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Motivation

Figure – Floods in Vésubie, France 2020 Figure – Sediment transport and Deposition of the
Rhone River
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Motivation

The free surface and incompressible Euler equations

Shallow water model
(SW ) [Gerbeau 01]

Multilayer Shallow water
model (SWL) [Audusse 11]

Shear Shallow water model
(SSW ) [Gavrilyuk 17]

Shallow water model
with two velocities (SW2)
[Aguillon 18]
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Introduction

The 2D shallow water type model with two velocities reads
∂th + ∇ · (hU) = 0,

∂t(hU) + ∇ · (h(U ⊗ U + Û ⊗ Û) + g
2 h

2I) = 0,

∂tÛ + (U · ∇)Û + (Û · ∇)U = 0.

(SW2)

The system is invariant by rotation so we study (SW2) in the x-direction

∂th + ∂x(hu) = 0
∂t(hu) + ∂x(h(u2 + û2) + g

2 h
2) = 0

∂t û + ∂x(uû) = 0

 (1D)

∂t(hv) + ∂x(h(uv + ûv̂)) = 0
∂t v̂ + û∂xv + u∂x v̂ = 0

}

with U = (u, v)t and Û = (û, v̂)t .
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Introduction

We consider the set of variables

U = (h, u, û)

and the initial data for the Riemann problem

U(0, x) =

{
UL = (hL, uL, ûL)t ∈ R∗+ × R2 if x < 0,

UR = (hR , uR , ûR)t ∈ R∗+ × R2 if x ≥ 0.

The eigenvalues are given by



λL = u −
√

gh + 3û2

λ∗ = u,

λR = u +
√

gh + 3û2,

x

λRλ∗λL
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Description of the Godunov-type schemes

Finite volume framework

We consider a uniform discretization of the computational domain
We denote Ci =]xi− 1

2
, xi+ 1

2
[ the cell of length ∆x = xi+ 1

2
− xi− 1

2
and centered

at xi
For any time tn, we define tn+1 = tn + ∆tn with ∆tn satisfying a CFL
condition to be described later
Let Un

i be a piecewise constant approximation of U(x , t) at time tn on the
cell Ci

We propose the following update formula

∀i ∈ Z,∀n ∈ N Un+1
i = Un

i −
∆tn

∆x

(
Fn

i+ 1
2
−Fn

i− 1
2

)
,

where

Fn
i+ 1

2
≈ 1

∆tn

∫ tn+1

tn
F
(
U
(
t, xi+ 1

2

))
dt.

The initialization of the algorithm can be computed with

∀i ∈ Z U0
i =

1

∆x

∫ x
i+ 1

2

x
i− 1

2

U(x , 0)dx .
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Description of the Godunov-type schemes

Godunov method

Godunov observed that Un
i define at each cell interface xi+ 1

2
a Riemann problem

∂tU + ∂xF (U) = 0

U (tn, x) =

{
UL if x < xi+ 1

2

UR if x ≥ xi+ 1
2

UL

UR

•
xi

•
xi+ 1

2

•
xi+1
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Description of the Godunov-type schemes

The considered approximated Riemann solvers are

Ũ
(x
t
,UL,UR

)
=


UL = U 1

2
if x

t < λ1,

Ũj+ 1
2

if λj <
x
t < λj+1 for j = 1, ...,N − 1,

UR = UN+ 1
2

if x
t > λN .

The update at time tn+1 is then defined by

Un+1
i =

1

∆x

∫ ∆x
2

0

Ũ
( x

∆tn
,Un

i−1,U
n
i

)
dx +

1

∆x

∫ 0

−∆x
2

Ũ
( x

∆tn
,Un

i ,U
n
i+1

)
dx .
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Description of the Godunov-type schemes

1 The external waves of the approximated solution have to be faster than the
external wave speed of the exact solution

λL = min (uL − cL, uR − cR) ,
λR = max (uL + cL, uR + cR) ,

where cX =
√
ghX + 3û2

X .

2 The time step has to satisfy the following CFL condition

(max
j,i
|λnj,i+ 1

2
|)∆tn ≤ ∆x

2
,

where λn
j,i+ 1

2

= λj(U
n
i ,U

n
i+1).

3 The scheme has to satisfy a consistency property in the sense Harten and Lax
showed in (Lax 83)

1

∆x

∫ ∆x
2

−∆x
2

Ũ(
x

∆tn
,ULUR)dx =

1

∆x

∫ ∆x
2

−∆x
2

Ur(
x

∆tn
,UL,UR)dx ,
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Homogenuous 1D Shallow water model with two velocities

The HLL approximate Riemann solver

ŨHLL

(x
t
,UL,UR

)
=


UL if x

t < λL,

UHLL if λL <
x
t < λR ,

UR if x
t > λR , x

λR

UR

UHLL

UL

λL

The consistency with the integral form of the conservation law leads to the
following intermediate states

hHLL =
[h (λ− u)]

[λ]
,

hHLLuHLL =

[
λhu − h(u2 + û2)− g

2 h
2
]

[λ]
,

ûHLL =
[û (λ− u)]

[λ]
.

Assume hL > 0 or hR > 0 then, the intermediate state hHLL is positive.
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Homogenuous 1D Shallow water model with two velocities

Figure – Two rarefactions case. Plots of the variables using HLL solver for 1000 grid
cells

Nelly BOULOS AL MAKARY SMAI2021 12 / 28



1D Shallow water model with two velocities

The HLL∗ scheme

The quantity û
h jumps only along the intermediate contact discontinuity. In

fact, from (SW2), we can deduce that for regular solutions

∂t(
û

h
) + u∂x(

û

h
) = 0.

The HLL scheme is used to update only the classical shallow water variables
(h, u) and to compute the interface mass and momentum fluxes Fh

HLL and
Fhu

HLL.

The shear velocity û is updated using an upwind strategy

F û
{HLL,up,i+ 1

2}
=

ûni
hni
Fh+
{HLL,i+ 1

2}
+

ûni+1

hni+1

Fh−
{HLL,i+ 1

2}
,
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1D Shallow water model with two velocities
The HLL∗ solver can also be seen as a 3− waves approximate Riemman solver

ŨHLL∗(
x

t
,UL,UR) =


UL if x

t < λL,

U∗L if λL <
x
t < λ̃,

U∗R if λ̃ < x
t < λR ,

UR if x
t > λR . x

λR

UR

λ̃

U∗RU∗LUL

λL

To construct the numerical scheme

1 we consider the consistency relations

2 we impose the continuity of h and u through the λ̃−wave

h∗L = h∗R and u∗L = u∗R .

3 we impose the continuity of
û

h
on the external waves λL and λR

ûL
hL

=
û∗L
h∗L

and
ûR
hR

=
û∗R
h∗R
.
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1D Shallow water model with two velocities

For ûR
hR
6= ûL

hL
, the intermediate states are

h∗L = h∗R = hHLL,
u∗L = u∗R = uHLL,

û∗L = ûL
hHLL
hL

,

û∗R = ûR
hHLL
hR

,

λ̃ = λR −
hR (λR − uR)

hHLL
.

(HLL∗)

If ûR
hR

= ûL
hL

, we get û∗L = û∗R = ûHLL and we choose λ̃ defined above.
In addition, we have

λL < λ̃ < λR

sgn(Fh
{HLL}) = sgn(λ̃)

F û
{HLL,up} = F û

HLL∗
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Homogenuous 1D Shallow water model with two velocities

Figure – Two rarefactions case. Plots of the variables using HLL and HLL∗ solvers for
1000 grid cells
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Homogenuous 1D Shallow water model with two velocities

Figure – Dam break problem. Plots of the variables using HLL and HLL∗ solvers for
1000 grid cells
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Homogenuous 1D Shallow water model with two velocities

The 3-waves HLLC type scheme

ŨHLLCu (
x

t
,UL,UR) =


UL if x

t < λL,

U∗L if λL <
x
t < λ∗,

U∗R if λ∗ < x
t < λR ,

UR if x
t > λR . x

λR

UR

λ∗

U∗RU∗LUL

λL

The unknowns are U∗L = (h∗L, u
∗
L, û
∗
L)

U∗R = (h∗R , u
∗
R , û
∗
R)

+ λ∗ ⇒ 7 relations.
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Homogenuous 1D Shallow water model with two velocities

The 3-waves HLLC type scheme

Rankine-Hugoniot relations

h∗Lu
∗
L − hLuL = λL (h∗L − hL)

on λL,

hRuR − h∗Ru
∗
R =

λR (hR − h∗R) on λR

Riemann invariants

u∗L = u∗R = λ∗,

ûL
hL

=
û∗
L

h∗L
on λL,

ûR
hR

=
û∗
R

h∗R
on λR .

The consistency relations of the discharge

λRh
∗
Ru
∗
R − λLh∗Lu∗L + λ∗ (h∗Lu

∗
L − h∗Ru

∗
R) = (λR − λL) hHLLuHLL.
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Homogenuous 1D Shallow water model with two velocities

The 3-waves HLLC type scheme can be solved to obtain

h∗L = hL(
λL − uL
λL − uHLL

),

h∗R = hR(
λR − uR
λR − uHLL

),

u∗L = uHLL,
u∗R = uHLL,

û∗L = ûL(
λL − uL
λL − uHLL

),

û∗R = ûR(
λR − uR
λR − uHLL

),

λ∗ = uHLL.

(HLLC3)

For hL > 0 or hR > 0, we are able to prove that

λL < uHLL < λR

h∗L > 0 and h∗R > 0.
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Numerical results

Figure – Dam break Problem . Plots of the variables using HLL, HLL∗ and HLLCu

solvers for 1000 grid cells
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Numerical results

Figure – The Dam break problem : Convergence of L2 norm errors at t = 0.05s with
mesh refinement for h on the left, for u in the middle and for û on the right.
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1D Shallow water model with two velocities and
topography

The model reads
∂th + ∂x(hu) = 0,
∂t(hu) + ∂x(h(u2 + û2) + g

2 h
2) = −gh∂xZ ,

∂t û + ∂x(uû) = 0.
(SW2)

The system has an additional eigenvalue λ0 = 0

The exact solution of the integral of the topography is very difficult to
compute

Main Objective

To develop a ”Well balanced ” scheme based on the analysis of the Riemann
problem

able to excatly recover any steady solution in 1D over an arbitrary topography

preserves the non-negativity of the water heights
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Numerical schemes

x

λR

UR

t

λ0

U∗RU∗LUL

λL

Using strategy done in (Dansac 16) and corrected in (Mbaye 21), we
construct a numerical scheme named HLLC0

A new numerical scheme named HLLC∗0 (in the same way of HLL∗) is
introduced
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Numerical Results

0 5 10 15 20 25

x

Free surface

Topography

Total head and discharge L2 errors for the subcritical solution

Total head Discharge

HLLC0 8.943e-11 2.46e-13
HLLC∗0 8.942e-11 1.63e-13
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Numerical schemes

The 4-waves HLLC type scheme named HLLCu,0

x

λR

UR

t

λ∗ λ0

U∗0 U∗RU∗LUL

λL

x

λR

UR

t

λ∗
λ0

U∗0 U∗RU∗LUL

λL

we have 3 intermediates states

we have 10 unknowns

we have to preserve the positivity of the water heights

we have to assure that λL < λ∗ < λR and that λ∗ keeps its sign
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Conclusion and perspectives

Conclusions

Proposed several numerical schemes for the resolution of the homogenuous
(SW2)

Proposed briefly several numerical schemes for the resolution of the (SW2)
with the topography

Perspectives

To construct the piecewise C 1 steady solutions of (SW2)

To complete the HLLCu,0 Riemann solver

To do the numerical scheme for the 2D shallow water model with two
velocities

To extend the numerical scheme for the shear shallow water model
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Thankyou !
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