A periodic homogenization problem with defects

Rémi Goudey

Ecole des ponts ParisTech and MATHERIALS Team, INRIA Paris

June 24, 2021

ParisTech

Purpose : To address an homogenization problem for a second order elliptic equation in divergence form when the coefficient is a perturbation of a periodic coefficient :

$$\begin{cases} -\operatorname{div}(a(./\varepsilon)\nabla u^{\varepsilon}) = f \quad \text{on } \Omega, \\ u^{\varepsilon} = 0 \qquad \text{on } \partial\Omega. \end{cases}$$
(1)

Where :

- $\Omega \subset \mathbb{R}^d$ is a bounded domain $(d \ge 1)$.
- $f \in L^2(\Omega)$.
- $\varepsilon > 0$ is a small scale parameter.
- *a* is a bounded, elliptic coefficient.

We want to identify the limit of u^{ε} when the scale parameter $\varepsilon \to 0$ and study the convergence for several topologies $(L^2(\Omega), H^1(\Omega),...)$.

The periodic case

The periodic problem, when $a = a_{per}$, is well known ¹ :

 u^ε converges strongly in L²(Ω), weakly in H¹(Ω) to u^{*} solution to the homogenized equation :

$$\begin{pmatrix} -\operatorname{div}(a_{per}^*\nabla u^*) = f & \text{on } \Omega, \\ u^*(x) = 0 & \text{on } \partial\Omega. \end{cases}$$
(2)

where (a_{per}^*) is a constant matrix.

The behavior in H¹(Ω) is obtained introducing a corrector w_{per,p} defined for all p ∈ ℝ^d as the periodic solution (unique up to the addition of a constant) to :

$$-\operatorname{div}(a_{per}(\nabla w_{per,p}+p))=0 \quad \text{on } \mathbb{R}^d. \tag{3}$$

¹[Bensoussan, Lions, Papanicolaou, 1978]

The periodic case

This corrector w_{per} allows to both make explicit the homogenized coefficient :

$$(a_{per}^*)_{i,j} = \int_Q e_i^T a_{per}(y) \left(e_j + \nabla w_{per,e_j}\right) dy,$$

and define an approximation

$$u^{\varepsilon,1} = u^* + \sum_{i=1}^d \varepsilon w_{per,e_i}(./\varepsilon)\partial_i u^*,$$

such that $u^{\varepsilon,1} - u^{\varepsilon}$ strongly converges to 0 in $H^1(\Omega)$.

Essential property of w_{per} : strict sub-linearity at infinity,

$$\varepsilon w_{per}(./\varepsilon)
ightarrow 0$$
, when $\varepsilon
ightarrow 0$.

- Our purpose is to extend these results to the problem when a ≠ a_{per} describes a perturbed periodic background.
- Typical class of perturbed coefficients :

$$a = a_{per} + \tilde{a}.$$

• Main difficulty : The corrector equation

$$-\operatorname{div}\left(a\left(\nabla w_p+p\right)\right)=0 \text{ in } \mathbb{R}^d,$$

cannot be reduced to an equation posed on a bounded domain as is the case in periodic context, which prevents us from using classical techniques (Poincaré Inequality, Lax-Milgram Lemma...).

The perturbed problem

Extensions in the case $a = a_{per} + \tilde{a}$:

First extension ²: Case of local perturbations (i.e $\tilde{a}(x) \to 0$ when $|x| \to \infty$) when $\tilde{a} \in L^r(\mathbb{R}^d)$ for $r \in]1, \infty[$.

Second extension 3 : Case of non-local perturbations that become rare at infinity.

²[Blanc, Le Bris, Lions, 2012, 2018] & [Blanc, Josien, Le Bris, 2020] ³[Goudey, 2020]

Rémi Goudey (ENPC and INRIA)

The perturbed problem

Extensions in the case $a = a_{per} + \tilde{a}$:

First extension ²: Case of local perturbations (i.e $\tilde{a}(x) \to 0$ when $|x| \to \infty$) when $\tilde{a} \in L^{r}(\mathbb{R}^{d})$ for $r \in]1, \infty[$.

Second extension 3 : Case of non-local perturbations that become rare at infinity.

- The homogenized limit is identical to that of the periodic case without defect ($\tilde{a} = 0$). The existence of an adapted corrector w_p is established.
- $w_p = w_{per,p} + \tilde{w}_p$, where $w_{per,p}$ is the periodic corrector and ∇w_p shares the same structure as the coefficient *a* (ie. $\nabla \tilde{w}_p \in L^r(\mathbb{R}^d)$ or $\nabla \tilde{w}_p$ becomes rare at infinity).

²[Blanc, Le Bris, Lions, 2012, 2018] & [Blanc, Josien, Le Bris, 2020] ³[Goudey, 2020]

Denote $Q = (]0,1[)^d$. We consider here a perturbed periodic background described by :

$$\delta a := (a(.+e_i) - a)_{i \in \{1,\dots,d\}} \in \left(L^r(\mathbb{R}^d)\right)^d, \quad r \in [1,+\infty[.$$
(A1)

- Motivation : δ measures the deviation from a periodic background \rightarrow Already used in the literature to study some properties of solutions to periodic elliptic equations ⁴.
- Here (A1) ensures that the coefficient behaves as a *Q*-periodic function at infinity.

Questions : Limit of u^{ε} when $\varepsilon \to 0$? Existence of an adapted corrector ?

⁴In particular in [Moser, Struwe, 1992]

Preliminaries : The continuous case

We first consider that $\nabla a \in (L^r(\mathbb{R}^d))^d$.

• Assume r < d, and denote $r^* = \frac{rd}{d-r}$. Gagliardo-Nirenberg-Sobolev inequality : $\exists c \in \mathbb{R}, M > 0$ s.t.

$$\|a-c\|_{L^{r^*}(\mathbb{R}^d)} \leq M \|\nabla a\|_{(L^r(\mathbb{R}^d))^d}$$

Then $a = c + a - c = a_{per} + \tilde{a}$ with $\tilde{a} \in L^{r^*}(\mathbb{R}^d)$.

 \Rightarrow Particular case of the setting of local defects in $L^{r^*}(\mathbb{R}^d)$!

Preliminaries : The continuous case

We first consider that $\nabla a \in (L^r(\mathbb{R}^d))^d$.

• Assume r < d, and denote $r^* = \frac{rd}{d-r}$. Gagliardo-Nirenberg-Sobolev inequality : $\exists c \in \mathbb{R}, M > 0$ s.t.

$$\|a-c\|_{L^{r^*}(\mathbb{R}^d)} \leq M \|
abla a\|_{\left(L^r(\mathbb{R}^d)
ight)^d}.$$

Then $a = c + a - c = a_{per} + \tilde{a}$ with $\tilde{a} \in L^{r^*}(\mathbb{R}^d)$.

 \Rightarrow Particular case of the setting of local defects in $L^{r^*}(\mathbb{R}^d)$!

 Assume r ≥ d : Existence of coefficients a such that u^ε only converges along a sub-sequence (and can have several adherent values) :

Examples :
$$a(x) = 2 + \sin(\ln(1 + |x|))$$
 for $d = 1, r > 1$,
 $a(x) = 2 + \sin(\ln(\ln(2 + |x|)))$ for $d = 2, r = 2$.

For
$$f \in L^1_{loc}(\mathbb{R}^d)$$
, we denote $\mathcal{M}(f)(x) := \int_{Q+x} f(y) dy$.

Lemma 1 : Discrete Gagliardo-Nirenberg-Sobolev inequality

Assume r < d. Then, for every f such that $\delta f \in (L^r(\mathbb{R}^d))^d$, there exists a Q-periodic function f_{per} and a constant C > 0 independent of f such that

$$\left\|\mathcal{M}(|f-f_{per}|)\right\|_{L^{r^*}(\mathbb{R}^d)} \leq C \left\|\delta f\right\|_{\left(L^r(\mathbb{R}^d)\right)^d}.$$

- Proof : Adaptation of the continuous GNS inequality in our discrete setting.
- Ensures a control of the behavior of local averages of f at infinity. \rightarrow Up to a local averaging, the function $f - f_{per}$ is an L^{r^*} function at infinity.

For r < d, we define the following space of perturbations :

$$\mathcal{A}^{r}(\mathbb{R}^{d}) = \left\{ f \in L^{1}_{loc}(\mathbb{R}^{d}) \ \bigg| \ \mathcal{M}(|f|) \in L^{r^{*}}(\mathbb{R}^{d}) \text{ and } \delta f \in \left(L^{r}(\mathbb{R}^{d})
ight)^{d}
ight\},$$

equipped with the norm :

$$\|f\|_{\mathcal{A}^{r}(\mathbb{R}^{d})} = \|\mathcal{M}(|f|)\|_{L^{r^{*}}(\mathbb{R}^{d})} + \|\delta f\|_{\left(L^{r}(\mathbb{R}^{d})\right)^{d}}.$$

Lemma $1 \Rightarrow \text{If } \delta a \in (L^r(\mathbb{R}^d))^d$, there exists a_{per} s.t. :

$$a = a_{per} + a - a_{per} = a_{per} + \tilde{a}$$
 with $\tilde{a} \in \mathcal{A}^r(\mathbb{R}^d)$.

- For r < d we study the perturbed problem when $a = a_{per} + \tilde{a}$ with $\tilde{a} \in \mathcal{A}^r(\mathbb{R}^d)$.
- Motivation : Existence of coefficients $\tilde{a} \in \mathcal{A}^r$ such that $\tilde{a} \notin L^{r^*}(\mathbb{R}^d)$.

Proposition (Average)

Let
$$f \in \mathcal{A}^r(\mathbb{R}^d)$$
, then $\langle |f| \rangle = \lim_{R \to \infty} \frac{1}{|\mathsf{B}_R|} \int_{\mathsf{B}_R} |f(x)| dx = 0.$

On average, a perturbation belonging to A^r(ℝ^d) does not affect the periodic background. The homogenized limit of u^ε is therefore expected to be the same as in the case a = a_{per}.

Theorem 1 : Existence result for the corrector equation

Assume r < d, $a_{per} \in L^2_{per}(\mathbb{R}^d) \cap C^{0,\alpha}(\mathbb{R}^d)$, $\tilde{a} \in \mathcal{A}^r(\mathbb{R}^d) \cap C^{0,\alpha}(\mathbb{R}^d)$, $\alpha \in]0, 1[$. Then, for every $p \in \mathbb{R}^d$, there exists a unique (up to an additive constant) function $w_p \in L^1_{loc}(\mathbb{R}^d)$ solution to :

$$\begin{cases} -\operatorname{div}((a_{per} + \tilde{a})(p + \nabla w_p)) = 0 \quad \text{on } \mathbb{R}^d, \\ \lim_{|x| \to \infty} \frac{|w_p(x)|}{1 + |x|} = 0, \end{cases}$$
(4)

such that $abla w_{p} \in \left(L^{2}_{per}(\mathbb{R}^{d}) + \mathcal{A}^{r}(\mathbb{R}^{d}) \right)^{d} \cap \left(\mathcal{C}^{0, \alpha}(\mathbb{R}^{d}) \right)^{d}.$

Main Idea : Assume $w_p = w_{p,per} + \tilde{w}_p$ with $\nabla \tilde{w}_p \in (\mathcal{A}^r(\mathbb{R}^d) \cap \mathcal{C}^{0,\alpha}(\mathbb{R}^d))^d$, then (4) is equivalent to an equation of the form :

$$-\operatorname{div}((a_{per}+\widetilde{a})
abla u)=\operatorname{div}(f)$$
 in \mathbb{R}^d ,

where $u = \tilde{w}_p$ and $f = \tilde{a}(p + \nabla w_{p,per}) \in (\mathcal{A}^r(\mathbb{R}^d))^d$.

Key Lemma for the proof $^{\rm 5}$ of Theorem 1 :

Lemma 2 : A priori estimate

With the assumptions of Theorem 1, there exists C > 0 such that for every $f \in (\mathcal{A}^r(\mathbb{R}^d) \cap \mathcal{C}^{0,\alpha}(\mathbb{R}^d))^d$ and u solution in $\mathcal{D}'(\mathbb{R}^d)$ to

$$-\operatorname{div}((a_{per}+\widetilde{a})\nabla u)=\operatorname{div}(f)$$
 in \mathbb{R}^d ,

with $\nabla u \in \left(\mathcal{A}^r(\mathbb{R}^d) \cap \mathcal{C}^{0,\alpha}(\mathbb{R}^d)\right)^d$, we have the following estimate :

$$\left\|\delta \nabla u\right\|_{\left(L^{r}(\mathbb{R}^{d})\right)^{d \times d}} + \left\|\nabla u\right\|_{\left(C^{0,\alpha}(\mathbb{R}^{d})\right)^{d}} \leq C\left(\left\|\delta f\right\|_{\left(L^{r}(\mathbb{R}^{d})\right)^{d \times d}} + \left\|f\right\|_{\left(C^{0,\alpha}(\mathbb{R}^{d})\right)^{d}}\right)$$

 Lemma 2 ensures the continuity of the reciprocal linear operator
 f → ∇ (− div a∇)⁻¹ div(f) from A^r(ℝ^d) ∩ C^{0,α}(ℝ^d) to

 A^r(ℝ^d) ∩ C^{0,α}(ℝ^d).

⁵Proof adapted from [Blanc, Le Bris, Lions, 2018]

Rémi Goudey (ENPC and INRIA)

Theorem 2 : Homogenization results

Let r < d. Assume $\delta a \in (L^r(\mathbb{R}^d))^d$ and regularity properties. Let u^{ε} the sequence of solutions in $H_0^1(\Omega)$ to

$$\begin{cases} -\operatorname{div}(a(./\varepsilon)\nabla u^{\varepsilon}) = f & \text{on } \Omega, \\ u^{\varepsilon} = 0 & \text{on } \partial\Omega. \end{cases}$$

Then, there exists a Q-periodic function a_{per} such that u^{ε} converges (weak- $H^1(\Omega)$ and strong- $L^2(\Omega)$) to u^* solution to

$$\begin{bmatrix} -\operatorname{div}(a_{per}^*\nabla u^*) = f & \text{on } \Omega\\ u^*(x) = 0. & \text{on } \partial\Omega. \end{bmatrix}$$

Theorem 2 : Convergence results

Assume r < d, $r^* \neq d$ and Ω is a $C^{1,1}$ -bounded domain. Let $\Omega_1 \subset \subset \Omega$. We define $u^{\varepsilon,1} = u^* + \varepsilon \sum_{i=1}^d \partial_i u^* w_{e_i}(./\varepsilon)$ where w_{e_i} is solution to corrector equation for $p = e_i$ and $u^* \in H^1(\Omega)$ is the homogenized limit. Then $R^{\varepsilon} = u^{\varepsilon} - u^{\varepsilon,1}$ satisfies the following estimates :

$$\begin{split} \| \mathcal{R}^{\varepsilon} \|_{L^{2}(\Omega)} &\leq C_{1} \varepsilon^{\nu_{r}} \| f \|_{L^{2}(\Omega)}, \\ \| \nabla \mathcal{R}^{\varepsilon} \|_{L^{2}(\Omega_{1})} &\leq C_{2} \varepsilon^{\nu_{r}} \| f \|_{L^{2}(\Omega)}, \\ \nu_{r} &= \min\left(1, \frac{d}{r^{*}}\right) \in \left]0, 1\right], \end{split}$$

where C_1 and C_2 are two positive constants independent of f and ε .

A counter example for $r \geq d$

- If $r \ge d$: Existence of coefficients *a* such that $\delta a \in (L^r(\mathbb{R}^d))^d$ and u^{ε} has at least two adherent values.
- In this case $a \neq a_{per} + \tilde{a}$ where \tilde{a} is "integrable".
- Example for d = 1, r > 1: $a(x) = 2 + \sin(\ln(1 + |x|))$, $\Omega =]1, 2[$

1.
$$\delta a(x) = O\left(\frac{1}{1+|x|}\right) \Rightarrow \delta a \in L^{r}(\mathbb{R}), \ \forall r > 1.$$

2. If
$$\varepsilon_n = e^{-2n\pi}$$
, $u^{\varepsilon_n} \xrightarrow{n \to \infty} u_1^*$ solution to $-\frac{d}{dx} \left(a_1^* \frac{d}{dx} u_1^* \right) = f$,
where $a_1^*(x) = 2 + \sin(\ln(x))$.

3. If
$$\varepsilon_n = e^{-(2n+1)\pi}$$
, $u^{\varepsilon_n} \xrightarrow{n \to \infty} u_2^*$ solution to $-\frac{d}{dx} \left(a_2^* \frac{d}{dx} u_2^*\right) = f$,
where $a_2^*(x) = 2 - \sin(\ln(x))$.

Thank you for your attention !