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Introduction to the image restoration context.

Modelisation:

y = A(x) + n

with x ∈ Rd the unknown scene, y ∈ Rm the observation,
n ∈ Rm the noise, and A : Rd → Rm a known degradation
operator.

Classical Goal: Estimate x from its observation y .
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Examples.

Noisy observation y . True scene x . Blurry observation y .
Problem: ill-posed, -conditionned. → Need to regularize.
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Bayesian paradigm.

Bayesian formulation:

p(x |y) =
p(x)p(y |x)∫

Rd p(x̃)p(y |x̃)dx̃
∝ p(x)p(y |x)

where p(x) the prior and p(y |x) is the likelihood (assumed to
be known).

R(x) = − log p(x) and F (x , y) = − log p(y |x)(=
‖Ax−y‖2

2
2σ2 )

Maximum-A-Posteriori (MAP) estimator:

x̂MAP =arg max
x∈Rd

p(x |y)=arg min
x∈Rd

{F (x , y) + λR(x)} . (1)

Minimum Mean Square Error (MMSE) estimator:

x̂MMSE =arg min
u∈Rd

E[‖x − u‖2|y ] =E[x |y ]. (2)
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Illustration of the limitations of the current restoration
methods.

Brain restorations

Zooms
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Bayesian framework.
Sampling using Langevin based methods.

Why sampling from the posterior distribution?

Because it allows to:

compute the MMSE estimation,

perform uncertainty quantification,

perform task such as model calibration.
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Bayesian framework.
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Sampling using the Unadjusted Langevin Algortihm (ULA).

Goal: sampling from a distribution with target density
π(x) = p(x |y) ∝ exp(−R(x)− F (x , y)).

ULA:
Xk+1 = Xk + δ∇ log π(Xk) +

√
2δZk+1

Xk+1 = Xk − δ∇R(Xk)− δ∇F (Xk , y) +
√

2δZk+1 (3)

with Zk ∼ N (0, Id) for all k ∈ N and δ > 0.

Results:

Convergence towards a unique stationary distribution πδ 6= π if
δ small enough and ∇(R + F ) is Lipschitz (Roberts, Tweedie,

et al., 1996).
Convergence at exponential rate if F + R is strongly convex at
∞ (Durmus and Moulines, 2017).
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Plug-and-Play approaches.

p(x) (or R(x)) is unknown and difficult to model.

Plug-and-Play methods aims at using a carefully chosen
denosier Dε : Rd → Rd to implicitly define an image prior
p(x).

Implicit prior to target ∇R e.g ((Alain and Bengio, 2014),

(Guo et al., 2019),(Romano et al., 2017) and

(Kadkhodaie and Simoncelli, 2020)) based on the Tweedie’s
formula.

Tweedie’s formula

If X ∼ PX , N ∼ N (0, Id) and X̃ = X +
√
εN then,

E[x |x̃ ]− x̃ = ε∇ log(p ∗ gε)(x̃) = ε∇ log(pε)(x̃) ,

with gε a Gaussian kernel with variance ε.

Rémi Laumont Bayesian imaging using Plug & Play priors. 9 / 28



Introduction.
Plug-and-Play priors for Bayesian imaging.

Examples on deblurring and inpainting.
Conclusion.

Bayesian framework.
Sampling using Langevin based methods.

Plug-and-Play approaches and Tweedie’s formula for
sampling: PnP-ULA.

Using a denoiser D∗ε (x̃) = E[x |x̃ ] we get

D∗ε (x̃)− x̃ = ε∇ log(pε)(x̃) .

PnP-ULA:

Xk+1 = Xk − δ∇F (Xk , y) + δ(Dε(Xk)− Xk)/ε)

− δ(ΠC (Xk)− Xk)/λ+
√

2δZk+1.

where this term ensures the strong convexity in the tails and
ΠC is a projection on B(0,RC ) and Dε(x) ' D∗ε (x).

Sampling from πCδ,ε.
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Bayesian framework.
Sampling using Langevin based methods.

Plug-and-Play approaches and Tweedie’s formula for
sampling: PnP-ULA (2).

Hypotheses:
Id − Dε is Lipschitz.
The likelihood p(y |x) is bounded, C 1 and ∇ log p(y |x) is
Lipschitz.
The MSE loss for D∗

ε is finite and uniformly bounded.
There exists M : R+ → R+, such that for all ‖x‖≤ R,
‖Dε(x)− D∗

ε (x)‖≤ M(R).

Convergence of πε towards π as ε→ 0.
Non-asymptotic error:

|1
n

n∑
k=1

E[Xk ]−
∫
Rd

x̃p(x̃ |y)dx̃ |

≤ C0{C1ε
β/4 + C2R

−1
C + C3(

√
δ +

1

nδ
+ CR)}. (4)
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Problem position

Deblurring: A encodes a bloc filter of size 9.

Inpainting: A is a diagonal matrix with 1 or 0 on the
diagonal and hidding 80% of the pixels in the original image.

Noise level: σ = 1/255.

Original images:

Simpson. Cameraman. Traffic.
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Algorithm parameters

Dε provided by (Ryu et al., 2019) and such that (Dε − Id) is
L-Lipschitz with L < 1. ε = (5/255)2.

Comparison with PnP-ADMM with εdeblurring = (5/255)2 and
εinpainting = (40/255)2.

C = [−1, 2]d .

A thinned version of the Markov chain is considered made of
samples stored every 2500 iterations.

n nburn−in δ Initialization

PnP-ULA 2.5e7 2.5e6 3δth y
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Deblurring results for Simpson.

Blurry image. PnP-ULA. PnP-ADMM.

PSNR=22.44. PSNR=34.24. PSNR=32.48.
SSIM=0.94. SSIM=0.93.
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Detailed comparison between PnP-ULA and PnP-ADMM.

Original image. PnP-ULA. PnP-ADMM.
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Deblurring results for Cameraman.

Blurry image. PnP-ULA. PnP-ADMM.

PSNR=20.30. PSNR=30.37. PSNR=30.81.
SSIM=0.93. SSIM=0.89.
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Deblurring results for traffic.

Blurry image PnP-ULA PnP-ADMM

PSNR=20.34. PSNR=29.86. PSNR=29.44.
SSIM=0.89. SSIM=0.87.
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Inpainting results for Simpson.

Image to inpaint. PnP-ULA. PnP-ADMM.

PSNR=7.45. PSNR=31.51. PSNR=30.06.
SSIM=0.94. SSIM=0.92.
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Inpainting results for Cameraman.

Image to inpaint. PnP-ULA. PnP-ADMM.

PSNR=6.67. PSNR=25.77. PSNR=24.80.
SSIM=0.90. SSIM=0.90.
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Inpainting results for traffic.

Image to inpaint. PnP-ULA. PnP-ADMM.

PSNR=8.35. PSNR=27.02. PSNR=26.46.
SSIM=0.85. SSIM=0.84.
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Convergence diagnosis for PnP-ULA

Deblurring.

Inpainting.
‖MMSE − Xk‖2

2. ACF.

Rémi Laumont Bayesian imaging using Plug & Play priors. 22 / 28



Introduction.
Plug-and-Play priors for Bayesian imaging.

Examples on deblurring and inpainting.
Conclusion.

Standard deviation estimates.

Deblurring.

Inpainting.

Rémi Laumont Bayesian imaging using Plug & Play priors. 23 / 28



Introduction.
Plug-and-Play priors for Bayesian imaging.

Examples on deblurring and inpainting.
Conclusion.

Standard deviation at different scales for Simpson.

Deblurring.

Inpainting.
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First conclusions.

3 Computation of higher moments.

3 First uncertainty study.

3 Convergence Diagnosis.

7 It is time-and memory-consuming (' 65 computation hours
on Titan XP).
→ it depends on our goals.
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Fast estimation of the MMSE for the deblurring problem.

Setting δ = 24δth, nburn−in = 0 and TVL2 initialization.

MMSE estimate (PSNR = 34.06). Evolution of the PSNR.

Convergence in approximately 2 minutes and 104 iterations!
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Conclusion.

Summary.

Development of a Langevin based algorithm with detailed
convergence guarantees under realistic hypothesis.
Estimation of the non-asymptotic error when using this
algorithm.
Efficient methods on different classical inverse problems.

Future work.

Explore the performance of PnP-ULA with other MMSE
denoisers having Lipschitz residual (e.g. NLMeans, SALSA).
Develop accelerated computation algorithms using this
framework. (Pereyra et al., 2020).
Apply this framework to uncertainty quantification in
astrophysics or medical imaging.
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If you want to know more you can:

1 ask questions.

2 find the article related to this work on Arxiv
https://arxiv.org/abs/2103.04715.
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Problem position and parameter presentation.

The original image x is a Computed Tomography slice from
(Yan et al., 2018) with an annotated lesion.

Noise level: σ = 5/255.

We set n = 5× 106 with nburn−in = 5× 104, init = y .

We consider a thinned Markov chain made of samples stored
every 500 iterations.

Original image from (Yan et al., 2018). Noisy image (PSNR = 20.17).
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First results.
MMSE estimate (PSNR = 29.12). Standard deviation estimate.

ACF.
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Uncertainty quantification on the lesion’s size.

Among all samples stored we perform a simple segmentation to
evaluate the lesion’s size and plot the following histogram.
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