# Mountain pass 1D connections for Allen-Cahn systems

Oliver-Bonafoux, Ramon.
ramon.oliver\_bonafoux@sorbonne\_universite.fr

LJLL, Sorbonne Université

June 22, 2021 PhD advisor: Fabrice Bethuel (LJLL, Sorbonne Université).

This program has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 754362.



## Allen-Cahn systems.

$$(\partial_t u_{\varepsilon}) - \Delta u_{\varepsilon} = -\varepsilon^{-2} \nabla_u V(u_{\varepsilon}), \text{ in } ([0, T]) \times \Omega$$
 (1)

### where

- $u_{\varepsilon}: ([0,T]) \times \Omega \to \mathbb{R}^k$ . We are interested in  $k \geq 2$ .
- $ightharpoonup \Omega \subset \mathbb{R}^N$ .
- $\triangleright$   $\varepsilon > 0$ .
- $ightharpoonup V: \mathbb{R}^k o \mathbb{R}$  a non-negative, smooth **multi-well potential**.

**Interest**: Phase transitions (at  $\varepsilon \approx 0$ ), reaction-diffusion systems.

Standard assumptions on V:

- ▶  $V \in C^2(\mathbb{R}^k)$ ,  $V \ge 0$ .  $\Sigma := \{V = 0\} = \{\sigma_1, \dots, \sigma_l\}$ ,  $2 \le l < +\infty$ .
- $\triangleright$  V is not 0 at  $\infty$ .
- ▶ The wells (elements of  $\Sigma$ ) are non-degenerate.

Of course, **V** is **non-convex**!



Figure: Double-well potential.

Problem: ODE system:

$$\mathbf{q}'' = \nabla_u \mathbf{V}(\mathbf{q}), \text{ in } \mathbb{R}. \tag{2}$$

Associated energy functional:

$${m {\it E}}(q):=\int_{\mathbb R}\left(rac{|q'(t)|^2}{2}+V(q(t))
ight)dt,\;\;q\in H^1_{
m loc}(\mathbb R,\mathbb R^k).$$

**Connection**: a solution of (2),  $\mathfrak{q}$ , such that  $E(\mathfrak{q}) < +\infty$ . Moreover

$$\lim_{t\to\pm\infty} {\mathfrak q}(t)\in {\color{red}\Sigma}.$$

Two possibilities:

- ▶  $q(-\infty) \neq q(+\infty)$ . Heteroclinic case.
- $ightharpoonup q(-\infty) = q(+\infty)$ . Homoclinic case.

Our goal: Existence of non-minimizing connections.

Features of the energy:

$$E(q) := \int_{\mathbb{R}} \left( \frac{|q'(t)|^2}{2} + V(q(t)) \right) dt, \quad q \in H^1_{loc}(\mathbb{R}, \mathbb{R}^k).$$

Assumptions on V imply:

- Non-negativity:  $E \ge 0$  on  $H^1_{loc}(\mathbb{R}, \mathbb{R}^k)$ .
- ▶ Invariance by translations: For all  $q \in H^1_{loc}(\mathbb{R}, \mathbb{R}^k)$  and  $\tau \in \mathbb{R}$ , we have

$$E(q(\cdot + \tau)) = E(q).$$

▶ Finite energy functions connect  $\Sigma$  at  $\pm \infty$ : If  $q \in H^1_{loc}(\mathbb{R}, \mathbb{R}^k)$  is such that  $E(q) < +\infty$ , then

$$\lim_{t\to\pm\infty} q(t)\in\Sigma.$$

## **Natural functional spaces** for *E*:

$$egin{aligned} oldsymbol{\mathcal{X}}(\sigma_i,\sigma_j) &:= \{q \in H^1_{ ext{loc}}(\mathbb{R},\mathbb{R}^k) : oldsymbol{\mathcal{E}}(q) < +\infty \ &\lim_{t o -\infty} q(t) = \sigma_i ext{ and } \lim_{t o +\infty} q(t) = \sigma_j\}, \end{aligned}$$

for  $(\sigma_i, \sigma_j) \in \Sigma^2$ . The properties of the energy imply:

$$\{q \in H^1_{\mathrm{loc}}(\mathbb{R}, \mathbb{R}^k) : E(q) < +\infty\} = \bigcup_{(\sigma_i, \sigma_j) \in \Sigma^2} X(\sigma_i, \sigma_j)$$

and that for any  $(\sigma_i, \sigma_j) \in \Sigma^2$ ,  $\psi_{(\sigma_i, \sigma_j)} \in X(\sigma_i, \sigma_j)$ 

$$X(\sigma_i, \sigma_j) = \{\psi_{(\sigma_i, \sigma_j)}\} + H^1(\mathbb{R}, \mathbb{R}^k).$$

Recall also the continuous embedding

$$i: H^1_{\mathrm{loc}}(\mathbb{R}, \mathbb{R}^k) \to \mathcal{C}^{0,\frac{1}{2}}_{\mathrm{loc}}(\mathbb{R}, \mathbb{R}^k).$$



First idea: Minimization. Study the problem

$$\mathfrak{m}_{\sigma_i\sigma_j}:=\inf_{q\in X(\sigma_i,\sigma_j)} E(q)$$

for  $(\sigma_i, \sigma_j) \in \Sigma^2$ . Two different **cases**:

- 1.  $\sigma_i = \sigma_j = \sigma$ . Straightforward:  $\mathbf{m}_{\sigma_i \sigma_j} = 0$ , attained by the **constant** homoclinic  $\sigma$ .
- 2.  $\sigma_i \neq \sigma_j$ .  $\mathbf{m}_{\sigma_i \sigma_j}$  is **attained** in the double-well case. Otherwise, one imposes (because of the lack of compactness)

$$\mathfrak{m}_{\sigma_i \sigma_j} < \min \{ \mathfrak{m}_{\sigma_i \sigma} + \mathfrak{m}_{\sigma \sigma_j} : \sigma \in \Sigma \setminus \{\sigma_i, \sigma_j\} \}.$$

References: Schatzman (2002), Alama, Bronsard, Contreras and Pelinovsky (2015), Monteil and Santambrogio (2018), Zuñiga and Sternberg (2016).



Figure: If there is no strict triangle's inequality, minimizing sequences may always tend to a gluing of heteroclinics involving other wells.

Seeking for non-minimizing connections: From now on, fix  $(\sigma^-, \sigma^+) \in \Sigma^2$ ,  $\sigma^- \neq \sigma^+$ . Assume the strict triangle's inequality.

- If k = 1, heteroclinics are at most unique (up to translations) and global minimizers of E. Non-minimizing connections cannot exist.
- For k ≥ 2, several globally minimizing heteroclinics can exist. Striking consequences: Alama, Bronsard and Gui (1997) (ABG), a counterexample of De Giorgi's conjecture in the vector-valued case.

**Conclusion**: We restrict to  $k \ge 2$ , and assume **multiplicity** of globally minimizing heteroclinics as follows

$$\mathcal{F} := \{ \mathfrak{q} \in X(\sigma^-, \sigma^+) : E(\mathfrak{q}) = \mathfrak{m}_{\sigma^-\sigma^+} \} = \mathcal{F}_0 \cup \mathcal{F}_1$$

with  $\mathcal{F}_0$  and  $\mathcal{F}_1$  non-empty such that  $\operatorname{dist}_{H^1(\mathbb{R},\mathbb{R}^k)}(\mathcal{F}_0,\mathcal{F}_1)>0$ .



**First observation: Multiplicity** of minimizing heteroclinics and **compactness** of minimizing sequences imply the existence of **a Mountain pass geometry**:

Under general assumptions (including strict triangle's inequality), it holds

$$\mathfrak{c} := \inf_{\gamma \in \Gamma} \max_{s \in [0,1]} \frac{J(\gamma(s))}{m_{\sigma^{-}\sigma^{+}}},$$

where

$$\Gamma := \{ \gamma \in C^0([0,1], H^1(\mathbb{R}, \mathbb{R}^k)) : \gamma(i) \in \mathcal{F}_i \text{ for } i \in \{1,2\} \}.$$

#### The functional

$$J: \mathbf{v} \in H^1(\mathbb{R}, \mathbb{R}^k) \to \mathbf{E}(\psi + \mathbf{v}) \in \mathbb{R}^+$$

is 
$$C^1$$
, where  $\psi \in X(\sigma^-, \sigma^+)$ 

Mountain Pass Lemma: there exists a Palais-Smale sequence  $(q_n)_{n\in\mathbb{N}}$  in  $X(\sigma^-,\sigma^+)$  such that

$$J(q_n-\psi) \to \mathfrak{c}$$
 and  $DJ(q_n-\psi) \to 0$  in  $H^1(\mathbb{R},\mathbb{R}^k)$ 

(identifying via Riesz's Theorem).

**Question**: Does J satisfy the **Palais-Smale condition** at  $\mathfrak{c}$ ? Not in general, even up to translations  $\Rightarrow$  We need to understand how the **Palais-Smale sequences** behave.

Using standard results: For any  $(\tau_n)_{n\in\mathbb{N}}$  there exists  $\mathfrak{q}\in H^1_{\mathrm{loc}}(\mathbb{R},\mathbb{R}^k)$  solving

$$\mathfrak{q}'' = \nabla_u V(\mathfrak{q})$$
 in  $\mathbb{R}$ 

such that (up to subsequences)  $q_n(\cdot + \tau_n) - q \to 0$  strongly in  $H^1(S_K, \mathbb{R}^k)$  for any  $S_K \subset \mathbb{R}$  compact and  $E(q) \leq \mathfrak{c}$ . It could be q constant or  $q \in \mathcal{F}$ . We need to rule out these possibilities.



Figure: We want to exclude this behavior for the Palais-Smale sequence, where  $q_0$  and  $q_1$  are two minimizing heteroclinics.

We introduce additional assumptions. Either:

- c ∉ {(2k+1)m<sub>σ-σ+</sub>: k ∈ N\*}. A more general (and technical) condition works, using a refinement of the Mountain Pass Lemma due to Ghoussoub and Preiss (1989).
- 2. Using the assumptions in ABG: V symmetric with respect to a reflection.

Then, a non-minimizing solution  $\mathfrak u$  exists. At least one of the following two possibilities holds:

- Exists  $\mathfrak{u} \in X(\sigma^-, \sigma^+)$  a solution such that  $E(\mathfrak{u}) > \mathfrak{m}_{\sigma^-\sigma^+}$ .
- **Exists**  $\mathfrak{u} \in X(\sigma, \sigma)$ ,  $\sigma \in {\sigma^-, \sigma^+}$ , non-constant homoclinic solution.

### Remarks:

► In any case, we need

$$\mathfrak{c} < \min\{\mathfrak{m}_{\sigma_i\sigma} + \mathfrak{m}_{\sigma\sigma_i} : \sigma \in \Sigma \setminus \{\sigma_i, \sigma_j\}\}$$

which is void for double-well potentials.

Combining 1. and 2., there exists a non-minimizing heteroclinic solution.

## Why do the assumptions work? The key ideas:

- If the Palais-Smale sequence tends to a concatenate of globally minimizing heteroclinics, then c∈ {(2k+1)m<sub>σ-σ+</sub>: k∈ N\*}.
- 2. If V is symmetric with respect to the reflexion exchanging  $\sigma^-$  and  $\sigma^+$ , we can restrict to a smaller subspace of equivariant functions.

## Open questions:

- Are the additional assumptions that really necessary?
- It is possible to say more about the behavior of the solutions? (For instance, rule out completely the homoclinic case).
- ▶ Consider  $V: \mathcal{M} \to \mathbb{R}$ ,  $\mathcal{M}$  a finite-dimensional manifold. Does some complexity of the topology of  $\mathcal{M}$  imply the existence of non-minimizing connections?

Thank you for your attention!