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Motivation

FIGURE — Floods in Vésubie, France 2020 FIGURE — Sediment transport and Deposition of the
Rhone River
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@ Presentation of the system
@ The homogenuous 1D Shallow water model with two velocities

o Numerical schemes
o Numerical results

© 1D Shallow water model with two velocities with topography

@ Conclusion and perspectives
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Introduction

The 2D shallow water type model with two velocities reads

O¢h + V- (hU) =0,
de(hU) + V- (h(U® U+ U® U) + §h%I) = 0, (SWh)
o0 +(U-VO+(0-V)U =0.
The system is invariant by rotation so we study (SW5) in the x-direction
oth  + O(hu) =0
de(hT) + Ox(h(v® + 0%) + §h?) = 0 (1D)
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Introduction

We consider the set of variables
U= (hT,0d)
and the initial data for the Riemann problem
U0, x) = U = (hL7Hf, ﬁf)t e R} x ]R22 ifx <0,
Ur = (hR7 UuR, UR)t eR} xR if x> 0.

The eigenvalues are given by

AL A* AR
AN = T—/gh+ 302
o= 1,
AR = T+ +/gh+ 302,
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Description of the Godunov-type schemes

Finite volume framework

We consider a uniform discretization of the computational domain

We denote C; =]x;_1,X;, 1] the cell of length Ax = x;, 1 —x;_1 and centered

at x;

For any time t", we define t""! = t" + At" with At" satisfying a CFL

condition to be described later

@ Let UP be a piecewise constant approximation of U(x,t) at time t” on the
cell G

@ We propose the following update formula

At"
VieZ,YneN UM =U" - A (f,-ll —f,-"_;) )

where
tn+1

o ”Ait/t F(U(txy)) e

The initialization of the algorithm can be computed with
1 [}
Viez U0=—[""

1
Ax 5
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Description of the Godunov-type schemes

Godunov method

Godunov observed that U define at each cell interface Xiy1 2 Riemann problem

HwU+0,F(U) = 0
U (" %) ?fx<x,-+%
lfox,-Jr%
Ur
UL
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Description of the Godunov-type schemes

The considered approximated Riemann solvers are

<

L = U if % < A,
~ /X ~ 2 t
1] (? U, UR) =30, if A< % < Ajypforj=1,.,N—1,
U =

Unyy 02>

The update at time t"*! is then defined by

1

Ax
¥ L
= [T oG [0 (G ) o

2
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Description of the Godunov-type schemes

@ The external waves of the approximated solution have to be faster than the
external wave speed of the exact solution

AL = min (U[_ —CL,UR — CR),
AR = max (HL +c,ur + CR) ,

where cx = \/ghx + 30%.

@ The time step has to satisfy the following CFL condition

AX

(max|)\ VA" < —
Jri 2

-
where )\,+1 = N(U7, UR).

© The scheme has to satisfy a consistency property in the sense Harten and Lax
showed in (Lax 83)

Ax
1[5 .
Ax U(A —, U Ug)dx = —— Ax / A ,,,UL, Ur)dx
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Homogenuous 1D Shallow water model with two velocities

The HLL approximate Riemann solver

AL AR
Up if % < AL, Unit
UHLL (;, U, UR) = Uy ifA < % < AR, U, Ur
Ur if f > AR, %

The consistency with the integral form of the conservation law leads to the
following intermediate states

b _h0-D)
LY.

_ [AhT — h(7® + 02) — §1?]
hrLLUpe = 0 ,
N )

[A]

Assume h; > 0 or hg > 0 then, the intermediate state hy;; is positive.
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Homogenuous 1D Shallow water model with two velocities

L6 ——EXACT ——HLL
141 4
< 12F 4
T TS =~ ]
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F1GURE — Two rarefactions case. Plots of the variables using HLL solver for 1000 grid
cells
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1D Shallow water model with two velocities

The HLL* scheme

@ The quantity % jumps only along the intermediate contact discontinuity. In
fact, from (SW5), we can deduce that for regular solutions

8t(%)+ﬂ&<(%) =0.

@ The HLL scheme is used to update only the classical shallow water variables
(h,7) and to compute the interface mass and momentum fluxes F}},, and
i
FriL-
@ The shear velocity i is updated using an upwind strategy

0 Ui ~ht+ I+1 h—
]:{HLL,up,i—&-%} ‘7:{HLL i+3 }+ ]:{HLL i+1y
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1D Shallow water model with two velocities

The HLL* solver can also be seen as a 3— waves approximate Riemman solver
. A AR
U, if % < AL, AL

Up ifa < %<3,
Up ifX< %< g,
Ugr if X > Xg.

- X
UHLL*(? Ur, Ur) =

To construct the numerical scheme
@ we consider the consistency relations
@ we impose the continuity of h and T through the X—wave

h} = hg and U] = Up.

A

. - a
© we impose the continuity of — on the external waves \; and \g

h
oo e Gk
ho hr  hY'
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1D Shallow water model with two velocities

For Z—g #+ Z—t the intermediate states are

hi = hg = hpe,
U] =Ug = Ui,
=0, L

L — T

hL *
e~ hHLL (HLL™)
Up = URKa
< R (AR —TUR)
A=Ag— ——*.
huee

If Z—g = ;,’—t we get ] = (g = {y . and we choose \ defined above.
In addition, we have

o)\ < 5\ < AR

o sgn(Fiy.y) = sgn(A)

° ]:fHLL,up} = Flui-
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Homogenuous 1D Shallow water model with two velocities

16f [ EXACT — L — ]
14F B
< 12f
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FIGURE — Two rarefactions case. Plots of the variables using HLL and HLL* solvers for
1000 grid cells
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Homogenuous 1D Shallow water model with two velocities
\ T T T [—EXACT —HLL —HLL*
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FIGURE — Dam break problem. Plots of the variables using HLL and HLL™ solvers for
1000 grid cells
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Homogenuous 1D Shallow water model with two velocities

The 3-waves HLLC type scheme

: A
Ul if X <AL AL A R

Ur if 3> Ag. X
The unknowns are
Ur = (hi, @i, ap)
Us = (hh Tk, 03) + A" = 7 relations.

Nelly BOULOS AL MAKARY SMAI2021 18 /28



Homogenuous 1D Shallow water model with two velocities

The 3-waves HLLC type scheme

Rankine-Hugoniot relations Riemann invariants
o hiu} — htp = A (hf — hr) ° T =Tk = A*,
on AL, ° gt — Zi on A,
@ hrUr — h*RU;; = . ﬁL*
ur _ Ur
AR (hr — hE) on Ag ® e = h On AR.

The consistency relations of the discharge

)\th?ﬂr? - )\thﬁf + A* (htﬂt - hEU;) = ()\R - )\[_) AL THLL-
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Homogenuous 1D Shallow water model with two velocities

The 3-waves HLLC type scheme can be solved to obtain

AL—Ty
ht == h[_(Aii 5
v
. R — UR
hR = hR( — )
. AR UL
uy = UHLL,
U*R = Uy, B (HLLC3)
gt = g (L
[ =Uul~———),
/\5\7 UHLL
0% = dp(_R—UR
R—UR\T——),
S AR UL
A= UHLL -

For hy > 0 or hg > 0, we are able to prove that
@ N\ <UL < AR
@ hf >0and hy > 0.
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Numerical results

FIGURE — Dam break Problem . Plots of the variables using HLL, HLL* and HLLG;
solvers for 1000 grid cells
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Numerical results

wh wh lﬂ\\
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FIGURE — The Dam break problem : Convergence of L? norm errors at t = 0.05s with
mesh refinement for h on the left, for 7 in the middle and for & on the right.
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1D Shallow water model with two velocities and

topography

The model reads

O¢h 3 (hu) =0,
O(hT) + Ox(h(T® + 0%) + &h?) = —ghd, Z, (SW5)
O:li + Oc(Tid) =0.

@ The system has an additional eigenvalue A\g =0

@ The exact solution of the integral of the topography is very difficult to
compute

Main Objective

To develop a "Well balanced " scheme based on the analysis of the Riemann
problem

@ able to excatly recover any steady solution in 1D over an arbitrary topography
@ preserves the non-negativity of the water heights
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Numerical schemes

A A
L Mo R

ur | us

U Ur

o Using strategy done in (Dansac 16) and corrected in (Mbaye 21), we
construct a numerical scheme named HLLG,
@ A new numerical scheme named HLLC{ (in the same way of HLLx) is

introduced
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Numerical Results

—Free surface
—Topography

Total head and discharge £2 errors for the subcritical solution

H Total head Discharge H

HLLC, 8.943e-11  2.46e-13
HLLC; 8.942e-11  1.63e-13
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Numerical schemes

The 4-waves HLLC type scheme named HLLG; o

t

* A A
AL A [ o R L

\
U

* <0 *

Ur < | Ug
\

\

Ur Ur U

@ we have 3 intermediates states

@ we have 10 unknowns

@ we have to preserve the positivity of the water heights

@ we have to assure that A\; < A" < Ag and that A* keeps its sign
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Conclusion and perspectives

Conclusions

@ Proposed several numerical schemes for the resolution of the homogenuous
(SW5)

@ Proposed briefly several numerical schemes for the resolution of the (SW5)
with the topography

Perspectives
@ To construct the piecewise C! steady solutions of (SW53)
@ To complete the HLLG; o Riemann solver

@ To do the numerical scheme for the 2D shallow water model with two
velocities

@ To extend the numerical scheme for the shear shallow water model
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