5 # 7 if
d small enough and V(R + F) is Lipschitz (Roserts, TwerDIE,
ET AL., 1996).
e Convergence at exponential rate if F + R is strongly convex at
00 (DUrRMUS AND MOULINES, 2017).
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Plug-and-Play priors for Bayesian imaging. Bayesian framework
Sampling using Langevin based methods.

Plug-and-Play approaches.

e p(x) (or R(x)) is unknown and difficult to model.
@ Plug-and-Play methods aims at using a carefully chosen
denosier D, : RY — R to implicitly define an image prior

p(x).

e Implicit prior to target VR e.g ((Araiv anD BenGio, 2014),
(Guo ET AL., 2019),(ROMANO ET AL., 2017) AND
(KADKHODATE AND SivoncELLL, 2020)) based on the Tweedie's
formula.

Tweedie's formula

If X ~ Px, N~ N(0,Id) and X = X + \/eN then,

[E[x|%] — % = eV log(p * g)(X) = €V log(p.)(¥) |,

with g. a Gaussian kernel with variance e.
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Plug-and-Play priors for Bayesian imaging. Bayesian framework
Sampling using Langevin based methods.

Plug-and-Play approaches and Tweedie's formula for
sampling: PnP-ULA.

e Using a denoiser D}(X) = E[x|X] we get

| D}(%) — % = eVlog(pc)(%) |

e PnP-ULA:
Xiy1 = X — OVF( Xk, y) + 6(De(Xi) — Xk)/€)
—5(Me(Xe) = Xk)/A + V20Zy41.

where this term ensures the strong convexity in the tails and
M¢ is a projection on B(0, R¢) and D¢(x) ~ D}(x).

@ Sampling from 7T§:€.
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Plug-and-Play priors for Bayesian imaging. Bayesian framework
Sampling using Langevin based methods.

Plug-and-Play approaches and Tweedie's formula for
sampling: PnP-ULA (2).
@ Hypotheses:
e Id — D, is Lipschitz.
o The likelihood p(y|x) is bounded, C! and V log p(y|x) is
Lipschitz.
e The MSE loss for D} is finite and uniformly bounded.
o There exists M : R™ — R¥, such that for all ||x]|< R,
IDe(x) = Dz (x) | < M(R).
e Convergence of 7. towards m as € — 0.
e Non-asymptotic error:

1 o ol qo
7 DBl - |, xelly)a

1
< Co{ G + QR + G(Vo + s+ )} (4)
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Examples on deblurring and inpainting.

Problem position

Deblurring: A encodes a bloc filter of size 9.

Inpainting: A is a diagonal matrix with 1 or 0 on the
diagonal and hidding 80% of the pixels in the original image.

Noise level: o = 1/255.

Original images:

4

(]

Simpson.
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Examples on deblurring and inpainting.

Algorithm parameters

@ D, provided by (Ryu &1 ar., 2019) and such that (D, — Id) is
L-Lipschitz with L < 1. ¢ = (5/255)2.

o Comparison with PnP-ADMM with €geplurring = (5/255)? and
€inpainting — (40/255)2

o C=[-1,2]9.

@ A thinned version of the Markov chain is considered made of
samples stored every 2500 iterations.

n Npurn—in 1) Initialization
PnP-ULA | 2.5e7 | 2.5e6 | 30 y
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Examples on deblurring and inpainting.

Deblurring results for Simpson.

Blurry image.

PnP-ULA. PnP-ADMM.

PSNR=22.44. PSNR=34.24. PSNR=32.48.
SSIM=0.94. SSIM=0.93.
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Examples on deblurring and inpainting.

Detailed comparison between PnP-ULA and PnP-ADMM.

Original image. PnP-ULA. PnP-ADMM.
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Examples on deblurring and inpainting.

Deblurring results for Cameraman.

Blurry image.. PnP-ULA. PnP-ADMM.

PSNR=20.30. PSNR=30.37. PSNR=30.81.

SSIM=0.93. SSIM=0.89.
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Examples on deblurring and inpainting.

Detailed comparison between PnP-ULA and PnP-ADMM.

Original image. PnP-ULA. PnP-ADMM.
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Examples on deblurring and inpainting.

Deblurring results for traffic.

Blurry image PnP-ULA PnP-ADMM

.

s e

PSNR=20.34. PSNR=29.86. PSNR=29.44.
SSIM=0.89. SSIM=0.87.
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Examples on deblurring and inpainting.

Inpainting results for Simpson.

Image to inpaint. PnP-ULA. PnP-ADMM.

PSNR=7.45. PSNR=31.51. PSNR=30.06.
SSIM=0.94. SSIM=0.92.
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Examples on deblurring and inpainting.

Inpainting results for Cameraman.

Image to inpaint. PnP-ULA. PnP-ADMM.

PSNR=6.67.  PSNR=25.77.  PSNR=24.80.
$SIM=0.90. $SIM=0.90.
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Examples on deblurring and inpainting.

Inpainting results for traffic.

Image to inpaint. PnP-ULA. PnP-ADMM.

= ia—"

PSNR=8.35. PSNR=27.02. PSNR=26.46.
SSIM=0.85. SSIM=0.84.
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Examples on deblurring and inpainting.

Convergence diagnosis for PnP-ULA
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Examples on deblurring and inpainting.

Standard deviation estimates.

Deblurring.

Inpainting.
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Examples on deblurring and inpainting.

Standard deviation at different scales for Simpson.

Deblurring.

Inpainting.
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Examples on deblurring and inpainting.

First conclusions.

Computation of higher moments.
First uncertainty study.
Convergence Diagnosis.

X It is time-and memory-consuming (~ 65 computation hours
on Titan XP).
— it depends on our goals.
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Examples on deblurring and inpainting.

Fast estimation of the MMSE for the deblurring problem.

Setting 6 = 240, Npurm—in = 0 and TVL2 initialization.

0 2492 4984 7476 9968
t

MMSE estimate (PSNR = 34.06). Evolution of the PSNR.
Convergence in approximately 2 minutes and 10 iterations!
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Conclusion.

Conclusion.

e Summary.
o Development of a Langevin based algorithm with detailed
convergence guarantees under realistic hypothesis.
e Estimation of the non-asymptotic error when using this
algorithm.
o Efficient methods on different classical inverse problems.

e Future work.
o Explore the performance of PnP-ULA with other MMSE
denoisers having Lipschitz residual (e.g. NLMeans, SALSA).
e Develop accelerated computation algorithms using this
framework. (PEREYRA ET AL., 2020).
e Apply this framework to uncertainty quantification in
astrophysics or medical imaging.
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Conclusion.

If you want to know more you can:
@ ask questions.

@ find the article related to this work on Arxiv
https://arxiv.org/abs/2103.04715.
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Samples of the posterior distribution for the inpainting

Rémi Laumont Bayesian imaging using Plug & Play priors. 4/8



Complementary materials

Samples of the prior distribution.
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Complementary materials

Problem position and parameter presentation.

@ The original image x is a Computed Tomography slice from
(Yan BT AL., 2018) with an annotated lesion.

e Noise level: o = 5/255.
e We set n =5 x 10° with npym_in = 5 x 10%, init = y.

@ We consider a thinned Markov chain made of samples stored
every 500 iterations.

Original image from (Yan e1 ar., 2018).  Noisy image (PSNR = 20.17)
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Complementary materials

First results.
MMSE estimate (PSNR = 29.12). Standard deviation estimate.
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Complementary materials

Uncertainty quantification on the lesion's size.

Among all samples stored we perform a simple segmentation to

evaluate the lesion’s size and plot the following histogram.
True lesion's size.
MMSE lesion's size.

= = 2" percentile.

0.100
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