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Definitions

Il y a la systeme dynamique ẋ = f (x) avec X ⊂ Rn compact. Le
solutions s’appellent ϕt(·).

Definition (Maximum positively invariant (MPI) set)

Le set de tous les points x0 ∈ X tel que ϕt(x0) ∈ X pour tous les
temps t ∈ R+, s’appelle MPI set.
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A LP for the MPI set

In Korda et al. (2014) the following linear program for computing
the MPI set is proposed

d∗ := inf
∫
X

w(x) dλ(x)

s.t. v ∈ C1(Rn),w ∈ C(X )
βv(x)−∇v · f (x) ≥ 0 for x ∈ X

w ≥ 0
w − v − 1 ≥ 0

Theorem

It holds d∗ = λ(MPI ) and w−1([1,∞)) ⊃ MPI for all feasible
(v ,w).
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The corresponding hierarhy of SDPs

The corresponding semidefinite programs (SDPs) have the
following form

d∗k := inf
∫
X

w(x) dλ(x)

s.t. v ,w ∈ R[x ]k
βv −∇v · f = SoSk

w= SoSk
w − v − 1= SoSk

Theorem

It holds d∗k → d∗ = λ(MPI ) and w−1k ([1,∞)) ⊃ MPI for all
feasible (vk ,wk).
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Computational complexity

Solving the semidefinite program has

complexity polynomial in
(n+ k

2
k/2

)
where k is the degree of the polynomials and n the space
dimension.

Also other methods typically suffer from the curse of
dimensionality.

 reduction techniques are needed to solve larger problems
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Sparsity graph

The sparsity graph of f represents the dependence of different
states in the dynamics in the following way

Figure: Example of a sparsity graph

where the nodes x1, x3, x4 represent states in R2, x2 represents a
scalar state and x3 a state in R3. The arrows indicate

ẋ1 = f1(x1), ẋ2 = f2(x1, x2), ẋ3 = f3(x1, x3, x4)

ẋ4 = f4(x1, x4), ẋ5 = f5(x2, x4).
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Sparsity graph

Let x1, . . . , xk be the (grouped) states and f = (f1, . . . , fk) then
there is an edge between the nodes xi and xj if fj depends on xi .
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Complexity based on the graph structure of f

We will replace the large SDP by a collection of smaller SDPs.
The size of the largest among these depends on the largest
weighted past of the graph.

Figure: Largest weighted past of the example graph
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The main theorem

Theorem

There exists a convergent hierarchy of sum-of-squares problems
with the largest sum-of-squares multiplier containing ω variables,
where ω is the longest weighted past in the graph.

1 Sparse description of the sets of interest

2 Formulating and solving the corresponding linear optimization
problems

3 “Glue” the results together to obtain (an approximation of)
the MPI set.
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Prototype sparse structure

The most basic sparsity structure that allows a reduction is the
following “cherry structure” from Chen et al. (2018)

The corresponding dynamics are of the form

ẋ1 = f1(x1) on Rn1

ẋ2 = f2(x1, x2) on Rn2

ẋ3 = f3(x1, x3) on Rn3

Hence they induce the (almost) independent subsystems

˙(x1, x2) = (f1, f2)(x1, x2) , ˙(x1, x3) = (f1, f3)(x1, x3) , ẋ1 = f (x1)
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Sparse description of the MPI set

Assumption: Sparsity in the constraint set – X = X1×X2×X3

Lemma (Gluing)

Let X = X1 × X2 × X3 and the dynamical system be sparse (in the
sense as above) and let M1

+ and M2
+ denote the MPI sets for the

subsystems on (x1, x2) and (x1, x3) then the MPI set M+ of the
whole system is given by

{(x1, x2, x3) ∈ X : (x1, x2) ∈ M1
+, (x1, x3) ∈ M2

+}.

Proof.

Uses that the dynamical system decouples into subsystems (the
state constraint decoupling is essential as well).

This allows to solve separate SDPs for the subsystems instead of
solving a SDP for the whole system.
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Convergence

Proposition

For i = 1, 2 let M i denote the MPI set for the two subsystems on
(x1, x2) and (x1, x3) and M denotes the MPI set for the whole
system. Let M i ⊂ M i

k ⊂ X1 × Xi+1 ⊂ Rn1+ni+1 for i = 1, 2 and

M1,2
k := {(x1, x2, x3) | (x1, x2) ∈ M1

k , (x1, x3) ∈ M2
k}.

Then

λ(M1,2
k \M) ≤ λ(M1

k \M1)λ(X3) + λ(M2
k \M2)λ(X2). (1)

In particular if M i
k converges to M i with respect to λ for i = 1, 2

then M1,2
k converges to M with respect to λ.
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General procedure

Given a dynamical system induced by f and a method for
approximating/computing the region of attraction, MPI set or
(global) attractors for an arbitrary dynamical system.

i. Find the minimal subsystems that cover the whole system.

ii. Compute (outer) approximations Si for these subsystems.

iii. Glue the set Si together as in the gluing lemma.

Theorem (Main theorem)

This procedure produces convergent approximations of the desired
sets if the sets Si are converging approximations of the desired sets
for the subsystems. In case of the sum-of-squares approach we
have convergence w.r.t Lebesgue measure discrepancy and the size
of the largest occuring SDP depends only on the largest weighted
pasts of the sparsity graph of f .
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Finding a optimal decomposition

Remark

We call a set of states (xi )i∈I for some index set I ⊂ {1, . . . , n} a
subsystem of ẋ = f (x) if we have

fI ◦ PI = PI ◦ f

where fI := (fi )i∈I denotes the components of f according to the
index set I and PI : Rn → R|I | denotes the canonical projection
onto the states xI , i.e. PI (x) := (xi )i∈I .

Remark

Finding an optimal decomposition is only based on the sparsity
graph of f and the product structure of X . First decompose
X = X1 × . . .× Xk (up to permutation of coordinates) and
construct the sparsity graph of f with respect to the states xi ∈ Xi .
The minimal subsystems are characterized by the resulting sparsity
graph and can be found fast using well known algorithms.
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A hard example

The graph of the dynamics considered in Tacchi et al. (2019) is
given by

Our approach does not lead to a reduction for this example.
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Numerical example

For a Van der Pol oscillator with cherry structure of the form
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Numerical example

We get

for degree k = 8 and N = 9 and total dimension 20
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Numerical example

and

for degree k = 8 and N = 25 and total dimension 52.
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Conclusion

Contribution of this work

1 Can be applied in a similar way for the region of attraction
and global attractors

2 First sparse method to approximate the MPI set, global
attractors and the region of attraction with guaranteed
convergence

Outlook and perspectives

1 Extending to sparse control systems.

2 Improve/increase exploiting sparse structures.

3 Exploit polynomial structure of f and not only focusing sparse
coupling; as for example term sparsity.

4 Coordinate free formulation.
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