Méthodes de champ de phase pour le mouvement par diffusion de surface avec application au mouillage.

Arnaud Sengers

Collaboration : Elie Bretin, Simon Masnou, Roland Denis et Garry Terii

Congès SMAI 24 Juin 2021

Problème de mouillage

Loi de Young

$$\cos(\theta) = \frac{\sigma_{SV} - \sigma_{LS}}{\sigma_{VL}}$$

Loi de Young

$\theta \to 0^{\circ}$ Mouillage parfait

Énergie de périmètre

$$E(t) = \begin{cases} \Pr(\Omega(t)) \text{ en dimension 2} \\ \operatorname{Aire}(\Omega(t)) \text{ en dimension 3} \end{cases}$$

Énergie de périmètre

$$E(t) = \begin{cases} \operatorname{Per}(\Omega(t)) \text{ en dimension } 2\\ \operatorname{Aire}(\Omega(t)) \text{ en dimension } 3 \end{cases}$$

Diffusion de surface

$$V(t) = \Delta_{\Gamma(t)} H(t)$$

- Minimisation du périmètre/aire
- Flot de gradient H^{-1} de E
- Conservation locale de la matière

Énergie de périmètre

$$E(t) = \begin{cases} \operatorname{Per}(\Omega(t)) \text{ en dimension } 2\\ \operatorname{Aire}(\Omega(t)) \text{ en dimension } 3 \end{cases}$$

Diffusion de surface

$$V(t) = \Delta_{\Gamma(t)} H(t)$$

- Minimisation du périmètre/aire
- Flot de gradient H^{-1} de E
- Conservation locale de la matière

Difficulté

- Gestion explicite de θ avec des conditions de bords sur Γ_{LS}
- Difficile à gérer si le support solide est irrégulier.

Loi d'évolution. Formulation multiphase

$$E = \sigma_{SV} \text{Aire}(\Gamma_{SV}) + \sigma_{LS} \text{Aire}(\Gamma_{LS}) + \sigma_{VL} \text{Aire}(\Gamma_{VL})$$
$$= \frac{1}{2} \sum_{i,j=1}^{L} \sigma_{ij} \text{Aire}(\Gamma_{ij}) \qquad \text{Cas général à } L \text{ phases}$$

Loi d'évolution. Formulation multiphase

$$E = \sigma_{SV} \operatorname{Aire}(\Gamma_{SV}) + \sigma_{LS} \operatorname{Aire}(\Gamma_{LS}) + \sigma_{VL} \operatorname{Aire}(\Gamma_{VL})$$
$$= \frac{1}{2} \sum_{i,j=1}^{L} \sigma_{ij} \operatorname{Aire}(\Gamma_{ij}) \qquad \text{Cas général à } L \text{ phases}$$

Diffusion de surface. Version multiphase

$$\frac{1}{\nu_{ij}}V_{ij}(t) = \sigma_{ij}\Delta_{\Gamma_{ij}(t)}H_{ij}(t)$$

Principe

- Gestion naturelle de θ
- Le support solide fixé par les mobilités $\nu_{LS} = \nu_{VS} = 0$
- Pas de complexité supplémentaire liée à la régularité du support solide

Méthode champ de phase

Idée : régularisation

• Approximer la fonction indicatrice $\mathbb{1}_{\Omega}$ par une fonction u_{ε} régulière. Pour $W(s) = \frac{s^2(1-s)^2}{2}$,

$$u_{arepsilon}=q\left(d(x,\Omega)
ight):=rac{1- anh\left(rac{d(x,\Omega)}{2}
ight)}{2}$$

• Approcher l'énergie de périmètre $E(\mathbb{1}_{\Omega})$ par

$$E_{\varepsilon}(u_{\varepsilon}) = \int \frac{\varepsilon}{2} |\nabla u_{\varepsilon}|^2 + \frac{1}{\varepsilon} W(u_{\varepsilon}) dx$$

Système de Cahn-Hilliard Classique

$$(\mathbf{C}\text{-}\mathbf{CH}): \begin{cases} \varepsilon^2 \partial_t u = \Delta \mu \\ \mu = W'(u) - \varepsilon^2 \Delta u \end{cases}$$

(Flot de gradient H^{-1} de E_{ε})

Système de Cahn-Hilliard Classique

$$(\mathbf{C-CH}): \begin{cases} \varepsilon^2 \partial_t u = \Delta \mu \\ \mu = W'(u) - \varepsilon^2 \Delta u \end{cases}$$

(Flot de gradient H^{-1} de E_{ε})

Problème [Pego 89], [Alikakos 94]

Lorsque $\varepsilon \rightarrow 0$, (C-CH) ne converge pas vers la diffusion de surface mais vers

Mullins-Sekerka :
$$\begin{cases} \Delta \mu = 0 \text{ sur } \Omega/\Gamma, \mu = H \\ V_n = [\nabla_n \mu]_{\pm} \end{cases}$$

Dérivation du flot de gradient H^{-1} selon la structure induite par

$$< f,g >_{H_0^1} = \int M \nabla f \cdot \nabla g dx$$

où l'on introduit une dépendance en u dans M.

Dérivation du flot de gradient H^{-1} selon la structure induite par

$$< f,g >_{H_0^1} = \int M \nabla f \cdot \nabla g dx$$

où l'on introduit une dépendance en u dans M.

Dérivation du flot de gradient H^{-1} selon la structure induite par

$$< f,g >_{H_0^1} = \int M \nabla f \cdot \nabla g dx$$

où l'on introduit une dépendance en u dans M.

Système de Cahn-Hilliard avec mobilité $(\mathbf{M}-\mathbf{CH}): \begin{cases} \varepsilon^2 \partial_t u = \operatorname{div} \left(\mathbf{M}(u) \nabla \mu \right) \\ \mu = W'(u) - \varepsilon^2 \Delta u \end{cases}$ (Flot de gradient H^{-1} de E_{ε})

Propriétés du modèle

- Modèle variationnel : $\frac{d}{dt}E_{\varepsilon}(u)dx = -\frac{1}{\varepsilon^3}\int M(u)|\nabla \mu|^2 \leq 0$
- Conservation de la masse : $\frac{d}{dt} \int u \, dx = \frac{1}{\varepsilon^2} \int \operatorname{div} (M(u) \nabla \mu) = 0$

Quel choix faire pour la mobilité M ?

Exemples de mobilité : $M(s) = s(1-s), M(s) = [s(1-s)]_+, M(s) = s^2(1-s)^2.$

Quel choix faire pour la mobilité M?

Exemples de mobilité : $M(s) = s(1-s), \ M(s) = [s(1-s)]_+, \ M(s) = s^2(1-s)^2.$

Choix de la mobilité M

• Pour avoir la bonne vitesse, il faut que M soit doublement dégénérée :

$$M(0) = M(1) = M'(0) = M'(1) = 0$$

- Plus l'ordre de mobilité est élevé, plus la vitesse de l'interface est faible.
- $M(s) = s^2(1-s)^2$ est le choix optimal.

Quel choix faire pour la mobilité M ?

Exemples de mobilité : $M(s) = s(1-s), \ M(s) = [s(1-s)]_+, \ M(s) = s^2(1-s)^2.$

Choix de la mobilité M

• Pour avoir la bonne vitesse, il faut que M soit doublement dégénérée :

$$M(0) = M(1) = M'(0) = M'(1) = 0$$

• Plus l'ordre de mobilité est élevé, plus la vitesse de l'interface est faible.

• $M(s) = s^2(1-s)^2$ est le choix optimal.

Dans ce cas, le modèle (M-CH) vérifie:

$$\begin{cases} u_{\varepsilon}(x,t) = q\left(\frac{d(x,\Omega(t)}{\varepsilon}\right) + \mathcal{O}(\varepsilon) \\ V_{\varepsilon} = \Delta_{\Gamma(t)}H(t) + \mathcal{O}(\varepsilon) \\ Vol(\Omega(t)) = Vol(\Omega(0)) + \mathcal{O}(\varepsilon) \end{cases}$$

Problème 1

Profil et propriété de positivité.

Problème 1

Profil et propriété de positivité.

Problème 2

Conservation du volume et structures fines.

Problème 1

Profil et propriété de positivité.

Problème 2

Conservation du volume et structures fines.

Question

Que faire pour améliorer la précision du modèle ?

Dérivation du flot de gradient H^{-1} selon la structure induite par

$$\langle f,g \rangle_{H_0^1} = \int M \nabla (Nf) \cdot \nabla (Ng) \, dx$$

où l'on introduit une dépendance en u dans M et N.

Dérivation du flot de gradient H^{-1} selon la structure induite par

$$< f,g >_{H_0^1} = \int M \nabla (Nf) \cdot \nabla (Ng) dx$$

où l'on introduit une dépendance en u dans M et N.

Système de Cahn-Hilliard avec deux mobilités

$$(\mathsf{NMN-CH}): \begin{cases} \varepsilon^2 \partial_t u = \mathsf{N}(u) \operatorname{div} (\mathsf{M}(u) \nabla (\mathsf{N}(u)\mu)) \\ \mu = \mathsf{W}'(u) - \varepsilon^2 \Delta u \end{cases}$$

avec
$$W(s) = \frac{s^2(1-s)^2}{2}$$
, $M(s) = s^2(1-s)^2$.

Dérivation du flot de gradient H^{-1} selon la structure induite par

$$< f,g >_{H_0^1} = \int M \nabla (Nf) \cdot \nabla (Ng) dx$$

où l'on introduit une dépendance en u dans M et N.

Système de Cahn-Hilliard avec deux mobilités

(NMN-CH):
$$\begin{cases} \varepsilon^2 \partial_t u = N(u) \operatorname{div} (M(u) \nabla (N(u)\mu)) \\ \mu = W'(u) - \varepsilon^2 \Delta u \end{cases}$$

avec
$$W(s) = \frac{s^2(1-s)^2}{2}$$
, $M(s) = s^2(1-s)^2$.

Propriétés du modèle

- Modèle variationnel : $\frac{d}{dt}P_{\varepsilon}(u)dx = -\frac{1}{\varepsilon^3}\int M(u)|\nabla(N(u)\mu)|^2 \leq 0$
- Conservation de la masse : Pour $G(s) = \int_0^s \sqrt{2W(t)} dt$,

$$\frac{d}{dt}\int G(u)dx = \frac{1}{\varepsilon^2}\int \operatorname{div}\left(M(u)\nabla(N(u)\mu)\right) = 0$$

Quel choix pour N ?

Question

Quel choix pour N ?

Motivation

• Dans les développements asymptotiques pour le modèle (M-CH), le terme d'erreur d'ordre 1 U_1 satisfait l'équation

$$\partial_{zz}U_1 - W''(q(z))U_1 = (-c_W - q'(z))H$$

Comme le membre de droite est non nul, $U_1 \neq 0$.

• Pour le modèle (NMN-CH), U₁ satisfait

$$\partial_{zz} U_1 - W''(q(z)) U_1 = [\underbrace{-\frac{1}{N(q(z))} - q'(z)}_{= 0?}]H$$

Question

Quel choix pour N ?

Motivation

• Dans les développements asymptotiques pour le modèle (M-CH), le terme d'erreur d'ordre 1 U₁ satisfait l'équation

$$\partial_{zz} U_1 - W''(q(z))U_1 = (-c_W - q'(z))H$$

Comme le membre de droite est non nul, $U_1 \neq 0$.

• Pour le modèle (NMN-CH), U₁ satisfait

$$\partial_{zz}U_1 - W''(q(z))U_1 = 0$$

Choix de N

$$N(s) = \frac{1}{s(1-s)} = \frac{1}{\sqrt{M(s)}}$$

Propriétés modèle (NMN-CH)

$$\begin{cases} u_{\varepsilon}(x,t) = q\left(\frac{d(x,\Omega(t))}{\varepsilon}\right) + \mathcal{O}(\varepsilon^{2}) \\ V_{\varepsilon} = \Delta_{\Gamma(t)}H(t) + \mathcal{O}(\varepsilon) \\ Vol(\Omega(t)) = Vol(\Omega(0)) + \mathcal{O}(\varepsilon^{2}) \end{cases}$$

Propriétés modèle (NMN-CH)

$$\begin{cases} u_{\varepsilon}(x,t) = q\left(\frac{d(x,\Omega(t))}{\varepsilon}\right) + \mathcal{O}(\varepsilon^{2}) \\ V_{\varepsilon} = \Delta_{\Gamma(t)}H(t) + \mathcal{O}(\varepsilon) \\ Vol(\Omega(t)) = Vol(\Omega(0)) + \mathcal{O}(\varepsilon^{2}) \end{cases}$$

Propriétés modèle (NMN-CH)

$$\begin{cases} u_{\varepsilon}(x,t) = q\left(\frac{d(x,\Omega(t)}{\varepsilon}\right) + \mathcal{O}(\varepsilon^{2}) \\ V_{\varepsilon} = \Delta_{\Gamma(t)}H(t) + \mathcal{O}(\varepsilon) \\ Vol(\Omega(t)) = Vol(\Omega(0)) + \mathcal{O}(\varepsilon^{2}) \end{cases}$$

t = 3.7253e-09

t = 2.0117e-07

t = 1.6503e-06

t = 4.9509e-06

Schémas numériques

En posant $B(u) = -\frac{1}{2}\nabla(\log(M(u)))$, on définit

$$\begin{cases} J_{c}(\mu) = \frac{1}{2} \int m |\nabla \mu|^{2} + \frac{1}{2} \int \beta \mu^{2} \\ J_{e}(\mu) = \int \mu B(u) \cdot \nabla \mu + \frac{1}{2} \int \left(|B(u)|^{2} - \beta \right) \mu^{2} + \frac{1}{2} \int (1 - m) |\nabla \mu|^{2} \\ \\ \begin{cases} E_{c}(u) = \frac{1}{2} \int \varepsilon |\nabla u|^{2} + \frac{\alpha}{\varepsilon} u^{2} \\ \\ E_{e}(u) = \int \frac{1}{\varepsilon} \left(W(u) - \alpha \frac{u^{2}}{2} \right) \end{cases}$$

Reformulation convexe-concave

On peut reformuler le modèle (NMN-CH) sous la forme :

$$\begin{cases} \partial_t u = -\nabla_\mu J_c(\mu) - \nabla_\mu J_e(\mu) \\ \mu = \nabla_u E_c(u) + \nabla_u E_e(u) \end{cases}$$

Pour $\alpha \geq \max_{s} W''(s) m, \beta$ suffisamment grands, (J_c, J_e) et (E_c, E_e) forment des couples de fonctionnelles convexes et concaves.

Propriété : Méthode de Splitting

Basé sur le principe

- Convexe \rightarrow Implicite
- $\bullet \ \ \mathsf{Concave} \to \mathsf{Explicite}$

Le schéma de discrétisation obtenu

$$\begin{cases} \frac{u^{n+1}-u^n}{\delta t} = m\Delta\mu^{n+1} - \beta\mu^{n+1} + [N(u^n)\operatorname{div}(M(u^n)\nabla(N(u^n)\mu^n)) - m\Delta\mu^n + \beta\mu^n] \\ \mu^{n+1} = \left(-\Delta u^{n+1} + \frac{\alpha}{\varepsilon^2}u^{n+1}\right) + \frac{1}{\varepsilon^2}\left(W'(u^n) - \alpha u^n\right) \end{cases}$$

est inconditionnellement stable en pratique.

Méthode numérique

Les termes en (u^{n+1}, μ^{n+1}) sont associés avec des opérateurs linéaires. On peut donc résoudre le système efficacement dans l'espace de Fourier.

```
clear all:
N = 2^9; epsilon =1/N; dt =epsilon<sup>4</sup>; T =1;
W = @(U) 1/2*(U.*(U-1)).^2;
W prim = @(U) (U.*(U-1).*(2*U-1));
MobM = @(U) ((((U).*(1-U)).^2+epsilon^2));
MobN = @(U) 1./sqrt(MobM(U));
k = [0:N/2, -N/2+1:-1]; [K1, K2] = meshgrid(k,k);
Delta = -4*pi^2*((K1.^2 + (K2).^2));
alpha = 2; beta = 1/epsilon^2; m = 1;
M LNMN = 1./(1 + dt*(m*Delta - beta) .*(Delta - alpha/epsilon<sup>2</sup>));
U = rand(N,N); U fourier = fft2(U);
Mu = zeros(N,N); Mu fourier = zeros(N,N);
for i=1:T/dt,
mobMU = MobM(U); mobNU = MobN(U);
sqrtM = sqrt(mobMU); sqrtM fourier = fft2(sqrtM);
nabla1 sqrtM= real(ifft2(2*pi*1i*K1.*sqrtM fourier )); nabla2 sqrtM= real(ifft2(2*pi*1i*K2.*sqrtM fourier ));
muN fourier = fft2(Mu.*mobNU); muN = real(ifft2(muN fourier));
nabla1 muN = real(ifft2(2*pi*1i*K1.*muN fourier )); nabla2 muN = real(ifft2(2*pi*1i*K2.*muN fourier ));
laplacien muN = real(ifft2(Delta.*muN fourier)):
NdivMgradNMu = sqrtM.*laplacien muN + 2*(nabla1 sqrtM.*nabla1 muN + nabla2 sqrtM.*nabla2 muN);
B1 = U fourier + dt*(fft2(NdivMgradNMu) - (m*Delta-beta).*Mu fourier):
B2 = fft2(W prim(U)/epsilon^2 - alpha/epsilon^2*U);
U fourier = M LNMN.*(B1 + dt*(m*Delta-beta).*B2):
U = real(ifft2(U fourier));
Mu_fourier = M_LNMN.*((alpha/epsilon^2 - Delta).*B1 + B2);
Mu = real(ifft2(Mu fourier)):
end
```

1

2

Simulation du code précédent.

Simulations en biphasique

Simulation du code précédent.

Exemple de démouillage en 3D.

Passage au multiphase

On suppose :

• Les tensions de surfaces additives

$$\sigma_{ij}=\sigma_i+\sigma_j$$

• Les coefficients de mobilité harmoniquement additifs

$$\frac{1}{\nu_{ij}} = \frac{1}{\nu_i} + \frac{1}{\nu_j}$$

Passage au multiphase

On suppose :

• Les tensions de surfaces additives

$$\sigma_{ij} = \sigma_i + \sigma_j$$

• Les coefficients de mobilité harmoniquement additifs

$$\frac{1}{\nu_{ij}} = \frac{1}{\nu_i} + \frac{1}{\nu_j}$$

Cas du mouillage

• En dimension 3, sous réserve que l'inégalité triangulaire soit vérifiée, on a

$$\begin{cases} \sigma_L = \frac{\sigma_{LV} + \sigma_{LS} - \sigma_{VS}}{2} \ge 0\\ \sigma_V = \frac{\sigma_{LV} + \sigma_{VS} - \sigma_{LS}}{2} \ge 0\\ \sigma_S = \frac{\sigma_{LS} + \sigma_{VS} - \sigma_{LV}}{2} \ge 0 \end{cases}$$

• Les coefficients de mobilité servent à fixer la phase solide

$$\begin{cases} (\nu_{LV}, \nu_{LS}, \nu_{VS}) = (1, 0, 0) \\ (\nu_{L}, \nu_{V}, \nu_{S}) = (2, 2, 0) \end{cases}$$

Reformulation du problème

$$E(\Omega_1, \cdots, \Omega_L) = \frac{1}{2} \sum_{i,j=1}^L \sigma_{ij} \operatorname{Aire}(\Gamma_{ij})$$
$$= \frac{1}{2} \sum_{k=1}^L \sigma_k \operatorname{Aire}(\Gamma_k)$$

Reformulation du problème

$$E(\Omega_1, \cdots, \Omega_L) = \frac{1}{2} \sum_{i,j=1}^L \sigma_{ij} \operatorname{Aire}(\Gamma_{ij})$$
$$= \frac{1}{2} \sum_{k=1}^L \sigma_k \operatorname{Aire}(\Gamma_k)$$

Modèle (NMN-CH) multiphase

L'énergie de Cahn-Hilliard multiphase associée est

$$\mathcal{E}_{arepsilon}(u) = rac{1}{2}\sum_{k=1}^{L}\sigma_k\int\left(rac{arepsilon}{2}|
abla u_k|^2 + rac{1}{arepsilon}W(u_k)
ight)$$

Le modèle (NMN-CH) résultant est

$$\begin{cases} \varepsilon^2 \partial_t u_k = \nu_k N(u_k) \operatorname{div} \left(M(u_k) \nabla \left(\sigma_k N(u_k) \mu_k + \lambda \right) \right) \\ \mu_k = W'(u_k) - \varepsilon^2 \Delta u_k \end{cases}$$

Passage au multiphase

Propriétés du modèle

Proche de l'interface Γ_{ij} , la solution u vérifie

$$egin{aligned} & \left(u_i=q\left(rac{dist(x,\Omega_i)}{arepsilon}
ight)+\mathcal{O}(arepsilon^2) \ & u_j=1-q\left(rac{dist(x,\Omega_i)}{arepsilon}
ight)+\mathcal{O}(arepsilon^2) \ & u_k=\mathcal{O}(arepsilon^2) \ & rac{1}{
u_{ij}}V_{ij}=\sigma_{ij}\Delta_\Gamma H_{ij}+\mathcal{O}(arepsilon) \end{aligned}$$

Passage au multiphase

Propriétés du modèle

Proche de l'interface Γ_{ij} , la solution u vérifie

$$egin{aligned} &\mathcal{L} & u_i = q\left(rac{dist(x,\Omega_i)}{arepsilon}
ight) + \mathcal{O}(arepsilon^2) \ & u_j = 1 - q\left(rac{dist(x,\Omega_i)}{arepsilon}
ight) + \mathcal{O}(arepsilon^2) \ & u_k = \mathcal{O}(arepsilon^2) \ & rac{1}{arpsilon_{ij}} V_{ij} = \sigma_{ij} \Delta_\Gamma \mathcal{H}_{ij} + \mathcal{O}(arepsilon) \end{aligned}$$

Schéma numérique

$$\begin{cases} \frac{u_k^{n+1} - u_k^{n+1}}{\delta_t} = \nu_k \left[m\Delta - \beta \right] \left(\sigma_k \mu_k^{n+1} + \lambda^{n+1} \right) - \left[m\Delta - \beta \right] \left(\sigma_k \mu_k^n + \lambda^n \right) + \\ + \nu_k N(u_k^n) \operatorname{div} \left(M(u_k^N) \nabla \left[\sigma_k N(u_k^n) \mu_k^n + \lambda^n \right] \right) \\ \mu_k^{n+1} = \left(-\Delta u_k^{n+1} + \frac{\alpha}{\varepsilon^2} u_k^{n+1} \right) + \frac{1}{\varepsilon^2} \left(W'(u_k^n) - \alpha u_k^n \right) \\ \sum_{k=1}^L u_k^{n+1} = 1 \qquad (\text{Détermine } \lambda^{n+1}) \end{cases}$$

Influence des coefficients de mobilités

1.8

1.6

1.4

1.2

0.8

0.6

0.4

0.2

Influence des coefficients de mobilités

2ème choix

0.2

0.3

0.4

0.5 L -0.5 $\nu_{S} = 0, \ \nu_{L} = \nu_{V} = 1$

0.6 0.2

0.4 0.3

0.2 0.4

0.5

0.5 ·

0

0

0.6

0.4

0.2

0.5

Influence des tensions de surfaces sur l'angle de mouillage

1er choix

 $\sigma_{LS} = \sigma_{VS} = \sigma_{LV} = 1$

Influence des tensions de surfaces sur l'angle de mouillage

2ème choix

 $\sigma_{VS} = 1.9, \ \sigma_{LS} = \sigma_{LV} = 1$

Influence des tensions de surfaces sur l'angle de mouillage

3ème choix

 $\sigma_{LS} = 1.9, \ \sigma_{LV} = \sigma_{VS} = 1$

Multiphase : Simulations

Influence de la tension de surface

1er choix

 $\sigma_{LS} = \sigma_{VS} = \sigma_{LV} = 1$

Influence de la tension de surface

2ème choix

 $\sigma_{V\!S}=1.7,~\sigma_{LS}=\sigma_{LV}=1$

Influence de la tension de surface

3ème choix

 $\sigma_{LS} = 1.7, \ \sigma_{VS} = \sigma_{LV} = 1$

Influence du support

Avantage de la méthode

Pas besoin de gérer l'angle de contact avec des conditions aux bords.

1er choix

Influence du support

Avantage de la méthode

Pas besoin de gérer l'angle de contact avec des conditions aux bords.

2ème choix

