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Let P be a polynomial invariant under variable permutations.

How to find the minimum of P on R"?

— Look for the largest A such that P — X is non-negative on R".

— Optimize over subcones of the non-negativity cone.

How to exploit symmetries using group theory and combinatorics?
— Symmetry reduction for certificates based on SAGE functions.

[M., Naumann, Riener, Theobald, Verdure, 2021*]
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Non-negative certificates: Here cones the sun

— To get a lower bound on the minimum of P, find A such that
P—X>0.

— However, it is hard to decide if a polynomial belongs to the cone of

non-negative polynomials.

— |dea: Use subcones that are easier to characterize algorithmically.
— The most famous of them is the cone of Sums Of Squares.

— There exist non-negative polynomials that are not sums of squares.
— Example: the Motzkin polynomial,

1 +x2y4 +x4y2 = 3x2y2

— What about other certificates?
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SAGE against the Motzkin

— Remember the arithmetic-geometric inequality

1
(xaxz - xn) /" < SOa e+ x).

2

— Here, (2,2) = l((O,O) + (4,2) + ))

(2,

— Hence x%y? = (1 - x*y? - x%y*%)

— 14+ x%y* +x*y% —3x%y? >0
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AGE functions

— We have
1 +X2y4 +X4y2 - 3X2y2 Z 0< 1 4+ 62x+4y + e4x+2y - 362x+2y Z 0.

— The more general framework of signomials.

— An AGE signomial is a sum of exponentials of the form

f(x) = Z el + Cge<5’x>
acA

such that AU {8} CR", ¢, >0, cg € R, and on R".
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Non-negativity criterion

— The arithmetic-geometric inequality implies the following criterion:
— Let AU{S} C R", and

f(x) = Z el + CBe<B’X>
acA

with ¢ = (c,) € RY and ¢g € R.

— Then f is an if and only if there is v = (v,) € Rﬁ such that

® DacaVa= (2 va)f

acA

e D(v,e-c) < cg,

where D(v,e-c) = > caValn (e’fga> is the relative entropy function.
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SAGE functions

— A SAGE signomial is a sum of AGE signomials.

— [Murray, Chandrasekaran, Wierman, 2020] Let AU B C R”, and
f(x) = Z cu el + Z cﬁew’X>
acA BEB
with ¢ = (c,) € R7 and ¢z € R for every 3 € B.

— Then f is a if and only if, for every 3 € B, there is
cB) = (cc(fg)) € R4 and v(¥) = (y&ﬁ)) € Ry such that

i TwWa = ()8 frpes,

acA acA
(i) DWW,e-cB)) < ¢z for BeB,

(iif) S < e foraceA
BeEB

— Can be solved with relative entropy programming.
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Size of the problem

Zn CC()‘Sl)e<G"X> + Cﬁle<Bl"X> Z(y C((fz)e<0‘$><> + Cﬁze<ﬂ2’x> Zn C((fS)e(@,X) + Cﬁ3e<53’x>

— 2|B||.A| variables.
— n|B| + |B| + |A| constraints. 8
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What about symmetries?

— [M., Naumann, Riener, Theobald, Verdure, 2021"]
— Assume f is G-invariant.

— Let /i B be sets of G-representatives.

’

-

(s
e

— Does f have a symmetric decomposition?

— Can we reduce the size of the relative entropy program?
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Orbit decomposition

Theorem [M., Naumann, Riener, Theobald, Verdure]

The signomial f is a if and only if for every BA € B, there exists an
AGE signomial hB such that

f_z > phy

B pe G/ Stab(/3)

The functions hj can be chosen invariant under the action of Stab(f3).

— This already reduces the number of AGE signomials in the
decomposition.

— Moreover, the invariance under Stab(@) allows to further reduce the
number of variables and constraints.

10
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Symmetry reduction

Theorem [M., Naumann, Riener, Theobald, Verdure]

The signomial f is a if and only if for every B € B, there exist
c® € RS20 ang B) € R 59D guch that

- %) - o
(i) ZaE.A/ Stab(B) Yo Za’eStab(B).a(O/ —-p)=0 V5eB
.. A (B) u((f?) A ~

(i1) 2 oaeasstab(d) ‘Stab(ﬁ) o vg In o < ¢ vV BeEB,

| Stab(a < ¢ Vace A

(/3’)
(i) > pe8 [swn(d) Zve G-a)/ Stab(B) ‘Stab el

11
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— Without reduction: 2|B||.A| variables, n|B| + |B| + |.A| constraints.

— With reduction:

— 2> aeplA/ Stab(3)| variables.

— At most n|B| + |B| + |A| constraints.
12
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A stability result

— For aw € R", denote by its number of non-zero coordinates.

Theorem [M., Naumann, Riener, Theobald, Verdure]

Let k, ¢, w € N be fixed. Then for every integer and every
Sp-invariant signomial such that [A| < k, |B| < ¢, and

the number of constraints and the number of variables of the symmetry
adapted program are bounded by constants only depending of k, ¢ and

Co<k+0+1 and V, <20k ,

where

13
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Concrete size comparisons

— Look at some cases with A = {0,4} and B = {3}

Standard Symmetric
S0 Bl | 18n - & V, Co V, Ca
1 n! 2n! 43 nl'+n+2 5 4
n! n 2(n+1nl+1 | (n+1)(n!+1) | 2n+3 | n+3
n! n! 2(n+1)nl+1| nl(n+2)+1 | 2n1+3 | n+3
n n 2n(n+1)+1 (n+1)2 7 5

14
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A numerical example

Standard method

Symmetric method

dim | bound V. C, ts tp V. | Cn ts tr
2 -0.2109 13 9 0.0173 0.0185 7 5 0.0297 | 0.0311
3 -0.8888 49 28 0.0427 0.0454 9 6 0.0248 | 0.0264
4 -4.111 241 125 0.152 0.1701 11 7 1 0.0296 | 0.0318
5 -22.30 1441 726 0.7888 0.8433 || 13 | 8 | 0.0356 | 0.0384
6 -141.0 10081 5047 5.422 5.843 15 9 0.0423 | 0.0458
7 -1024 80641 40328 57.26 66.67 17 | 10 | 0.0491 | 0.0538
8 -8418 725761 362889 1514 2211 19 | 11 | 0.0568 | 0.0626
9 -77355 7257601 3628810 = = 21 | 12 | 0.0661 | 0.0835
10 79833601 | 39916811 = = 23 | 13 = =
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Thank you!




