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Motivation

Let P be a polynomial invariant under variable permutations.

How to find the minimum of P on Rn?

→ Look for the largest λ such that P − λ is non-negative on Rn.

→ Optimize over subcones of the non-negativity cone.

How to exploit symmetries using group theory and combinatorics?

→ Symmetry reduction for certificates based on SAGE functions.

[M., Naumann, Riener, Theobald, Verdure, 2021+]
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Non-negative certificates: Here cones the sun

→ To get a lower bound on the minimum of P, find λ such that

P − λ ≥ 0.

→ However, it is hard to decide if a polynomial belongs to the cone of

non-negative polynomials.

→ Idea: Use subcones that are easier to characterize algorithmically.

→ The most famous of them is the cone of Sums Of Squares.

→ There exist non-negative polynomials that are not sums of squares.

→ Example: the Motzkin polynomial,

1 + x2y4 + x4y2 − 3x2y2

→ What about other certificates?
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SAGE against the Motzkin

→ Remember the arithmetic-geometric inequality

(x1x2 · · · xn)1/n ≤ 1

n
(x1 + x2 + . . .+ xn).

→ Here, (2, 2) = 1
3((0, 0) + (4, 2) + (2, 4)).

→ Hence x2y2 = (1 · x4y2 · x2y4)
1
3 ≤ 1

3(1 + x4y2 + x2y4)

→ 1 + x2y4 + x4y2 − 3x2y2 ≥ 0
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AGE functions

→ We have

1 + x2y4 + x4y2 − 3x2y2 ≥ 0⇔ 1 + e2x+4y + e4x+2y − 3e2x+2y ≥ 0.

→ The more general framework of signomials.

→ An AGE signomial is a sum of exponentials of the form

f (x) =
∑
α∈A

cαe
〈α,x〉 + cβe

〈β,x〉

such that A ∪ {β} ⊂ Rn, cα ≥ 0, cβ ∈ R, and f (x) ≥ 0 on Rn.
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Non-negativity criterion

→ The arithmetic-geometric inequality implies the following criterion:

→ Let A ∪ {β} ⊂ Rn, and

f (x) =
∑
α∈A

cαe
〈α,x〉 + cβe

〈β,x〉

with c = (cα) ∈ RA+ and cβ ∈ R.

→ Then f is an AGE if and only if there is ν = (να) ∈ RA+ such that

•
∑

α∈A ναα = (
∑
α∈A

να)β

• D(ν, e · c) 6 cβ,

where D(ν, e · c) =
∑

α∈A να ln
(
να
e·cα

)
is the relative entropy function.
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SAGE functions

→ A SAGE signomial is a sum of AGE signomials.

→ [Murray, Chandrasekaran, Wierman, 2020] Let A ∪ B ⊂ Rn, and

f (x) =
∑
α∈A

cαe
〈α,x〉 +

∑
β∈B

cβe
〈β,x〉

with c = (cα) ∈ RA+ and cβ ∈ R for every β ∈ B.

→ Then f is a SAGE if and only if, for every β ∈ B, there is

c(β) = (c
(β)
α ) ∈ RA+ and ν(β) = (ν

(β)
α ) ∈ RA+ such that

(i)
∑
α∈A

ν
(β)
α α = (

∑
α∈A

ν
(β)
α )β for β ∈ B,

(ii) D(ν(β), e · c(β)) 6 cβ for β ∈ B,

(iii)
∑
β∈B

c
(β)
α 6 cα for α ∈ A.

→ Can be solved with relative entropy programming.
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Size of the problem

∑
α∈A cαe

〈α,x〉 +
∑

β∈B cβe
〈β,x〉

∑
α c

(β1)
α e〈α,x〉 + cβ1e

〈β1,x〉
∑
α c

(β2)
α e〈α,x〉 + cβ2e

〈β2,x〉
∑
α c

(β3)
α e〈α,x〉 + cβ3e

〈β3,x〉

→ 2|B||A| variables.

→ n|B| + |B| + |A| constraints.

8
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What about symmetries?

→ [M., Naumann, Riener, Theobald, Verdure, 2021+]

→ Assume f is G -invariant.

→ Let Â, B̂ be sets of G -representatives.

→ Does f have a symmetric decomposition?

→ Can we reduce the size of the relative entropy program?

9
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Orbit decomposition

Theorem [M., Naumann, Riener, Theobald, Verdure]

The signomial f is a SAGE if and only if for every β̂ ∈ B̂, there exists an

AGE signomial hβ̂ such that

f =
∑
β̂∈B̂

∑
ρ∈G/Stab(β̂)

ρhβ̂.

The functions hβ̂ can be chosen invariant under the action of Stab(β̂).

→ This already reduces the number of AGE signomials in the

decomposition.

→ Moreover, the invariance under Stab(β̂) allows to further reduce the

number of variables and constraints.
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Symmetry reduction

Theorem [M., Naumann, Riener, Theobald, Verdure]

The signomial f is a SAGE if and only if for every β̂ ∈ B̂, there exist

c(β̂) ∈ RA/Stab(β̂)+ and ν(β̂) ∈ RA/Stab(β̂)+ such that

(i)
∑

α∈A/Stab(β̂) ν
(β̂)
α
∑

α′∈Stab(β̂)·α(α′ − β̂) = 0 ∀ β̂ ∈ B̂,

(ii)
∑

α∈A/Stab(β̂)

∣∣∣Stab(β̂) · α
∣∣∣ ν(β̂)α ln ν

(β̂)
α

ec
(β̂)
α

6 cβ̂ ∀ β̂ ∈ B̂,

(iii)
∑

β̂∈B̂
| Stab(α)|
| Stab(β̂)|

∑
γ∈(G ·α)/ Stab(β̂)

∣∣∣Stab(β̂) · γ
∣∣∣ c(β̂)γ 6 cα ∀ α ∈ Â.
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Size estimate

→ Without reduction: 2|B||A| variables, n|B| + |B| + |A| constraints.

→ With reduction:

→ 2
∑

β̂∈B̂|A/ Stab(β̂)| variables.

→ At most n|B̂| + |B̂| + |Â| constraints.
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A stability result

→ For α ∈ Rn, denote by wt(α) its number of non-zero coordinates.

Theorem [M., Naumann, Riener, Theobald, Verdure]

Let k , `,w ∈ N be fixed. Then for every integer n > 2w and every

Sn-invariant signomial such that |Â| 6 k, |B̂| 6 `, and

max
γ̂∈Â∪B̂

wt(γ̂) 6 w ,

the number of constraints and the number of variables of the symmetry

adapted program are bounded by constants only depending of k , ` and w :

Cn 6 k + `+ `(w + 1) and Vn 6 2`ku(w),

where u(w) =
w∑
i=0

(
w

i

)2

i ! .
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Concrete size comparisons

→ Look at some cases with Â = {0, α̂} and B̂ = {β̂}

Standard Symmetric

|Sn · β̂| |Sn · α̂| Vn Cn Vn Cn

1 n! 2n! + 3 n! + n + 2 5 4

n! n 2(n + 1)n! + 1 (n + 1)(n! + 1) 2n + 3 n + 3

n! n! 2(n! + 1)n! + 1 n!(n + 2) + 1 2n! + 3 n + 3

n n 2n(n + 1) + 1 (n + 1)2 7 5
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A numerical example

→ α̂ = (n2, 0, . . . , 0), β̂ = (1, 2, . . . , n).

Standard method Symmetric method
dim bound Vn Cn ts tr Vn Cn ts tr
2 -0.2109 13 9 0.0173 0.0185 7 5 0.0297 0.0311
3 -0.8888 49 28 0.0427 0.0454 9 6 0.0248 0.0264
4 -4.111 241 125 0.152 0.1701 11 7 0.0296 0.0318
5 -22.30 1441 726 0.7888 0.8433 13 8 0.0356 0.0384
6 -141.0 10081 5047 5.422 5.843 15 9 0.0423 0.0458
7 -1024 80641 40328 57.26 66.67 17 10 0.0491 0.0538
8 -8418 725761 362889 1514 2211 19 11 0.0568 0.0626
9 -77355 7257601 3628810 – – 21 12 0.0661 0.0835
10 79833601 39916811 – – 23 13 – –

15
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Thank you!
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