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How it started

• Since 2014, Collaboration of part of the team (Stéphane Gaubert, Xavier

Allamigeon) with the direction de programme of Plate Forme d’Appels

d’Urgence (PFAU), at Préfecture de Police (BSPP and DSAP), analysis /

dimensioning of the new two-level organization answering calls to 17, 18 and

112 in a unified manner. With the help of Polytechnique students.

• Since Jan. 2019, “Étude d’interopérabilité” between PFAU and the SAMU

Centers 15 of the Paris area, followed by a collaboration with SAMU 75, 92,

93 and 94, of AP-HP, on the dimensioning of these centers.

• From 13/03/20: Crisis dimensioning of the emergency call centers (“Centre

15”) – “Services d’aide médicale urgente” (SAMU) – of the central Paris Area

(SAMU 75, 92, 93 and 94).



Crisis work from 13/03 to June, 2020:

• Dimensioning of the SAMU 75, 92, 93 and 94.

• Construction of early epidemic indicators, based on the analysis of SAMU

patient records (“dossiers de régulation médicale”)

• Used to provide predictions with confidence regions.

• Building block of a cartography of the epidemic.

• SFR, Orange, Enedis provided aggregated data allowing to take into account

the influence of mobility in the analysis of the epidemics.

Scientific work:

• Analytic results: L1 approximation, Perron-Frobenius theory, ideas of tropical

geometry.

• Understanding the evolution of the epidemic in the Paris area.

• Branching processes models and simulations in order to estimate the

parameters.



Indicators of the epidemic

evolution based on SAMU

patient records



From Feb. 15th to May 15th

Source : SAMU, AP-HP

From Mar. 19th to May 15th

Source : Santé Publique France

Population served by SAMU

N = 6,770,000

Calls received by SAMU 15 centers

N = 527,000

Covid-19 regulation records

registered

N = 170,000

MICU transport

N = 2150

EMT and Ambulance

transport

N = 17,500

Medical advice

N = 128,200

Emergency

Room admission

N = 29,200

Intensive Care

Unit admission

N = 4600

Admissions from

other hospital

services

Self-reporting

patients

Flowchart: from calls to Center 15 to admission in hospital units during the

begining of the Covid-19 crisis. The numbers are summed over the departments

75, 92, 93 and 94 of the Paris area.



Classification of calls, Centre 15

Since January 20th 2020 all calls and patient records with a suspicion of Covid-19

were flagged in the information system of each Center-15 and a daily automated

activity report was produced.

In order to develop a mathematical analysis of the evolution of the epidemic, we

classified the calls tagged as Covid-19 in three categories, according to the decision

taken:

1: calls resulting in the dispatch of a Mobile Intensive Care Unit;

2: calls resulting in the dispatch of an ambulance staffed with Emergency

Medical Technicians (EMT), including: Croix Rouge, Ordre de Malte, BSPP

(Paris firemen, only calls to number 15, not 17-112-18, are counted), private

ambulances . . .

3: calls resulting in no dispatch decision. Such calls correspond to different forms

of medical advice (recommendation to consult a GP, specific instructions to

the patient, etc.).



Epidemic observables – SAMU

All numbers apply only to Covid-19 calls.

• YMICU(t), number of MICU (SMUR) dispatches

• YEMT(t), number of dispatches of EMT (ambulances)

• Yadv(t), number of calls without vehicle dispatch.

The term observables contrasts with C (t), the actual number of new

contaminations on day t, which cannot be measured.

Observables are delayed:

YMICU(t) = πMICUC (t − τMICU)

πMICU = proportion of patients who will need a MICU dispatch, and τMICU delay

between contamination and severe aggravation.

There are other relevant (non-SAMU) epidemic observables, e.g., home visits of

GP (SOS médecins), ICU admissions, and deceases, with different proportions and

delays.
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Models of COVID-19 epidemics



Models of COVID-19 epidemics

SEIR ODE

Multi-compartment transport PDE model

Discrete time mean-field model

Multi-type Branching process model



SEIR ODE

Four compartments: “susceptible” (S), “exposed” but not yet infectious (E),

“infectious” (I), and finally, “removed” from the contamination chain (R), either

by recovery or death.

Ṡ = − S

N
KI→E I ,

Ė =
S

N
KI→E I − KE→IE ,

İ = KE→IE − KI→R I ,

Ṙ = KI→R I ,

N = S + E + I + R total population (invariant) .

R

KI→E

KI→RKE→IE I

A refinement of the SEIR model splits the S and E compartments in sub-compartments

corresponding to different age classes. It includes a contact matrix, providing

differentiated age-dependent infectiosity rates (e.g., Crepey et al.).

Another refinement includes additional compartments, representing, for instance, patients

at hospital (e.g., Colizza et al.).



Covid-19 is characterized by significant delays

� ODE SEIR models assume exponential distribution times in compartments. In

particular, the transitions S → E and E → I can be arbitrarily fast, with

positive probability.

This leads to a potentially coarse approximation in the case of Covid-19.

• The median incubation period of Covid-19 is estimated of 5.1 days, with a

95% confidence interval of 4.5-5.8, and 95% of patients in the range [2.2,

11.5] (Lauer et al., Annals. Int. Med. 2020)

• Compare with a median incubation time of 1.4 days for toxigenic Cholera

(Azman et al, J. Infect., 2013) or with an interval of 36 hours between

infection by pneumonic plague and first symptoms in Brown Norway rats, with

rapid deaths, 2-4 days after infection (Anderson et al., Am. J. Path., 2009).



Multi-compartment transport PDE model

Each compartment τ ∈ {E , I} is decomposed in ages: nτ (x , t) is the density of the

number of individuals which are in compartment τ for x time units before time t,

then τ(t) =
∫∞

0
nτ (x , t)dx .

dS

dt
= − S(t)

N(t)

∫ ∞

0

KI→E (x , t)nI (x , t)dx ,

nE (0, t) =
S(t)

N(t)

∫ ∞

0

KI→E (x , t)nI (x , t) dx ,

∂nE
∂t

(x , t) +
∂nE
∂x

(x , t) + KE→I (x , t)nE (x , t) = 0 , for x > 0 ,

nI (0, t) =

∫ ∞

0

KE→I (x , t)nE (x , t)dx ,

∂nI
∂t

(x , t) +
∂nI
∂x

(x , t) + KI→R(x , t)nI (x , t) = 0 , for x > 0 ,

dR

dt
=

∫ ∞

0

KI→R(x , t)nI (x , t) dx .

Initial condition at time 0, S(0), nE (·, 0), nI (·, 0) and R(0) is given.

KI→E , KE→I and KI→R are given nonnegative functions.



Linearized PDE system

For epidemics in their early stages, the majority of the population is susceptible,

S(t)/N(t) ' 1, and so, we are reduced to the following linear system:

nE (0, t) =

∫ ∞

0

KI→E (x , t)nI (x , t)dx ,

∂nE
∂t

(x , t) +
∂nE
∂x

(x , t) + KE→I (x , t)nE (x , t) = 0 , for x > 0 ,

nI (0, t) =

∫ ∞

0

KE→I (x , t)nE (x , t)dx ,

∂nI
∂t

(x , t) +
∂nI
∂x

(x , t) + KI→R(x , t)nI (x , t) = 0 , for x > 0 ,

dR

dt
=

∫ ∞

0

KI→R(x , t)nI (x , t) dx .

Initial condition at time 0, S(0), nE (·, 0), nI (·, 0) and R(0) is given.

KI→E , KE→I and KI→R are given nonnegative functions.



This is a multi-compartment version of the model introduced by Kermack and

McKendrick (1927), to analyze the Plague epidemy of Dec. 1905 – July 1906 in

Mumbai.

Von Forster studied a similar model.

Recent work: Perthame’s monography, Mischler, Lepoutre, . . .

When the functions KI→E ,KE→I and KI→R are constant, S ,E , I ,R satisfy the

SEIR ODE.

When KE→I and KI→R are constant, and KI→E only depend on time, this is a time

dependent SEIR ODE, see (Chen, Lu, Chang, Liu, 2020) for a time dependent SIR

model.



When the epidemic does not change (no mutation), we can assume:

• The rates KE→I (x , t) = KE→I (x) > 0 and KI→R(x , t) = KI→R(x) > 0 are

measurable functions of x , independent of time.

• The rate KI→E has the product form

KI→E (x , t) = µ(t)ψ(x) .

• ψ > 0 is a fixed measurable function of x , not a.e. zero (infectiosity rate).

• µ(t) > 0 represents the control of the epidemic by sanitary measures (social

distancing, wearing masks, closing schools, lockdown, etc.).

• Bounded ages in compartments: there is a maximal “age” x∗E of an individual

in the exposed state: the essential support of KE→I is included in [0, x∗E ];

• Similarly, there is a maximal “age” x∗I of an individual in the infectious state:

the essential support of KI→R is included in [0, x∗I ].

• Bounded rates: the functions KE→I on [0, x∗E ], and ψ and KI→R , on [0, x∗I ],

are bounded.

• The point x∗I is the maximum of the essential support of the function ψ.

Note that if ψ(x) = 0 for x ∈ (x∗I − ε, x∗I ), individuals in the I compartment older

than x∗I − ε will not participate any to the contamination chain, breaking the

interpretation of R as the number of all the removed individuals.



Multi-compartment transport PDE model with bounded ages

nE (0, t) =

∫ x∗I

0

µ(t)ψ(x)nI (x , t)dx ,

∂nE
∂t

(x , t) +
∂nE
∂x

(x , t) + KE→I (x)nE (x , t) = 0 , for 0 < x < x∗E ,

nI (0, t) =

∫ x∗E

0

KE→I (x)nE (x , t)dx + nE (x∗E , t) ,

∂nI
∂t

(x , t) +
∂nI
∂x

(x , t) + KI→R(x)nI (x , t) = 0 , for 0 < x < x∗I ,

dR

dt
(t) =

∫ x∗I

0

KI→R(x)nI (x , t)dx + nI (x
∗
I , t) .



Order preserving PDE

Systems of PDE of this nature have been studied by Michel, Mischler and

Perthame. Arguing as in Perthame’s monography:

• Unique solution in the distribution sense n := (nE , nI ) with

nE ∈ C(R>0, L
1([0, x∗E ])) and nI ∈ C(R>0, L

1([0, x∗I ])).

• Time evolution linear operators (Ts,t)t>s>0, t > s, acting on the space

L1([0, x∗E ])× L1([0, x∗I ]), mapping n(·, s) := (nE (·, s), nI (·, s)) to

n(·, t) := (nE (·, t), nI (·, t)).

• The operator Ts,t are order preserving:

(n1
c(x , s) 6 n2

c(x , s), ∀x > 0,∀c ∈ {E , I})
=⇒ (n1

c(x , t) 6 n2
c(x , t), ∀x > 0,∀c ∈ {E , I})



Perron-Frobenius Eigenproblem for Transport PDE

Proposition

Suppose the control µ(t) is constant and positive. Then Ts,t = St−s and

1. There exists λ ∈ R, and n̄ := (n̄I , n̄E ), where the functions n̄E : [0, x∗E ]→ R+

and n̄I : [0, x∗I ]→ R+ are continuous and positive, such that

n(x , t) = eλt n̄(x)

is solution of the linear PDE system.

2. λ and n̄ are solution of a stationary PDE system: the Perron-Frobenius

eigenproblem.

3. n̄ := (n̄I (·), n̄E (·)) is a nonnegative eigenvector, and λ is an eigenvalue.

4. The eigenvalue λ is unique, and the eigenvector n̄ satisfying the latter

conditions is unique up to a multiplicative constant.

Proof as in Perthame’s monography (semiexplicit formula for the eigenvector in

terms of characteristics).



Universality of the log-rate of epidemic observables

An epidemic observable will be of the form

Yκ(t) = ϕ(n(·, t)) :=

∫ x∗I

0

nI (x , t)dκ(x) , (1)

where dκ(x) is a nonnegative nonzero Borel measure.

Proposition

Suppose that for some T > 0, there exist positive constants α, β such that

αn̄ 6 n(·,T ) 6 βn̄. Then, for all epidemic observables of the form (1), the map

t 7→ logYκ(t)− λt is bounded. A fortiori,

lim
t→∞

1

t
logYκ(t) = λ .



Hilbert’s projective metric

• Consider the Hilbert’s projective metric dH on the positive cone of

L1([0, x∗E ])× L1([0, x∗I ]):

dH(v ,w) = log inf

{
β

α
: α, β > 0, αv 6 w 6 βv

}
.

• The semigroup operators St are nonexpansive for the Hilbert’s projective

metric.

• Let w = (wE ,wI ) ∈ L1([0, x∗E ])× L1([0, x∗I ]), be such that

αn̄ 6 w 6 βn̄

for some α, β > 0. Then,

α exp(λt)n̄ 6 Stw 6 β exp(λt)n̄, for all t > 0 .



Discrete time mean-field model

Discrete time versions of the PDE systems lead to systems of equations of the form

x(t + 1) = Mx(t)

where

• discrete time t may correspond to days, hours,...

• x(t) is a finite dimensional state vector, representing the mean number of

individuals at time t in each compartment and age in the compartment.

• M is an irreducible, nonnegative matrix.

• An observable y(t) is for instance one coordinate of x(t).



In (M.A, Ganassali, Gaubert, Massoulié, 2020), we considered more

compartments:

E

TE ∼ 3− 5 days

P

TP ∼ 1− 2 days

I1

TI1 ∼ 4− 8 days

A
TA ∼ 11 days

I2

TI2 ∼ 4 days

H

TH ∼ 4 days

Rpi 1− ph

ph

1− pi

αa

αa

αi

αi

1

where the compartments are: E is for exposed; P for prodromic; A for infectious

asymptomatic; I1 for phase 1 infectious symptomatic; H for hospitalized; I2 for

(non-hospitalized) phase 2 infectious symptomatic; and R for removed from the

contamination chain.



For each compartment τ ∈ {E ,P, I1, I2,A,H}

• pτ (d) is the probability that phase τ lasts d days;

• rτ (d) is the probability that phase τ will end on the following day, given that

it has lasted d days. So rτ (d) = pτ (d)∑
δ>d pτ (δ) if

∑d
δ=1 pτ (δ) > 0.

Using available statistics, we take

• pE (d) = 1/3 for d ∈ {3, 4, 5} and pE (d) = 0 otherwise,

• pP(1) = pP(2) = 1/2 and pP(d) = 0 otherwise,

• pI1 (d) = 1/3 for d ∈ {5, 6, 7} and pI1 (d) = 0 otherwise,

• pI2 (d) = 1 for d = 4 and pI2 (d) = 0 otherwise,

• pA(d) = 1 for d = 11 and pA(d) = 0 otherwise.

• pi = 0.7 for the probability that previously exposed individual becomes

symptomatic at end of incubation.

• ph = 0.05 for the probability that previously phase 1 infectious individual

develops aggravated form at end of phase 1.

To simplify the model, one may also assume that all contact rates are equal:

αa = αi = α.



For each compartment τ ∈ {E ,P, I1, I2,A,H}, xτ,d is the mean number of

individuals in phase τ , having spent d days in this phase.

x is the vector of all the possible xτ,d (except for τ = H, for which we consider

only one age d = 1).

The matrix M is determined by the dynamics x(t + 1) = Mx(t) with:

xτ,d+1(t + 1) = xτ,d (t)(1− rτ (d)), ∀τ ∈ {E ,P, I1, I2,A} , 1 6 d 6 h − 1,

xE,1(t + 1) =
∑
δ>0

[
αi (xI1,δ + xI2,δ)(t) + αa(xA,δ + xP,δ)(t)

]
,

xP,1(t + 1) =
∑
δ>0

xE,δ(t)rE (δ),

xI1,1(t + 1) = pi
∑
δ>0

xP,δ(t)rP (δ),

xA,1(t + 1) = (1− pi )
∑
δ>0

xP,δ(t)rP (δ),

xI2,1(t + 1) = (1− ph)
∑
δ>0

xI1,δ(t)rI1 (δ),

xH (t + 1) = ph
∑
δ>0

xI1,δ(t)rI1 (δ).

An epidemic observable is xH(t).



Multi-type Branching process model

Let X (t) = (Xτ,d(t)) be the random number of individuals in each compartment τ
and age d at time t. Assume that, conditioning to X (t), we have

Xτ,d+1(t + 1) ∼ B (Xτ,d (t), 1− rτ (d)) , ∀τ ∈ {E ,P, I1, I2,A} , 1 6 d 6 h ,

XE,1(t + 1) ∼ P

∑
δ>0

[
αi (XI1,δ

+ XI2,δ
)(t) + αa(XA,δ + XP,δ)(t)

] ,

XP,1(t + 1) =
∑
δ>0

[XE,δ(t)− XE,δ+1(t + 1)] ,

XI1,1
(t + 1) ∼ B

∑
δ>0

[XP,δ(t)− XP,δ+1(t + 1)] , pi

 ,

XA,1(t + 1) =
∑
δ>0

[XP,δ(t)− XP,δ+1(t + 1)]− XI1,1
(t + 1),

XI2,1
(t + 1) ∼ B

∑
δ>0

[XI1,δ
(t)− XI1,δ+1(t + 1)], 1− ph

 ,

XH (t + 1) =
∑
δ>0

[
XI1,δ

(t)− XI1,δ+1(t + 1)
]
− XI2,1

(t + 1).

This is a multi-type branching process, corresponding to the mean-field model in

which the number of newly exposed individuals follows a Poisson distribution.



When, ρ(M) > 1, Kesten and Stigum proved that there is a random variable Z

such that for large t, the state X (t) renormalized by ρ(M)−t converges to Zu,

where u is the Perron eigenvector of M.

The probabilistic model may be relevant when infected populations are not so

large, or in sub-critical cases (ρ(M) 6 1).
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Newly hospitalized individuals (XH(t)), during 60 days, with pi = 0.7, ph = 0.05,

αi = 0.4, αa = 0.3, initialized with 200 individuals entering in E .



Piecewise linear approximation of

the logarithm of epidemic

observables



Modeling different stages of sanitary policies

• Assume that the rates µ (PDE model) or α (discrete time model) depend on

time, due to sanitary measures.

• Assume that they are piecewise constants. Let t0 := 0 < t1 < · · · < tm−1 be

the commutation instants. Convention: tm := +∞.

• m semigroups S i = (S i
t )t>0, for i = 1, . . . ,m, acting on (V ,6), a partially

ordered Banach space (e.g., V = L1([0, x∗E ])× L1([0, x∗I ]) for the PDE or

V = Rn for the discrete time model), representing the evolution of the

population, in each of the phases of sanitary policy.

• State at time t ∈ [tj , tj+1):

vt := S j+1
t−tj ◦ S

j
tj−tj−1

◦ · · · ◦ S1
t1−t0

(v0) .

• Assume that (S i
t )t>0 are linear, bounded and order preserving.

• Consider observables that are nonnegative linear forms of the state and take

their logarithm:

Yt := ϕ(vt) yt = log(Yt) ,

where ϕ ∈ V ′ takes nonnegative values on V>0.



Piecewise linear approximation of the log of observables

Theorem

Suppose that the each semigroup S i is order preserving and has an eigenvector

ui > 0, with eigenvalue λi , S i
tu

i = exp(λi t)ui , ∀t > 0.

Suppose in addition that the initial condition v0 and the eigenvectors u1, . . . , um

are such that

∆ = dH(v0, u
1) + dH(u1, u2) + · · ·+ dH(um−1, um) < +∞ ,

where dH is the Hilbert’s projective metric on V>0. (For instance they are all

positive in the positive orthant, when V = Rn.)

Then, there exists a constant γ such that the piecewise linear map t 7→ y trop
t

defined, for t ∈ [tj , tj+1), by

y trop
t := λj+1(t − tj) + λj(tj − tj−1) + · · ·+ λ1(t1 − t0) + γ ,

satisfies

|yt − y trop
t | 6 ∆

2
, ∀t > 0 .

The approximation is exact (∆ = 0) if V is one-dimensional, e.g., SIR ODE model.



Best piecewise linear approximation

Given an epidemiologic observable Y (t), approximate logY (t) by a function

L(t) := min
16j6ν

(λj t + cj) ,

where ν is the number of phases with constant sanitary policy during the

considered time period.

Minimize the `1 loss function

∑

t∈T
|L(t)− logY (t)|

Non-smooth & nonconvex problem. We initially used Nelder-Mead’s derivative free

algorithm, with an initial condition obtained by epidemiologic considerations. We

use now a dynamic programming algorithm developed by Ayoub Foussoul →
certified global optimum, up to a fixed precision of ε.



The effect of the successive sanitary measures
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Feb. 28th– Mar. 15th Mar. 15th– Mar. 29th Mar. 29th– April 24th

75 5.9 d 9.8 d -9.4 d

92 4.9 d 10.6 d -8.3 d

93 4.2 d 8.5 d -10.2 d

94 4.6 d 6.9 d -7.7 d



Understanding the evolution of

the epidemic in the Paris area



In the Paris area, between February and May 2020. We may distinguish the

following phases of sanitary measures:

- Initial development of the epidemic, no general sanitary measures in the Paris

area, until Feb 29th, first day of so-called “stade 2”.

- Stade 2 (stage 2) measures: general instructions of social distancing given to

the population (e.g., not shaking hands), ban on large gatherings. Moreover,

some large companies created crisis committees, and decided to take more

restrictive measures than the ones required by the authorities, including for

instance banning meetings with more of 10 people, and banning business

travels. Restrictive measures in companies were deployed gradually during the

work week from March 2nd to March 6th.

- School closure on March 16th.

- Lockdown on March 17th. The lockdown ended on May 11th, throughout the

country.

We will interpret the variations in the slope in the piecewise linear approximation

of the logarithm of the number of ambulances and MICU dispatched, as the effect

of sanitary measures.



Estimation of the delay between a sanitary measure and its

impact on ambulance dispatch

• The latest breakpoint of the piecewise linear approximation of the 75 curve (in

blue) arises on March 26th, to be compared with March 30th in the 93 (red

curve). The dates of breakpoints in the 92 and 94 are intermediate.

• Given the first strong measure (closing of schools) was taken on March 16th,

we may evaluate the delay between a sanitary measure and its effect on the

ambulances and MICU dispatch to be between 10 and 14 days. This

corresponds to a delay between contamination and occurrence of severe

symptoms.
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The peak of the number of calls for medical advice, on 13/03 is not consistent

with epidemiological modeling. It seems rather to be caused by the presidential

address. The peak for justified medical advice should occur 5-8 days (delay of

appearance of first symptoms) after the peak of contaminations, expected to be

immediately before 16/03.
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The simulatenous jump of the advice and ambulance dispatch curves around

Feb. 23 is the sign of a transport of epidemic. Possible sources: North of Italy (end

of school vacation) and Semaine Évangélique macro-cluster in Mulhouse.



Construction of statistical indicators of epidemic resurgence

based on emergency calls
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Short term predictor for SAMU 75, with confidence regions and warning and

alarms indicators. Think needle: warning = 25% probability of positive doubling

time, alarm = 75% probability of positive doubling time. Uses log-regression L2.



Parameter estimation of the

probabilistic model



Parameter estimation of the probabilistic model

• Consider the population of Paris (Department 75).

• Consider the observable Y (t) = XH(t) (number of new hospitalizations) given

by the noisy public data provided by SurSaUD syndromic surveillance system.

• Consider the multi-type branching process with all parameters fixed as before,

except α = αi = αa, which depend on time and is piecewise constant, with 3

pieces corresponding to phases of successive sanitary measures from Feb. 8,

to May 5, 2020:

• between day 0 (February 8th) and day t2, α(t) = α1.

• between day t2 and day t3, α(t) = α2.

• between day t3 and day T (May 5th), α(t) = α3.

• Then, the model depend on the six parameters (XE (0), α1, t2, α2, t3, α3),

where XE (0) is the initial total number of exposed individuals. (It is then

divided into the variables XE ,d(0) according to distribution pE .)

• We sample random independent trajectories of the multi-type branching

process.



• We minimize the L1 loss function:

L (XE (0), α1, t2, α2, t3, α3) := EXE (0)

[
1

T

T∑

t=0

|XH(t)− Y (t)|
]
,

• or the L1-log loss function:

L̃ (XE (0), α1, t2, α2, t3, α3) := EXE (0)

[
1

T

T∑

t=0

|logXH(t)− logY (t)|
]
.

• Prediction for one week: from T + 1 (May 6th) to Tpred (May 12th).

• The performance is evaluated by the mean L1 norm :

Lpred := Efit


 1

Tpred − T

Tpred∑

t=T+1

|XH(t)− Y (t)|


 ,

where the probability Pfit is defined for inferred parameters

(X̂E (0), α̂1, t̂2, α̂2, t̂3, α̂3).



Approximate values of inferred parameters

Loss function X̂E (0) α̂1 t̂2 α̂2 t̂3 α̂3

L1 59 0.360 03-15 0.215 03-20 0.042

L1-log 18 0.455 03-15 0.265 03-20 0.040

Loss function Fitting error Prediction error

L1 11.1195± 0.0232 4.0093± 0.0185

L1-log 0.29904± 0.00062 3.7201± 0.0125

Errors with 95% confidence interval obtained by Monte Carlo simulations.



Best fitting with log-L1 cost function
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With hidden trajectories
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Models with mobility



Models with user mobility

• Assume that the daily outflows f (t) are known and are normalized so as to

have zero mean and standard deviation 1.

• The contact rate α(t) is now mobility-dependent:

α(t) = F (φ(t), f (t)) .

where φ(t) is a discrete phase, e.g. φ(t) ∈ {1, 2, 3} as before.

• F can be taken as a logistic function in the variable f (t) or as an affine

function:

α(t) = αφ(t) (1 + γf (t)) .

• where αφ(t) is the value of α when the commuting flow is at its equilibrium,

and γ > 0 is a parameter.



Evolution of the mobility-dependent contact rates for Paris, when the observables

f (t) are obtained from SFR mobile operator data, with parameters α1 = 0.45,

α2 = 0.3, α3 = 0.05, and γ = 0.15:
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The shape of the contact rates reflects the discrete phases, together with weekly

periodicity patterns. Contact rates are lower on Saturdays and Sundays, when daily

commuting trips are less numerous.



Models with routing mobility

• Refined compartments: Subdivise the global population into cohorts c ∈ C.

For instance c = (r , a), where r is for geographical region, and a is for age

range.

• Nc(t) is the size of cohort c at time t.

• Each cohort c ∈ C may have its own biological parameters θc = (rτ , pi , ph, α).

• Routing mobility:

Nc(t + 1) =
∑

c′∈C
Rc′,c(t)Nc′(t) + Ec(t + 1) with

∑

c∈C
Rc′,c(t) 6 1 .

• Contacts between sub-populations: nc,c′(t)= the average number of

individuals from cohort c ′ that a typical individual from cohort c will

encounter.

• Assume Nc(t)nc,c′(t) = Nc′(t)nc′,c(t).

• If qc,c′ is the probability of infection of an individual in c ′ by an individual in

c , given that they are in contact:

αc,c′(t) := qc,c′nc,c′(t).



The mean-field model is decomposed into two steps:

1) evolution and infection of individuals similar to the case of one cohort:

y c
τ,d+1(t) = xc

τ,d(t)(1− rτ (d)), ∀τ ∈ {E ,P, I1, I2,A} ,

y c
E ,1(t) =

∑
c′∈C

αc′,c(t)
∑
δ>0

[
(xc′

I1,δ + xc′
I2,δ)(t) + (xc′

A,δ + xc′
P,δ)(t)

]
,

y c
P,1(t) =

∑
δ>0

xc
E ,δ(t)rE (δ),

y c
I1,1(t) = pi

∑
δ>0

xc
P,δ(t)rP(δ),

y c
A,1(t) = (1− pi )

∑
δ>0

xc
P,δ(t)rP(δ),

y c
I2,1(t) = (1− ph)

∑
δ>0

xc
I1,δ(t)rI1 (δ),

y c
H(t) = ph

∑
δ>0

xc
I1,δ(t)rI1 (δ).

2) routing mobility between cohorts:

xc(t + 1) =
∑

c′

Rc′,c(t)y c(t) .



Estimation of parameters

• The parameters Rc,c′ and nc,c′ should be estimated using mobility data.

• For instance, if c = (r , r ′, a), where r is the usual address of individuals and r ′

the place where they spent the previous night, and if we observe Nc(t), and,

for all pair of regions (r1, r2), the quantities:

∆r1,r2,a(t) :=
∑

r ,r ′

N(r ,r1,a)(t)R(r ,r1,a),(r ′,r2,a)(t),

that is the flow of people of age range a who slept on night before t in r1 and

slept on the following night in r2. (The usual address of these individuals is

however assumed unknown.)

• On can estimate the unobserved quantities Rc,c′(t) as the solution of

max
Rc,c′>0

∑

c,c′

Rc,c′ ln

(
1

Rc,c′

)

subject to ∀c ′,
∑

c

Rc′,c 6 1

∀(r1, r2),
∑

r ,r ′

Nr ,r1,a(t)R(r ,r1,a),(r ′,r2,a) = ∆r1,r2,a(t).

• This is a maximum entropy criterion, used in litterature on traffic matrices for

management of communication networks.



Contact tracing



Contact tracing

• Motivation: control of the epidemics via case isolation.

• Contact tracing allows to focus tests on such contacts.

• One can modify the multi-type branching process to include contact tracing

and case isolation. See also (A. Lambert,2020).

• Fixed tracing probability pt > 0 that the contact between an infectious

individual and another individual that became infected is being recorded.

• Consider a multi-type branching process where user types τ encode the

succession of future phases φ that an individual will visit over the coming

days, e.g. j = (E ,E ,P, I1,H), together with the number of days d until the

corresponding individual will be positively tested.

• On can consider that an indicidual in H is necessarily tested, or that there is a

random testing.

• Once an individual is tested positive, it is isolated (removed) and its traced

contacts are subsequently tested positive on the following day, and

subsequently isolated, and so on.



• A possible model is to replace the children τ = (j , d) of τ ′ = (j ′, d ′) by (j̃ , d̃)

such that

d̃ =

{
d1 with probability 1− pt ,

min(d1, d
′ + 1) with probability pt .

and j̃ has length d̃ , where d1 has same distribution as d .

• This modify the matrix M of the mean-field version of the multi-type

branching process.

• Then, testing is efficient if ρ(M) < 1.



Conclusion

• EMS receive early signals of the epidemic evolution. Exponential blowup

retrospectively visible in the Paris area from the end of February, using the

extractions of patient records made during the crisis.

• Spatially differentiated evolution, e.g., more intense epidemy in the 93

(shorter doubling time) than in 75 or 92, probably caused by social factors

(dependence on public transport, jobs involvings more contamination risks,

bigger size of household).

• Models of COVID-19 epidemics using PDE, discrete time mean-field or

branching processes.

• Approximations by piecewise affine logarithm of observables.

• Short-term predictions on EMS and Paris hospitalization data.

• User mobility can be included to improve estimation of parameters.

• Possible models with routing mobility.

• Possible models with contact tracing and case isolation.
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We thank SFR Geostatistic Team (especially Loic Lelièvre) for having provided estimates of flows between Paris and province, aggregated at the scale of

departments and districts, allowing us to incorporate mobility in our model.
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