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0) Bilinear Schrodinger equation

— H Hilbert space (finite- or co-dimensional), Hg, H1, ..., H; self-adjoint op-
erators on ‘H, Hg has discrete spectrum. We consider

[
o) = (Ho+ Y wiH, )60, ¥ € 1, (1)
=1

J
uw = (u,...,u) : [0,00) = [—a, a]’ pwc control functions, a > O.

: l
— Propagator M“(T") of (1): composition of flows ¢~ T HoFD =1 v Hj),
— S C H the unit sphere. For yg € S,

Reach(iyo) = {¢| Fu, T s.t. T*(T)(vo) = ¥}

— Equation (1) is
controllable if Reach(yg) = S, for any ¢g € S;
approximately controllable if Reach(vyg) isdense in S, forany yg € S.

3



1) Control of quantum systems

Criteria for finite-dimensional systems:
Theorem If dimH = n < oo, (1) is controllable if

su(n) C Lie{iHqg,iH1,...,iH}}.

= {d1,...,Ont, A1 < ... < Ay eigenvectors and eigenvalues of H.
= > = {|A\; — Xgl,J, k = 1,...,n} spectral gaps of the system.
— Reduced control Hamiltonians £5(H;),foroc € =, = 1,...,1

(i, Hjdp), 1[N — X =0,
0, otherwise.

(¢i, Ec(H ) ) = {
Theorem If dimH = n < oo, (1) is controllable if

su(n) C Lie{iHo, &0 (IH;), o€ X, j =1,..,1}.



A criterium for co-dimensional systems: dim H = oo,
{1, .-, Pn, .-}, A1 < ... < A < ... eigenvectors and eigenvalues of Hy.
Define, for any n € N, orthogonal projection Ny, : H — Hpn := span{e¢q, ..., dn}-

— Projected Hamiltonians Hj(") =MNpH;Mp,j=0,...,L.

= >n={|A\ — X, j,k = 1,...,n} spectral gaps of the projected system.
— Galerkin Spectral gaps: span{¢1, ..., ¢n }-preserving w.r.t higher approx-
imations:

E-(HM) | 0

forevery N > n }.
0 %

=n={(0,j) € Tpux{1,..,1}| 50(H§N)) — [

Definition Equation (1) is Lie-Galerkin if, for any ng € N, 3 n > ng s.t.
su(n) C Lie{iHy", &-(iH{™), (0,5) € =n}.

Theorem[Boscain,Caponigro,Sigalotti(2014)] If (1) is Lie-Galerkin, then it is
approximately controllable.



2) Application to the control of a rotating molecule




Free rotational dynamics:
Molecules as rigid bodies: a, b, c moving frame s.t. A > B > C > 0O rota-
tional constants, configuration space SO(3), rotational Hamiltonian

Ho = AP? + BP? + CP?,

P; angular momentum, as differential self-adjoint operators on H = L2(SO(3)).
— Orthogonal decomposition in harmonics:

L?(SO(3)) =span{Dj,,, | j €N, k,m = —j, ..., j}.

— Symmetric-top: A = B, cis the symmetry axis.
Then, Hy = BP? + (C — B) P2 with eigenvalues

HoDj, = |Bji(G+ 1)+ (C— Bk D, = E.D] .

— Three families of spectral gaps: |Eigig — Ei‘



Electric field to control the rotation:

Three orthogonal polarizations of electric field to control the system, interact-
ing with the electric dipole § = (4, dp, d¢) fixed inside the molecule.

— e1,e0,e3 resp. a, b, c fixed resp. moving frames, R € SO(3) position
of the molecule, interaction Hamiltonians (bounded self-adjoint operators on
L?(50(3)))

HJ(R, 5) — —<R5, €j>, ] — 1,2,3,

— Controlled Schrodinger equation, (-, t) € L2(SO(3)):

a 3
(R = (Ho+ Y wi(DVH;(R,0) ) (7,0, @

j=1

uw = (u1,un,u3) : [0,00) = [—a, a]3 pwc control functions, a > 0.



3D spectral graph of a symmetric molecule
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Transitions at spectral gaps A3 := |E{ — EJ|, 08 := |E} — EJ|, and n} = |E{ — E}| between
the eigenstates |j,k,m) := D; , driven by H; (green arrows), H> (orange arrows), and
Hs (blue arrows). Same-shaped arrows correspond to equal spectral gaps.



State transitions induced by three polarizations at three spectral gaps
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Symmetries and controllability of symmetric molecules:

Theorem[Boscain,Sigalotti,P.(2020)] Let A = B > C' > 0 and B/C ¢ Q,
then

()6 = (0,0,6.) = (2) is not controllable;

(i)d = (04, 6y, 0) = (2) is not controllable;

(il)o different than (i) and (ii) = (2) is approx. controllable.

Remark Non-controllability of cases (i) and (ii) follows from the existence of
explicit conserved quantities. In particular, (i) is also a classical symmetry
(that is, (v, Pcap)), while (i) is only quantum.

Idea of the proof of (iii) Use
Xj L= {iHO’gw‘li(iHl)’w S {)\,n,d},l = 1,2,3}
and prove: (i) Lie{X;} = su(#,) and (ii) (w{ﬂ;,l) € =;,Vw € {\,n,0},l =

1,2,3,forallj € N,k = —j,..., 5. Conclude by applying Theorem[B,C,5(2014)].
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Symmetries and controllability of asymmetric molecules:

Theorem[P.(2021)] Let A > B > C > 0, then
()0 € {(da,0,0), (0, d,0),(0,0,6:)} = (2) is not controllable;
(i1)é different than (i) = (2) is approx. controllable for a.e. A, B, C.

Remark Non-controllability of cases (i) follows from the existence of explicit
conserved quantities, which are only quantum.

Idea of the proof of (ii)

— Hy = Hgymm + bV analytic perturbation of symmetric top rotational
Hamiltonian, where b € [—1, 0] asymmetry parameter.

— Apply Theorem[B,S,P(2020)] to the evolution associated with H
— Controllability holds at b = 0 = Controllability holds for a.e. b € [—1, 0].

symm
O .
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